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Abstract

In this study a two-dimensional random process described by a two-dimensional random variable representing

flood wave duration and flood wave volume is used to assess parameters for a control rule implemented at a retention
reservoir. A description of the probability distribution of the two-dimensional random variable indicated above is compiled
using a two-dimensional Gumbel-Hougaard copula function. The marginal distribution functions used in this study have the
form of log-normal functions. The parameter of the Gumbel-Hougaard copula function is estimated using optimization
methods. A Monte Carlo method was applied to assess the risk posed by control parameters of a multi-purpose retention
reservoir. Finally, an experiment was defined and a simulations for risk assessment were carried out to find solutions.

Keywords Ruin theory, Random process, Gumbel-Hougaard copula function, Two-dimensional random variable of

flood wave volume and duration

1. Introduction

This study represents another step in extending and
promoting risk estimation methods for specific values taken
on by control rule parameters implemented for flood control
reservoirs. The prior analyses [8] were focused on the
application of a unidimensional random variable in an
assessment of risk parameters. In this study, a
two-dimensional approach is applied, i.e. a two-dimensional
random variable representing the volume of inflow to the
reservoir and the time of appearance of such volume. The
aim of this approach is to define a two-dimensional random
process included in an equation of flood control capacity
filling (Twardy, 2014) to assess risk values.

The proposed approach is more appropriate in terms of
methodology, compared to that previously discussed and
based on a unidimensional random variable for several
reasons. An indisputable advantage of the present proposal
consists in the application of a generalized approach wherein
a two-dimensional random process with a single joint
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distribution are used to describe events that occur in the
reservoir: the time of appearance of a specific value of
volume and the value of that volume. Another advantage
results from the application of the copula function that
combines in this case two potentially different random
distributions describing the indicated random variables.

2. A Description of Retention Reservoir
Operation Based on a
Two-dimensional Random Process

The filling process of flood control capacity is represented
by the following equation, modified to include a
two-dimensional random process that represents time values
and values of volumes appearing after defined time intervals:

Re=R+U-T,-V, (2.1)

Let us assume a simple rule for controlling of a storage
reservoir. Let the discharged volume be defined by the

following rule:
U= {QD forV, =R

Qs forV, <R 2.2)

where:
Qp[m3/s] — inflow to the reservoir at the moment t,
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Qz[m3/s] — set outflow from the reservoir,

U[m3/s] — outflow from the reservoir to be discharged at
the moment t,

R[m3] — initial flood control capacity

2.3)
(2.4)

To =T+ + T+ +Ty,

Ve=Vi+ -+ V44V,

where:

V; [m3] — volume of water inflow to the reservoir

Vi [m?3] — total inflow volume in the period [0, t]

Ty, — the first coordinate of the two-dimensional random
process used to model times of inflow of specific volumes to
the reservoir

Vn, — the second coordinate of the two-dimensional
random process used to model inflows of specific volumes to
the reservoir

2.1. Filled Flood Control Capacity — Similarity to the
Ruin Status

When the value of volume accumulated in the reservoir
becomes negative, this means that the total of volumes of
inflows to the reservoir has exceeded the value of the flood
control capacity; let this moment be termed the moment of
ruin and be defined as:

T = inf{t > 0:R, < 0} (2.5)

The probability of filling the flood storage capacity,
correspondingly:

Yu,t) =P(T<t) (2.6)

2.2. The Volume Accumulation Process
The volume accumulation process observed at moments:
t=TyTo+T,To+ T + T, To+ Ty + T, + T3, ...
is understood as volume accumulation process in time:

Re=R+U-T,—V, (2.7)
2.3. Safety Factor of Safe Outflow
Assuming Q, > EV; for a certain 6 > 0 we obtain:
Q, =1 +06)EV; (2.8)

The factor 8 is called the safety factor of set outflow.

3. Determining Distribution of a
Two-dimensional Random Variable

3.1. Distributions Based on Copula Functions

Copula functions are used to describe a two-dimensional
random variable. The application of a copula function as a
tool to obtain multivariate distributions of random variables
was already discussed by the author of this study in 2008.
Looking back, copula functions were originally applied in
economics. The usefulness of an approach based on those
functions results from the possibility of combining
univariate marginal probability distributions of a single

random variable into a complete multivariate distribution of
a multidimensional random variable.

Continued interest in distributions based on copula
functions results principally from the possibilities they offer
in the development of new methods of probabilistic
modelling in the engineering sciences. The theoretical details
are discussed by the author of this study in [3, 4].

3.2. Multidimensional Copulas

The function of the n—Copula C(u,,u,,..,u, ) type
is defined as follows and has the following properties:

C:D—[0,1], domain: De[0,1]",

uke\?(/),l]c(ul ,UZ ;---;1,11(71 ,O,llk+1 ’""un) -0 ,
ukz)'l]C(l,...,l,uk A,.,1)=u,
ke[1,n].

As in the two-dimensional problem, the relation between
joint  distribution  H(x,,X,,..,x, ) and marginal
n

distributions F; (x,), £, (X, ). F (x,) is given by:

H(x,,x,,..x )=C(u,u,,.,u ) (3.1)
where:
u, =F(x,),
u, = F,(x,),
o are marginal distribution functions
= F(x,)

Variables u ,u,,..,u are marginal distribution
1772 n

functions. If the variables are continuous, the probability
density function is given by:

0"C(u ,u,,..,u
c(u,u,,..,u )= Wyt
" ou,0u,..0u,)
It is also observed that the probability density
h(X,X,,.,X ) describing a n - dimensional random

3.2

variable is given by:

b(Xl,Xz,...,Xn)=C(F;(Xl),FZ(XZ),...,F(XH))ILI £.(x,)
k=1

33)
where:
f,(x,) - marginal probability density function of a

random variable X,

3.3. Archimedean Copula
In this study, a function from the Archimedean family —
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the Gumbel-Hougaard copula function — is applied.
In general, the distribution family given by

C(u,,u,,..,u )=0O(@ " (u)+P " (1) +.+ D' (u,))
3.4)

is known as the Archimedean family.
Typical examples include:
the Clayton form:

C(u,,u,,..u,) =( i u’ —1] ’ (3.5)
=

where:
O<e[-1,0)\ {0}

the Gumbel-Hougaard form (a single-parameter copula):
1
n g
C(u,,u,,..,u )=exp| — Z(—lnuk) (3.6)
k=1

where:
fe[-1,0)

the Gumbel-Hougaard form (a two-parameter copula):

C(u,,uy,..u)= {i (uk‘“ —1)5T (3.7

k=1

where:
a, fe[-1,0)\{0}
the Frank form:

n

1 kr:11(679Uk _1)

C(u,,u,,..,u )=——In| 1+ 3.8
172 0 (e,g_l) (3.8)

where:

0e[-1,0)\ {0}

4. A Description of a Two-dimensional
Random Variable Based on the
Copula Function

In order to preserve marginal distribution parameters, the
two-dimensional random process is generated using the
distribution of a two-dimensional random variable based on
a function from the Archimedean copula family known as
the Gumbel-Hougaard copula. Finally the
Gumbel-Hougaard copula function was used in this analysis,
but results for the Clayton function are also given for
comparison purposes.

The analysis is based on empirical data of flood waves
collected at the Stroza water-level gauge between 1951 and
2010. A detailed description of the data used and the data
processing method are given in [4]. The figure shows only
the concept used to determine wave characteristics.
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Figure 1. Method used to assess flood wave characteristics
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4.1. Gumbel-Hougaard Copula

This form of copula function is one of the most frequently
used in determining extreme value distributions and has been
analysed in prior studies published by the author [3, 4].

F(u,,u,)=exp —{Zzl (—lnuk)e]9
=

(4.1)
where:
F - cumulative distribution function,
u = F; (Xl)
u, = F,(%,)\ are marginal distribution functions,

@ - an optimum parameter for the selected copula
function,

4.2. Definition of an Optimization Problem

An optimization problem was defined to solve the
problem of estimating the copula function parameter. The
forms of the empirical cumulative distribution function and

the theoretical cumulative distribution function were defined,

as were decision variables and the form of the criterion
function.
The empirical distribution function is given by:

#[(Xi,yj):(xi <X,y Sy)] (4.2)
N

£ ()=

where:
ije{l..N},
N - number of observations,
E./’?"””zFe”’”(Xl_,Yj) - the
cumulative distribution function.
A log-normal distribution is adopted as the form of

marginal distribution functions for the analysed random
variable.

value of empirical

~(In(x)-u)

e 2 (4.3)

y=f(x| ,0)=——
xo\2r

Marginal distribution parameters are defined using the
maximum likelihood method. Using the possibilities offered
by the copula function, the value of the theoretical
cumulative distribution function is given by:

F& =F,(F(x|8),F(r1§,),0) (4.4)

where:
F.() - cumulative distribution function based on the

copula function,
@ - the copula function parameter takes on values from a

set dependent on the copula function form,
F(x /&) - the marginal distribution function of a
specific random variable, dependent on the parameter vector
& - distribution parameter vector with coordinates

computed for the maximum of the likelihood function,
The following form of criterion function is assumed:

2
K= ZZ(FZ'EOI _ emp) (45)
where:
F;;’eor =Fteol'(X:Xi’Y=)/j):P(XSXI’YSY}) -

the value of theoretical distribution function,
K=K(Ex,£y,¢9) - criterion function.
For the indicated form of criterion function, we seek a

vector of numerical coefficients (vector of decision variables)
at which the criterion function takes on its minimum value:

K(Ex,Ey,Q)—>min (4.6)

4.3. A Description of a Two-dimensional Random
Variable — Results of Optimization

The maximum likelihood method was used to define the
marginal distribution parameters in the first step, then the
copula function parameter was optimized. It was determined
that the best description of the empirical distribution function
for the analysed flood wave characteristics was provided by
the Gumbel-Hougard function based on log-normal marginal
distributions.

o[-, 1, )}
el )

where:

-(n({)-p, )
1 20')2{

(o For -
£ =(u,0,) x{V, T,

4.4. Results of Distribution Describing a
Two-Dimensional Random Variable

F(x]8,)= J a¢,

The results of modelling a two-dimensional random
variable are given below. The probability density function
for the two-dimensional random variable representing
volume and time is given in graphic form. The graphs
illustrate both Gumbel-Hougaard and Clayton copula
functions. The Gumbel-Hougaard copula was finally
selected due to its lower value for the criterion function, i.e.
better matching of the theoretical and empirical distribution
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functions. concentrations of sets of generated points around empirical

In addition, the results of applying Monte Carlo methods data and an optimized form of theoretical bivariate
in generating values for the analysed random variables are  distribution of a random variable based on the
shown. The graphs representing the results of the Monte  Gumbel-Hougaard copula function with log-normal
Carlo methods applied demonstrate the correct marginal distributions.

Figure 2. Probability density function based on the Clayton copula function with log-normal marginal distributions; horizontal axis: volume, vertical axis:
time

Figure 3. Probability density function based on the Gumbel-Hougaard copula function with log-normal marginal distributions; horizontal axis: volume,
vertical axis: time

Table 1. Optimum parameter of the copula function

Gumbel-Hougaard Clayton

Copula function parameter o 3.407 7.073

Criterion function value K 0.0738 0.113

Table 2. A statement of marginal distribution parameters - a log-normal distribution

Random variable
Parameters of marginal distributions
’ v, 7,
)2 3.303 4.202
o 0.683 0.542
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Figure 4. The effect of application of MC (to generate a set of wave volumes and wave durations, coordinate system (volume [Mm?®], duration [h], 1000
points), red points — generated using the MC method, blue points — empirical data. Distribution contour lines shown in the background
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Figure 5. The effect of application of MC (to generate a set of wave volumes and wave durations, coordinate system (volume [Mm®], duration [h], 10000
points), red points — generated using the MC method, blue points — empirical data. Distribution contour lines shown in the background

5. An Application of the Theory — Risk

Calculation

o value of set (controlled) outflow

According to the results obtained, the functions of risk
values at extreme analysed values of flood control capacity

The discussed experiment (algorithm) has been designed 50 controlled discharge are not monotonic. This is due to
so as to estimate the value of probability of the flood control  {a fact that simulations were completed for sets of only
capacity being filled, as a function of the following 10000 cycle elements and only 10000 cycles. Experience

quantities:
o safety factor

o flood control capacity

indicates that monotonicity appears if these numbers are
increased by a factor of 10.
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Figure 6. The probability of the flood control capacity being filled for varying values of flood control capacity as a function of fixed set outflow. Safety
factor 6=0.01. Number of elements in the sequence: 10000, number of cycles: 10000
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Figure 7. The probability of the flood control capacity being filled for varying values of fixed set outflow as a function of the value of flood control
capacity. Safety factor 6=0.01. Number of elements in the sequence: 10000, number of cycles: 10000
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Table 3. The probability of the flood control capacity being filled. 6 =0.0
Safety factor 6=0.0
The number of elements in a cycle n=10000
The number of cycles nc=10000
Control Set Ol;tﬂOW
capacity [m/s]
[Mm?] Qp
R 180 190 200 210 220 230 240 250 260 270 280 290 300
10 1.0000 | 0.9538 | 0.5831 | 0.3702 | 0.2645 | 0.2004 | 0.1565 | 0.1158 | 0.0987 | 0.0858 | 0.0772 | 0.0651 | 0.0533
12 1.0000 | 0.9468 | 0.5850 | 0.3592 | 0.2481 | 0.1844 | 0.1455 | 0.1136 | 0.0987 | 0.0776 | 0.0593 | 0.0577 | 0.0474
14 1.0000 | 0.9453 | 0.5530 | 0.3453 | 0.2313 | 0.1716 | 0.1235 | 0.1040 | 0.0863 0.07 0.06 0.0474 | 0.0443
16 1.0000 | 0.9387 | 0.5367 | 0.3289 | 0.2186 | 0.1469 | 0.1137 | 0.0876 | 0.0767 | 0.0642 | 0.0562 | 0.0454 | 0.0398
18 1.0000 | 0.9376 | 0.5187 | 0.3081 | 0.2002 | 0.1453 | 0.1038 | 0.0858 0.066 0.0556 | 0.0493 | 0.0433 | 0.0313
20 1.0000 | 0.9356 | 0.5018 | 0.2836 | 0.1791 | 0.1321 | 0.0962 | 0.0746 | 0.0606 | 0.0501 | 0.0436 | 0.0372 | 0.0292
22 1.0000 | 0.9286 | 0.4840 | 0.2677 | 0.1719 | 0.1215 | 0.0907 | 0.0696 | 0.051 | 0.0446 | 0.0398 | 0.0318 | 0.028
24 1.0000 | 0.9299 | 0.4640 | 0.2570 | 0.1545 | 0.1136 | 0.0851 | 0.0636 | 0.0539 | 0.0451 | 0.0334 | 0.0306 | 0.0235
26 1.0000 | 0.9311 | 0.4429 | 0.2433 | 0.1487 | 0.1005 | 0.0733 | 0.0564 | 0.0499 | 0.042 | 0.0355 | 0.0265 | 0.0238
28 1.0000 | 0.9170 | 0.4345 | 0.2237 | 0.1335 | 0.0944 | 0.0682 | 0.0509 | 0.0427 | 0.0336 0.03 0.0249 | 0.0177
30 1.0000 | 0.9207 | 0.4140 | 0.2066 | 0.1236 | 0.0863 | 0.0642 | 0.0443 | 0.0382 | 0.0296 | 0.0263 | 0.0203 | 0.0174
32 1.0000 | 0.9189 | 0.3986 | 0.2051 | 0.1199 | 0.0757 | 0.0588 | 0.0455 | 0.0365 | 0.0277 | 0.0249 | 0.0195 | 0.0168
34 1.0000 | 0.9076 | 0.3822 | 0.1946 | 0.1119 | 0.0744 | 0.0468 | 0.0383 | 0.0282 | 0.0275 | 0.0184 | 0.0182 | 0.0167
36 1.0000 | 0.9059 | 0.3729 | 0.1847 | 0.1048 | 0.0661 | 0.0504 | 0.0349 | 0.0277 | 0.0226 | 0.0201 | 0.0141 | 0.0136
38 1.0000 | 0.9066 | 0.3598 | 0.1689 | 0.0993 | 0.0579 | 0.0420 | 0.0340 | 0.0258 | 0.0238 | 0.0178 | 0.014 | 0.0113
40 1.0000 | 0.9030 | 0.3422 | 0.1593 | 0.0913 | 0.0533 | 0.0409 | 0.0288 | 0.022 | 0.0176 | 0.0139 | 0.0116 | 0.0104
42 1.0000 | 0.8948 | 0.3351 | 0.1484 | 0.0832 | 0.0476 | 0.0363 | 0.0256 | 0.0221 | 0.0146 | 0.012 | 0.0137 | 0.0095
44 1.0000 | 0.8943 | 0.3206 | 0.1354 | 0.0725 | 0.0468 | 0.0315 | 0.0254 | 0.0197 | 0.0159 | 0.0122 0.01 0.0078
46 1.0000 | 0.8907 | 0.3155 | 0.1296 | 0.0654 | 0.0431 | 0.0287 | 0.0217 | 0.0184 | 0.0114 | 0.0097 | 0.0092 | 0.0076
46.8 1.0000 | 0.8892 | 0.3081 | 0.1329 | 0.0700 | 0.0404 | 0.0276 | 0.0226 | 0.017 | 0.0118 | 0.0093 | 0.0077 | 0.0078
Table 4. The probability of the flood control capacity being filled. 6 =0.01
Safety factor 6=0.01
The number of elements in a cycle n=10000
The number of cycles nc=10000
Control Set Ol;tﬂOW
capacity [m/s]
[Mm?] Qp
R 180 190 200 210 220 230 240 250 260 270 280 290 300
10 1.0000 | 0.8752 | 0.5384 | 0.3593 | 0.2401 | 0.1889 | 0.1401 | 0.1216 | 0.0967 | 0.0852 | 0.0644 | 0.0598 | 0.0492
12 1.0000 | 0.8635 | 0.5169 | 0.3323 | 0.2240 | 0.1733 | 0.1278 | 0.1059 | 0.0885 | 0.0725 | 0.0655 | 0.0508 | 0.0443
14 1.0000 | 0.8538 | 0.5016 | 0.3159 | 0.2175 | 0.1598 | 0.1215 | 0.0974 | 0.0804 | 0.0656 | 0.0567 | 0.0446 | 0.0403
16 1.0000 | 0.8449 | 0.4778 | 0.3000 | 0.2010 | 0.1535 | 0.1155 | 0.0837 | 0.0707 | 0.0574 | 0.0518 | 0.0429 | 0.0358
18 1.0000 | 0.8322 | 0.4599 | 0.2779 | 0.1899 | 0.1286 | 0.1076 | 0.0791 | 0.0679 0.05 0.0458 | 0.0353 | 0.0318
20 1.0000 | 0.8315 | 0.4411 | 0.2665 | 0.1683 | 0.1303 | 0.0943 | 0.0706 | 0.0571 | 0.0514 | 0.0423 | 0.0374 | 0.0312
22 1.0000 | 0.8153 | 0.4138 | 0.2337 | 0.1575 | 0.1160 | 0.0837 | 0.0668 | 0.0495 | 0.0433 | 0.0379 | 0.0319 | 0.0259
24 1.0000 | 0.8093 | 0.4056 | 0.2328 | 0.1491 | 0.1065 | 0.0789 | 0.0601 | 0.0466 | 0.0384 | 0.0362 | 0.0283 | 0.0218
26 1.0000 | 0.8084 | 0.3944 | 0.2195 | 0.1325 | 0.0934 | 0.0683 | 0.0522 0.044 0.0372 | 0.0291 | 0.0264 | 0.0235
28 1.0000 | 0.7991 | 0.3735 | 0.2051 | 0.1245 | 0.0816 | 0.0631 | 0.0480 | 0.0408 | 0.0329 | 0.0295 | 0.0237 | 0.0217
30 1.0000 | 0.7886 | 0.3639 | 0.1842 | 0.1202 | 0.0786 | 0.0533 | 0.0429 | 0.0399 | 0.0313 | 0.0249 | 0.0194 | 0.0165
32 1.0000 | 0.7795 | 0.3491 | 0.1780 | 0.1093 | 0.0729 | 0.0535 | 0.0421 | 0.0308 | 0.0246 | 0.0224 | 0.0189 | 0.0175
34 1.0000 | 0.7661 | 0.3376 | 0.1650 | 0.0972 | 0.0671 | 0.0469 | 0.0347 | 0.0294 | 0.0227 | 0.0184 | 0.0166 | 0.0143
36 1.0000 | 0.7631 | 0.3294 | 0.1570 | 0.0929 | 0.0625 | 0.0444 | 0.0353 | 0.0262 | 0.0204 | 0.0168 | 0.015 | 0.0117
38 1.0000 | 0.7626 | 0.3021 | 0.1508 | 0.0839 | 0.0537 | 0.0410 | 0.0295 | 0.0215 | 0.0204 | 0.0155 | 0.0135 | 0.0106
40 1.0000 | 0.7481 | 0.2867 | 0.1386 | 0.0817 | 0.0490 | 0.0369 | 0.0259 | 0.0198 | 0.0179 | 0.0117 | 0.0119 | 0.0098
42 1.0000 | 0.7447 | 0.2817 | 0.1278 | 0.0714 | 0.0455 | 0.0313 | 0.0252 | 0.0203 | 0.0163 | 0.0129 | 0.0099 | 0.0094
44 1.0000 | 0.7258 | 0.2739 | 0.1240 | 0.0660 | 0.0428 | 0.0311 | 0.0242 | 0.0191 | 0.0127 | 0.011 | 0.0093 | 0.0077
46 1.0000 | 0.7274 | 0.2560 | 0.1112 | 0.0645 | 0.0383 | 0.0292 | 0.0215 | 0.0145 | 0.0131 | 0.011 | 0.0096 | 0.0072
46.8 1.0000 | 0.7159 | 0.2558 | 0.1095 | 0.0598 | 0.0398 | 0.0257 | 0.0197 | 0.0141 | 0.012 | 0.0095 | 0.0085 | 0.0062
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Table 5. The probability of the flood control capacity being filled. 6 =0.1

Safety factor 6=0.1
The number of elements in a cycle n=10000
The number of cycles nc=10000

Control Set ot;tﬂow

capacity [m/s]

[Mm?] Qp
R 170 180 190 200 210 220 230 240 250 260 270 280 290 300
10 1.0000 | 0.6506 | 0.4041 | 0.2632 | 0.1885 | 0.1478 | 0.1206 | 0.0937 | 0.0758 | 0.0639 | 0.0561 | 0.048 | 0.0427 | 0.0378
12 1.0000 | 0.6251 | 0.3721 | 0.2426 | 0.1776 | 0.1339 | 0.1135 | 0.0840 | 0.0735 | 0.0569 | 0.053 | 0.0424 | 0.0377 | 0.0333
14 1.0000 | 0.6144 | 0.3546 | 0.2303 | 0.1716 | 0.1231 | 0.0985 | 0.0832 | 0.0622 | 0.0536 | 0.0444 | 0.0372 | 0.0312 | 0.0302
16 1.0000 | 0.5918 | 0.3352 | 0.2177 | 0.1447 | 0.1080 | 0.0824 | 0.0638 | 0.0579 | 0.0503 | 0.0388 | 0.0374 | 0.0308 | 0.0243
18 1.0000 | 0.5817 | 0.3135 | 0.2001 | 0.1333 | 0.1061 | 0.0762 | 0.0589 | 0.0490 | 0.0441 | 0.036 | 0.0295 | 0.0262 | 0.0231
20 1.0000 | 0.5553 | 0.3010 | 0.1838 | 0.1251 | 0.0869 | 0.0737 | 0.0616 | 0.0484 | 0.0387 | 0.0328 | 0.0274 | 0.0252 | 0.0231
22 1.0000 | 0.5430 | 0.2820 | 0.1721 | 0.1235 | 0.0814 | 0.0616 | 0.0529 | 0.0439 | 0.0353 | 0.0289 | 0.0252 | 0.0221 | 0.0177
24 1.0000 | 0.5253 | 0.2652 | 0.1653 | 0.1037 | 0.0797 | 0.0595 | 0.0468 | 0.0361 | 0.0328 | 0.0289 | 0.0249 | 0.0198 | 0.0182
26 1.0000 | 0.5141 | 0.2524 | 0.1475 | 0.1009 | 0.0729 | 0.0517 | 0.0424 | 0.0356 | 0.0296 | 0.0241 | 0.0215 | 0.0181 | 0.0162
28 1.0000 | 0.4934 | 0.2487 | 0.1433 | 0.0903 | 0.0627 | 0.0448 | 0.0354 | 0.0293 | 0.0255 | 0.0198 | 0.018 | 0.0153 | 0.0146
30 1.0000 | 0.4831 | 0.2205 | 0.1240 | 0.0858 | 0.0606 | 0.0454 | 0.0318 | 0.0286 | 0.0221 | 0.018 | 0.0159 | 0.0146 | 0.0115
32 1.0000 | 0.4739 | 0.2148 | 0.1211 | 0.0735 | 0.0541 | 0.0382 | 0.0300 | 0.0260 | 0.0231 | 0.0161 | 0.0146 | 0.0116 | 0.0112
34 1.0000 | 0.4558 | 0.2026 | 0.1092 | 0.0701 | 0.0458 | 0.0315 | 0.0267 | 0.0216 | 0.0179 | 0.016 | 0.0134 | 0.0121 | 0.0088
36 1.0000 | 0.4452 | 0.1937 | 0.1058 | 0.0660 | 0.0438 | 0.0306 | 0.0233 | 0.0195 | 0.0144 | 0.0139 | 0.0134 | 0.011 | 0.0097
38 1.0000 | 0.4280 | 0.1775 | 0.0892 | 0.0549 | 0.0419 | 0.0299 | 0.0215 | 0.0188 | 0.0138 | 0.0124 | 0.0098 | 0.0087 | 0.009
40 1.0000 | 0.4262 | 0.1729 | 0.0883 | 0.0538 | 0.0362 | 0.0243 | 0.0209 | 0.0170 | 0.0129 | 0.0092 | 0.0101 | 0.0076 | 0.0064
42 1.0000 | 0.4024 | 0.1611 | 0.0801 | 0.0503 | 0.0363 | 0.0236 | 0.0204 | 0.0148 | 0.011 | 0.0081 | 0.0093 | 0.0068 | 0.0049
44 1.0000 | 0.3966 | 0.1443 | 0.0756 | 0.0451 | 0.0285 | 0.0199 | 0.0164 | 0.0130 | 0.0117 | 0.0081 | 0.0072 | 0.0074 | 0.0048
46 1.0000 | 0.3765 | 0.1386 | 0.0692 | 0.0439 | 0.0276 | 0.0175 | 0.0162 | 0.0101 | 0.0098 | 0.0081 | 0.0075 | 0.0048 | 0.0046
46.8 1.0000 | 0.3730 | 0.1405 | 0.0692 | 0.0409 | 0.0246 | 0.0185 | 0.0136 | 0.0106 | 0.0112 | 0.0072 | 0.006 | 0.0044 | 0.0038

Table 6. The probability of the flood control capacity being filled. 6 =1.0

Safety factor 6=1.0

The number of elements in a cycle n=10000

The number of cycles nc=10000

Control Set ogtflow

capacity [m'fs]

[Mm?] Qp

R 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
10 0.0515 | 0.0388 | 0.0310 | 0.0252 | 0.0211 | 0.0181 | 0.0121 | 0.0100 | 0.0119 | 0.0081 | 0.0070 | 0.0058 | 0.0045 | 0.0053 | 0.0044 | 0.0036
12 0.0464 | 0.0381 | 0.0308 | 0.0215 | 0.0173 | 0.0162 | 0.0143 | 0.0103 | 0.0076 | 0.0075 | 0.0053 | 0.006 | 0.0063 | 0.003 | 0.0052 | 0.0022
14 0.0438 | 0.0330 | 0.0268 | 0.0223 | 0.0172 | 0.0140 | 0.0122 | 0.0094 | 0.0090 | 0.0062 | 0.0069 | 0.0041 | 0.0042 | 0.0033 | 0.0024 | 0.0015
16 0.0406 | 0.0309 | 0.0252 | 0.0189 | 0.0153 | 0.0116 | 0.0095 | 0.0082 | 0.0069 | 0.0061 | 0.0057 | 0.0052 | 0.0031 | 0.003 | 0.0041 | 0.0028
18 0.0375 | 0.0274 | 0.0185 | 0.0164 | 0.0154 | 0.0111 | 0.0104 | 0.0069 | 0.0049 | 0.0055 | 0.0044 | 0.0037 | 0.0021 | 0.0025 | 0.0029 | 0.0024
20 0.0352 | 0.0215 | 0.0167 | 0.0143 | 0.0125 | 0.0105 | 0.0088 | 0.0062 | 0.0049 | 0.0042 | 0.0045 | 0.0042 | 0.0028 | 0.0025 | 0.0019 | 0.0021
22 0.0301 | 0.0199 | 0.0166 | 0.0143 | 0.0099 | 0.0062 | 0.0054 | 0.0067 | 0.0050 | 0.0045 | 0.0032 | 0.0031 | 0.0034 | 0.0014 | 0.0018 | 0.0016
24 0.0236 | 0.0192 | 0.0165 | 0.0116 | 0.0093 | 0.0071 | 0.0068 | 0.0041 | 0.0040 | 0.0033 | 0.0028 | 0.003 | 0.0022 | 0.0016 | 0.0015 | 0.0024
26 0.0213 | 0.0168 | 0.0150 | 0.0106 | 0.0091 | 0.0072 | 0.0065 | 0.0051 | 0.0040 | 0.0024 | 0.0021 | 0.003 | 0.0022 | 0.0029 | 0.0011 | 0.001
28 0.0205 | 0.0146 | 0.0109 | 0.0088 | 0.0085 | 0.0060 | 0.0047 | 0.0047 | 0.0025 | 0.0028 | 0.0034 | 0.0022 | 0.0015 | 0.0014 | 0.002 | 0.0011
30 0.0187 | 0.0141 | 0.0100 | 0.0077 | 0.0076 | 0.0055 | 0.0053 | 0.0038 | 0.0032 | 0.0025 | 0.0021 | 0.0018 | 0.0018 | 0.0008 | 0.0009 | 0.0013
32 0.0155 | 0.0104 | 0.0095 | 0.0078 | 0.0068 | 0.0048 | 0.0027 | 0.0027 | 0.0031 | 0.0023 | 0.0010 | 0.0015 | 0.0016 | 0.0009 | 0.001 | 0.0012
34 0.0151 | 0.0108 | 0.0082 | 0.0077 | 0.0054 | 0.0037 | 0.0029 | 0.0025 | 0.0025 | 0.0013 | 0.0018 | 0.0016 | 0.0014 | 0.0016 | 0.0009 | 0.0009
36 0.0122 | 0.0097 | 0.0075 | 0.0064 | 0.0046 | 0.0031 | 0.0031 | 0.0027 | 0.0024 | 0.0021 | 0.0013 | 0.0009 | 0.0006 | 0.0009 | 0.0008 | 0.0002
38 0.0103 | 0.0079 | 0.0054 | 0.0047 | 0.0048 | 0.0034 | 0.0026 | 0.0019 | 0.0016 | 0.0019 | 0.0013 | 0.0013 | 0.0009 | 0.0007 | 0.0007 | 0.0007
40 0.0105 | 0.0070 | 0.0068 | 0.0042 | 0.0038 | 0.0039 | 0.0017 | 0.0015 | 0.0018 | 0.0011 | 0.0011 | 0.0009 | 0.001 | 0.0014 | 0.0005 | 0.0006
42 0.0084 | 0.0072 | 0.0056 | 0.0038 | 0.0032 | 0.0023 | 0.0024 | 0.0017 | 0.0013 | 0.0007 | 0.0014 | 0.0007 | 0.0004 | 0.0002 | 0.0006 | 0.0004
44 0.0074 | 0.0068 | 0.0058 | 0.0038 | 0.0036 | 0.0031 | 0.0019 | 0.0019 | 0.0009 | 0.0009 | 0.0013 | 0.0004 | 0.0006 | 0.001 | 0.0001 | 0.0005
46 0.0071 | 0.0056 | 0.0046 | 0.0041 | 0.0023 | 0.0013 | 0.0009 | 0.0005 | 0.0017 | 0.0012 | 0.0008 | 0.0007 | 0.0007 | 0.0007 | 0.0003 | 0.0007
46.8 | 0.0076 | 0.0062 | 0.0044 | 0.0036 | 0.0026 | 0.0016 | 0.0015 | 0.0007 | 0.0006 | 0.0013 | 0.0007 | 0.0009 | 0.001 | 0.0003 | 0.0005 | 0.0004
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6. Conclusions

This study discusses experiments performed in
determining risks for various parameters for control rules
implemented in a flood control reservoir, with the
application of ruin theory. A unidimensional random process
describing extreme values of inflow to reservoir was used in
a prior approach to assess the operation of a reservoir with
defined parameters for the control rule. This study
demonstrates the possibilities of risk assessment offered by a
two-dimensional random process. The random processes
used are described by a two-dimensional random variable
representing flood wave duration and flood wave volume. A
description of the probability distribution for the
two-dimensional random variable described above is
compiled using a two-dimensional Gumbel-Hougaard
copula function. Log-normal functions are assumed for
marginal distribution functions, based on the experiments
described in [3, 4]. The parameter of the Gumbel-Hougaard
copula function is estimated using optimization methods.

A computational experiment has been defined and
designed so as to estimate the value of probability of the
flood control capacity being filled, as a function of the
following quantities: the safety factor, the value of flood
control capacity, the value of set (controlled) outflow. The
results of analyses are given in tabular and graphic formats.

The proposed approach is more adequate in terms of
methodology compared to that previously discussed for
several reasons. An indisputable advantage of the present
proposal consists in the application of a generalized
approach wherein a two-dimensional random process with a
single joint distribution are used to describe events that occur
in the reservoir: the time of appearance of a specific value of
volume and the value of that volume. Another advantage
results from the application of the copula function that
combines in this case two log-normal marginal distributions
describing the indicated random variables. It should be
emphasised that the measure of probability of filling a flood
control capacity, as computed using the proposed method,
represents a valuable tool for estimating and assessing the
values of parameters of a retention reservoir. The highest
probability value may be regarded as an indicator of
instability: a measure indicating the need to increase the
volume of set outflow or to provide an additional flood
control capacity. The probability of the flood control
capacity being filled enables us to compare proposed
changes in control rule parameters, but this concept must not
be associated with an absolute prediction of the control
capacity being or not being filled in the near future. The
probability of the flood control capacity being filled is
merely a measure of the risk associated with the selection of
parameters and cannot be used to avoid possible erroneous
decisions concerning reservoir operation.
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