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Abstract  Bioenergy crops can be grown in marginal lands maintaining optimum hydro-environmental conditions such 
as soil moisture content and they are considered one of the renewable energy sources for the future biofuel needs. The 
objectives of this study were to evaluate average soil moisture content (SMC) and crop yields from the agricultural fields 
using the Soil and Water Assessment Tool (SWAT). This study was conducted in the Town Creek watershed (TCW) and 
Upper Pearl River watershed (UPRW). The SWAT model was reasonably calibrated and validated (coefficient of 
determination - R2 from 0.53 to 0.88, Nash-Sutcliffe Efficiency Index - E from 0.46 to 0.84, Root mean square error - 
RMSE from 46.18 to 11.38) using monthly stream flow data. The model predicted soil moisture content results determined 
statistically no significance difference (p values of 0.2733 for field 2, and 0.3364 for field 3) from two fields and 
significance difference (p values of 0.0015 for field 1, and 0.0008 for field 4) from other two fields within the watersheds. 
The SWAT model reasonably simulated (R2 from 0.29 to 0.66, E from -0.26 to 0.63) long-term county level corn and 
soybean yields from the TCW. Model predicted average corn and soybean yield results showed that TCW can produce 3.74 
Mg/ha of corn and 1.53 Mg/ha of soybean yields annually. The results of this study could provide valuable resource 
information to land managers and policy makers. 
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1. Introduction 
Every person on the planet lives in a watershed and 

therefore affects its physical condition. Watersheds vary in 
shape, area, and characteristics but all watersheds are 
important to the water cycle. Watersheds are often 
threatened due to point and non-point source pollutions, 
drought, and water management conditions. Watershed 
modeling helps to quantify and define the relationship 
between land use activities and water quality processes in a 
convenient and economical way [1, 2]. Hydrologic models 
integrate information from a wide range of sources into 
easily-applied decision aids [3]. Furthermore, as [4] point 
out, “hydrologic models…can be useful to extrapolate 
estimates of land surface fluxes beyond the resolution of 
point measurements, provided the land surface 
characteristics are properly represented in the model”. 
Using geographic information system (GIS) technology, the 
accuracy of the models can be vastly improved to account 
for unique site characteristics that may affect how a 
particular watershed responds to the activities that are  
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occurring within its boundaries. 
There are a myriad of models available today which are 

capable of simulating the watershed-scale hydrologic 
processes and yield. Each model has associated 
proficiencies and limitations, and often the needs of the 
study dictate which model is most applicable. For this study 
the Soil and Water Assessment Tool (SWAT) [5] was 
chosen due to its ability to simulate a broad array of 
cropping systems and generate reliable estimates of crop 
yields, and also its ability to estimate the hydrologic 
response to different cropping and management systems. 
Crop growth is predominately determined by calculating 
leaf area development, light interception, and its conversion 
into biomass. It also considers the accumulation of heat units 
and once the crop has surpassed the cumulative heat unit 
required to reach the maturity, growth of the crop ceases [2]. 
The SWAT can also simulate plant stress that occurs as a 
result of water, climate, and nutrients. For each time step 
potential crop yield is first estimated by the defining factors, 
such as climatic data, crop characteristics, and phenology. 
The potential is then reduced due to limiting or stress factors, 
such as water and nutrients. Finally, the actual yield is a 
result of any reducing factors such as diseases or pollutants. 
SWAT predicts both biomass yield and yield using the 
harvest index of the crop, which is defined as the fraction of 
above ground biomass removal at harvest [2].  
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The SWAT has gained international acceptance as a 
robust interdisciplinary watershed modeling tool able to 
adeptly predict both hydrology and yield [6]. The SWAT has 
been used for a wide range of environmental conditions, 
watershed scales, and scenario analyses as described by [6].  
The objectives of this study were to: (a) simulate stream flow 
and soil moisture content variability and (b) quantify corn 
and soybean yields from the watershed. The models 
developed from this study can be applied to future studies to 
assess environmental responses to changes in land use 
management.  

2. Materials and Methods 
2.1. Study Area 

This study was conducted in two watersheds located in 
central Mississippi: Town Creek watershed (TCW; 1,775 
km2) and a portion of the Upper Pearl River watershed 
(UPRW; 3,609 km2). The majority of TCW lies within Lee, 
Union, and Pontotoc counties with smaller portions in 
Chickasaw, Monroe and Itawamba counties (Fig. 1a). 
Long-term (1990–2009) records of climate data from Tupelo 
[7] indicate that that mean annual precipitation is 154 cm 
with average monthly temperatures reaching a minimum of 
-19°C in December and a maximum of 42°C in August with 
a mean annual temperature of 16.3°C. The TCW is primarily 
designated as cropland [8] with the major water system of 
Town Creek [9].   

The UPRW is located mainly within ten counties (Attala, 
Choctaw, Kemper, Leake, Madison, Neshoba, Newton, 
Noxubee, Scott, and Winston) as shown in the Fig. 1b. 
Long-term climate records (1981–2010) from Carthage [7] 
indicate that the mean annual precipitation is 142 cm with 
average monthly temperatures of 17.7°C. The headwaters of 
the Pearl River begin in the area of the Nanih Waiya Indian 
mounds and drains in the Ross Barnett Reservoir [10]. 

 
Figure 1.  Location of the (a) Town Creek and (b) Upper Pearl River 
watersheds 

A total of four fields (Table 1) were chosen as field-scale 
representations of the UPRW and TCW. All study areas are 

located on privately owned property and sampling was 
conducted with the permission of the landowners. In the 
TCW two crop fields with historical corn-soybean plant 
rotations were chosen. Field 1 has been harvested the last 30 
years with a corn-soybean rotation while Field 2 has 
historically been a corn-soybean-cotton rotation during the 
last 20 years. Both locations are adjacent to Town Creek. In 
the UPRW a representative forest area (Field 3) and 
pastureland (Field 4) were chosen. Field 3 is a pine 
plantation that was planted for the first time five years ago 
and was pastureland before that. Field 4 currently has 10 
head of cattle and one donkey that use the area as their 
primary grazing location. Three points were chosen at each 
field location at random and labelled as Point 1 through Point 
12. Details of the locations and characteristics for each 
sampling point are summarized in Table 1. 

Table 1.  Soil Moisture Sampling Points in the TCW (points 1 to 6) and 
UPRW (points 7 to 12) 

Point  Latitude(north)  Longitude(west)    Landuse   Field # 

1   34.230°     88.693°   Cropland   1 
2   34.231°     88.694°   Cropland   1 
3   34.230°     88.692°   Cropland   1 
4   34.198°     88.682°   Cropland   2 
5   34.198°     88.683°   Cropland   2 
6   34.199°     88.682°   Cropland   2 
7   32.722°    89.557°   Forestland   3 
8   32.723°    89.557°   Forestland   3 
9   32.722°    89.557°   Forestland   3 
10   32.728°    89.552°   Pastureland   4 
11   32.730°    89.558°   Pastureland   4 
12   32.731°    89.558°   Pastureland   4 

2.2. SWAT Model Description 

The SWAT was developed in the 1990s by the U.S. 
Department of Agriculture (USDA) Agricultural Resource 
Service (ARS) and is based on several other ARS models 
that were already available [11, 6]. Since its inception the 
SWAT model has continued to be improved and updated in 
accordance with advances in knowledge and remains 
actively supported by the USDA ARS [11]. The SWAT has 
been used to simulate watersheds around the globe, most 
often being chosen due to its robust capability to quantify 
the effects of land management practices on hydrological 
processes, water quality, and crop growth [5]. There are 
several versions of the software freely available to the 
public; ArcSWAT, a version of the SWAT2005 model, 
interfaced with ArcGIS 9.3 was used in this study. The 
hydrologic component of the model calculates a soil water 
balance at each time step based on daily amounts of 
precipitation, runoff, evapotranspiration, percolation, and 
base flow. The water balance equation is presented in Eqn. 
(1) [5, 11]. 

𝑆𝑆𝑆𝑆𝑡𝑡  =  𝑆𝑆𝑆𝑆0 + ∑ (𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡
𝑖𝑖=1 − 𝐸𝐸𝑎𝑎 −𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔 ) (1) 

where SWt is the final soil water content (mm H2O), SW0 
is the initial soil water content on day i (mm H2O), t  is 
time (days), Rday is the amount of precipitation on day i 

(a) 

(b) 
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(mm H2O), Qsurf is the amount of surface runoff on day i 
(mm H2O), Ea is the amount of evapotranspiration on day i 
(mm H2O), Wseep is the amount of water entering the 
vadose zone from the soil profile on day i (mm H2O), and 
Qgw is the amount of return flow on day i (mm H2O). 

Runoff volume for this study was estimated by using the 
modified USDA Soil Conservation Society Curve Number 
(SCSCN) method. The SCS CN method depends on the soil 
cover, management, and soil type. The minimum CN value 
of 0 implies no runoff, which is not generally possible, 
whereas the maximum value of 100 implies total runoff 
[12]. The SWAT model divides a watershed into 
sub-watersheds, or sub-basins, connected by a stream 
network. Each sub-basin is composed of hydrologic 
response units (HRUs) which are unique areas within the 
sub-basin that account for differences in soils, land use, 
crops, topography, weather, and slope. The HRU 
delineation can minimize a simulation's computational costs 
by lumping similar soil and land use areas into a single unit 
[11]. Simulations are performed at the HRU level and 
summarized in each sub-basin. The simulated variables 
(water, sediment, nutrients, and other pollutants) are first 
simulated at the HRU level and then routed through the 
stream network to the watershed outlet [5, 11].   

The crop growth sub-model within SWAT is based on 
the Environmental Impact Policy Climate (EPIC) crop 
growth model [13]. It is capable of simulating a multitude 
of vegetation including most crops, some grasses, and forest 
land [13]. The crop sub-model has several sophisticated 
features that allow the user to control almost all possible 
land management strategies and ways plants grow and 
respond to stresses [6]. For a portion of this study planting 
date, harvesting date, tillage operations, fertilizer 
application date and rate were incorporated into the model 
based on the practices of the landowners at the field sites. 

2.3. Model Input 

As a physically based hydrological model, SWAT 
requires multiple sets of GIS data to create data layers to 
input in the model which control the hydrologic processes 
in the watershed. Key input datasets include topography, 
soils data, land use/land cover data, climate data, and 
management data. U.S. Geological Survey (USGS) 30 
meter by 30 meter grids digital elevation model (DEM) data 
were downloaded and used to delineate watershed 
boundaries, derive stream networks, and determine slope. 
The DEM information is a seamless product updated 
bi-monthly and is a part of the National Elevation Dataset 
which is derived mainly from 10 meter to 30 meter high 
resolution, best quality digital elevation data covering the 
United States, Puerto Rico, and the Virgin Islands [14]. The 
medium resolution (1:250,000 scale) U.S. General Soil Map 
(STATSGO) (formerly known as the State Soil Geographic 
Database) [15] was used to create a soil database for both 
watersheds. Land use data was obtained from the USDA 
National Agricultural Statistics Service (NASS). The NASS 
Cropland Data Layer (CDL) is a raster, geo-referenced, 

crop-specific land cover data layer with a ground resolution 
of 56 meters and has 254 recognized land use or land cover 
categories [16]. Use of this data led to a breakdown of 
approximately 42 percent forest, 14 percent soybean 
(annual rotation), and 44 percent other covers in TCW and 
approximately 69 percent forested, 20 percent pasture, and 
11 percent other covers in the UPRW. 

The climatic data inputs required by SWAT are 
precipitation, maximum and minimum temperature, solar 
radiation, relative humidity, and wind speed. Daily 
precipitation, daily maximum temperature, and daily 
minimum temperature data were obtained from the National 
Climatic Data Center (NCDC) [7] cooperative weather 
network. Solar radiation, relative humidity and wind speed 
data, along with any missing observed data, was generated 
within the SWAT program using the WXGEN weather 
generator model [17]. This weather generator was 
developed for the contiguous United States and used for the 
SWAT simulation studies [11]. Within TCW three weather 
stations located in Tupelo, Pontotoc, and Verona were used 
[7]. The SWAT model also used data from the Booneville 
weather station (part of the U.S. database); this station is 
located approximately 20 kilometers north of the watershed. 
The climatic data inputs for the UPRW were obtained from 
eight weather stations located in Ackerman, Canton, 
Carthage, Forest, Kosciusko, Louisville, Newton, and 
Philadelphia [7]. Daily precipitation data for the UPRW 
were used from all eight weather stations while the daily 
temperature data were used from only six weather stations 
(Carthage, Forest, Kosciusko, Louisville, Newton and 
Philadelphia). The SWAT model used U.S. database data 
from six weather stations (State College, Russell, Forest 
Post Office, Meridian, Winona and Canton). The Forest 
Post Office weather station is located inside the watershed, 
whereas the other five weather stations are located from 8 to 
40 kilometers away from the watershed. Weather station 
information was assigned to the each sub-watershed based 
on the proximity of the available stations to the centroid of 
the sub-watershed [11].  

Based on the unique combinations of the input data 
referenced above, SWAT identified 1,498 distinct HRUs in 
31 sub-basins in TCW and 1,916 HRUs in 45 sub-basins in 
the UPRW. Corn and soybean management data was also 
input in the TCW model based on information obtained 
directly from the landowners of the two study fields. 
Parameters included crop rotation, planting date, harvesting 
date, tillage operations, and irrigation and fertilizer amount 
and application dates. It should be noted that the possible 
sources of errors in model simulated results may come from 
the model parameters, GIS data used in developing model 
inputs such as DEM, land use, soils, and weather. Errors 
due to measured weather data, especially rainfall and 
temperature, can significantly influence on model results 
[18, 2]. 

2.4. Model Calibration, Validation and Evaluation 

Model performance was evaluated using three commonly 
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used statistical evaluation techniques: the Nash–sutcliffe 
efficiency index (E), the coefficient of determination (R2), 
and root mean square error (RMSE) as described by 
previous studies [19, 19, 20]. Statistical Analysis System 
(SAS) 9.2 software was further used in some instances to 
test p-values, and standard correlation calculations.  

2.4.1. Stream Flow 

Simulation of the hydrologic balance is usually the first 
step for all the SWAT watershed applications [6]. Due to 
the unavailability of field-specific high‐quality input data 
and theoretical interpretation of hydrological processes, 
models are calibrated and validated to increase the model’s 
ability to accurately represent the watershed characteristics 
[21, 2]. Although the SWAT model was able to perform 
well in un-gauged watersheds, hydrological calibration and 
validation was performed using observed stream flow data. 
Continuous observed mean monthly stream flow data was 
utilized from the four USGS gage stations (Nettleton- 
USGS 02436500 in the TCW and Burnside-USGS 2481880, 
Edinburg-USGS 02482000, and Carthage-USGS 02482550 
in the UPRW) in this study.  

Table 2.  Parameters, Range and Final Value Used in Model Calibration 

Parameter                     Range  Final Value 

Land use (Curve numbers): 
Pasture (PAST)       74-86   79 
Corn (CORN)       85-90   89 
Soybean (SOYB)       85-90   89 
Deciduous forest (FRSD)      70-77   77 
Evergreen Forest (FRSE)      70-77   70 
Mixed forest (FRST)      70-77   73 
Urban low density (URLD)     77-94   90 
Urban medium density (URMD)     77-94      90 
Wetland forest (WETF)        70-77      77 
Soil evaporation compensation factor (ESCO)  0-1.00   0.6, 0.8 
Base flow alpha factor (ALPHA_BF)     0-1.00     0.9 
Surface runoff lag coefficient(SURLAG)    0-12       1 
Ground water ‘revap’ coefficient  
(GW_REVAP)                          0.02-0.2    0.2 
Threshold depth of water in the  
shallow aquifer (GWQMIN)      0-5000    1000 

In this study an un-calibrated, baseline simulation was 
performed first using SWAT default values for hydrologic 
parameters. After comparing the baseline model to observed 
USGS streamflow data, calibration and validation for both 
watersheds was performed by manually adjusting critical 
parameter values until maximum model efficiency was 
achieved when the USGS flow values were compared to 
model-predicted values at the same location. Manual 
adjustment of sensitive parameters has been suggested to be 
the preferred methodology for model calibration [22]. Six 
widely used flow calibration parameters (Table 2) were 
selected based on previous studies [6, 23, 24, 18]. The first 
nine parameters collectively represent the curve number 
(CN) parameter used for land uses (Table 2). The remaining 
five parameters in Table 2, are soil evaporation 
compensation factor (ESCO), base flow alpha factor 

(ALPHA_BF), surface runoff lag coefficient (SURLAG), 
ground water ‘revap’ coefficient (GW_REVAP) and 
threshold depth of water in the shallow aquifer (GWQMIN). 
The calibration ranges of these parameters were also 
previously described [20]. 

2.4.2. Soil Moisture Content 
The calibrated and validated model was further used to 

evaluate the ability of SWAT to predict daily SMC. 
Observed field data collected at 12 points at four field 
locations were averaged to yield one value at the 6 inch 
depth for each sampling date. The SWAT model was run at 
a daily time step from January 1, 2009 to March 31, 2012 
separately for both watersheds, the year 2009 serving as a 
model warm-up period. Model predicted percent moisture 
content values were calculated by dividing the predicted 
SMC value (given in millimeters) by the total length of the 
soil column (also given in millimeters) and then multiplied 
by 100. Baseline results were achieved using the previously 
calibrated models and no further adjustment to parameters 
was done.  

2.4.3. Crop Yield 
Observed crop yield data was only used in the TCW. 

Corn and soybeans were the two crops considered based on 
those being the primary crops within TCW and the crops 
grown at the two field locations in TCW. County level corn 
and soybean yield statistics from 1988-2011 were obtained 
from [25] for the three primary counties that the watershed 
spans (Lee, Union, and Pontotoc). County level data for 
corn and soybean yield were weighted by the watershed 
area in each county to determine watershed scale crop yield. 
Input parameters that are considered to be most sensitive for 
predicting biomass or crop yield includes radiation-use 
efficiency (Bio_E), harvest index (HVSTI), and maximum 
leaf area index (BLAI) as recommended by previous 
literatures [26, 2]. The Bio_E, HVSTI and BLAI were 
adjusted to produce maximum model efficiency when 
compared with annual NASS yield data. The parameters 
and their subsequent values are summarized in Table 3. 

Table 3.  Table of Parameters, Default and Final Values Used in Model 
Calibration 

Parameter Default value Final Value 
BIO_E 
Corn 

Soybeans 

 
39 
25 

 
33 
20 

HVSTI 
Corn 

Soybeans 

 
0.50 
0.31 

 
0.47 
0.28 

BLAI 
Corn 

Soybeans 

 
6.0 
3.0 

 
5.3 
2.5 

Field level (Field 2) annual soybean yields data were 
made available by the one landowner of the study sites for 
four seasons. Reported soybean yields for the field were 
compared to simulated yields as well as average yields 
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reported for Lee County where the study site was located. 
Due to the small dataset, this portion of the study was not a 
calibration and validation but rather a verification of 
observed data. Field-specific crop parameters, such as crop 
rotation, planting date, harvesting date, tillage operations, 
and irrigation and fertilizer amount and application dates, 
were defined within the appropriate sub-basin based on 
information provided by the landowners at the two field 
sites (Table 4). Fertilizer applied to the soybeans was 
00-15-00 at a rate of 200 kilograms and corn fertilizer was 
5-15-30 at a rate of 200 kilograms.  

Table 4.  Crop Rotation and Operations in the Watershed 

Crop Year Month Day Operation 
Soybeans 1 5 25 Conservation tillage 

 1 5 26 Fertilizer application 
 1 6 1 Plant 
 1 11 15 Harvest and kill 

Corn 2 3 25 Conservation tillage 
 2 4 1 Fertilizer application 
 2 4 10 Plant 
 2 9 15 Harvest and kill 

3. Results and Discussion 
3.1. Stream Flow 

Four sub-watershed outlets were chosen to calibrate and 

validate model for predicting monthly streamflow: 
Nettleton in the TCW and Burnside, Edinburg, and 
Carthage in the UPRW. These outlets corresponded to 
locations where USGS gage stations were located. 
Observed monthly streamflow data were compared to 
model predicted monthly streamflow outputs. Streamflow 
was calibrated by manually adjusting critical parameters to 
improve model efficiency in accordance with the 
classification established [19]. The TCW demonstrated very 
good performance for both the model calibration and 
validation periods (Table 5, Figure 2). Burnside, Edinburg, 
and Carthage are considered to have shown good 
performance during calibration. Edinburg maintained good 
performance during validation while Burnside and Carthage 
were only fair during validation (Table 6, Figure 2). 
Likewise, RMSE values demonstrated minimum average 
error for both the calibration and validation periods for both 
watersheds (Table 5). 

Table 5.  Model Efficiency during Stream Flow Calibration and Validation 

Station 
Calibration Period Validation Period 

E R2 Slope RMSE E R2 Slope RMSE 

Nettleton 0.84 0.88 0.69 16.66 0.81 0.80 0.82 11.38 

Burnside 0.52 0.69 0.91 19.03 0.39 0.53 0.86 21.89 

Edinburg 0.61 0.68 0.79 32.22 0.50 0.60 0.83 35.00 

Carthage 0.67 0.70 0.75 46.18 0.46 0.66 0.94 52.15 

Table 6.  Statistics for Observed and Predicted Values for SMC in all Fields 

 Field 1 Field 2 Field 3 Field 4 
 Obs Predicted Obs Predicted Obs Predicted Obs Predicted 

Mean 17.94 8.36 17.04 14.56 17.01 14.76 19.62 9.92 
Standard  
deviation 9.34 2.83 8.19 2.09 8.41 2.69 8.78 2.04 

Maximum 41.76 13.31 34.42 17.48 30.18 18.29 33.86 12.19 
Minimum 4.01 4.84 3.44 11.26 1.80 9.34 5.08 6.23 

 

(a) Nettleton 
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(b) Burnside 

 

(c) Edinburg 

 

(d) Carthage 

Figure 2.  Observed vs. Simulated Monthly Stream Flow (m3s-1) during Calibration and Validation in the TCW (a) and the UPRW (b, c, and d) 
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The model performance values of both watersheds is 
considered to be reasonable in accordance with the scale set 
forth [19] and is consistent with several studies compiled by 
[6]. Furthermore, performance of the UPRW model is in 
agreement with several previous studies [2, 4, 20] using the 
water models. Based on this it can be said that model 
performed reasonably well in both watersheds and are 
assumed to be capable of further predictions of hydrologic 
parameters such as SMC with minimum bias. 

3.2. Soil Moisture Content 

Model simulated daily SMC values from the sub-basin 
were compared with the field observed SMC values from the 
field where the sub-basin is located. In all four fields it was 
determined that the model closely follows a similar curve to 
observed values, although SMC predictions were 
consistently under predicted, especially in Fields 1 and 4. 
Results from a t-test comparing data for Fields 2 and 3 

showed no significant difference between observed and 
predicted values (p = 0.2733 and p = 0.3364 respectively). 
However, Fields 1 and 4 showed statistically significant 
under prediction when compared to observed values (p = 
0.0015 and p = 0.0008 respectively). Table 6 shows the 
breakdown of the daily data for observed (Obs) and 
predicted values for all fields. 

In the following graphical representation (Figure 3), the 
bars on the primary axis represent the daily observed (blue) 
discrete and predicted (red) daily mean SMC values. 
Cumulative monthly precipitation (green) is shown on the 
secondary axis and is given in millimeters. Model 
predictions were calculated using the baseline calibration 
and validation parameter values discussed previously. The 
model clearly demonstrated a similar trend with observed 
values and more data (at either the daily or monthly time 
scale) is needed to verify the accuracy of the observed 
values. 
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Figure 3.  Observed vs. Predicted Soil Moisture Content (%) from September, 2010 to February, 2012 for fields 1 to 4 

The pronounced discrepancies between observed and 
predicted values in Fields 1 and 4 could be attributed to 
physical and hydraulic properties associated with the soils, 
such as soil texture, rainfall, and hydraulic conductivity, but 
also land cover and land management practices in place. It 
is important to keep in mind the scale of SWAT; it predicts 
SMC at sub-basin scale based on the inputs over the 
sub-basins or watershed whereas the observed data was 
being sampled in a comparatively small field area more 
specifically at point scale. In addition, the critical factors 
that accounts for the discrepancy was the variation 
prevalent in the soil sampling techniques (such as local 
rainfall and time of sampling post-precipitation); soil 
sampling after a local rain event could have substantially 
increased the SMC values. 

3.3. Crop Yields 

The crop component of this study was performed in the 

TCW only. The simulated crop yield for corn and soybeans 
was compared to the county-reported data collected by 
NASS and to observed data collected from the landowners at 
the site locations. Simulated crop yield was compared to the 
county-reported data collected by NASS from 1989-2011 for 
corn and 1988-2011 for soybeans. When compared with 
NASS data, SWAT did a reasonable job of replicating annual 
yields with good statistics (Figure 4) in the TCW (Fig. 1a). 
Furthermore, E and R2values for both corn and soybeans 
were within acceptable ranges as reported by previous 
literature [27, 2] during the model calibration and validation 
periods for corn and soybean (Table 7). 

Table 7.  Model Efficiency for Crop Yield 

Crop 
Calibration period Validation period 

E R2 E R2 
Corn 0.63 0.66 -0.26 0.51 

Soybeans 0.52 0.65 0.23 0.29 
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Figure 4.  SWAT (simulated) and NASS (reported) Crop Yield (Mg/ha) 
for Corn and Soybeans in the TCW 

The SWAT model reasonably predicted soybean yields 
when compared with the observed data collected from the 
landowners at the site locations (Figure 5). This finding is 
important for future simulation because it proves that 
specific management attributes (such as planting date, 
fertilization used, fertilizer application date(s), irrigation 
information, and tillage data) can be specified in the model 
on a sub-basin level and the model will be able to identify a 
close range of outcomes based on the changes proposed. 

 
Figure 5.  Reported and simulated crop yield for soybeans in Field 2 as 
well as NASS annual average yield for Lee County, Mississippi for 
reference 

4. Conclusions 
The purpose of this study was to evaluate hydrologic 

conditions (stream flows and SMCs) and crop yields from 
the agricultural fields using the SWAT model. Baseline 
models were created by inputting required data and 

delineating the watershed based on topography, soils, and 
land use. The SWAT model was first calibrated and 
validated for two agricultural watersheds (TCW and UPRW) 
using observed monthly stream flow data from USGS gage 
stations located within the watersheds. Further, model 
predicted outputs were compared with observed SMCs and 
crop yields values.  

Results from monthly stream flow calibration and 
validation procedure indicated that model performance was 
within acceptable ranges as documented in the previous 
literature [6] based on the classification established [19]. The 
SWAT model outputs indicate that the model 
under-predicted SMC of the watersheds by about 32% in this 
study. Calibration and validation of crop yield predictions in 
the TCW show close replication of variation seen in reported 
crop yields from NASS. Similarly, although there was 
limited data, simulated crop yield from the study locations 
matched closely with yields reported by the landowner. The 
TCW can produce average of 3.74 Mg/ha of corn and 1.53 
Mg/ha of soybean yields annually. The results of this study 
could provide essential resource information to watershed 
managers. 

ACKNOWLEDGEMENTS 
This material is based upon work performed through the 

Sustainable Energy Research Center at Mississippi State 
University and is supported by the Department of Energy 
under Award Number DE-FG3606GO86025; Micro CHP 
and Bio-fuel Center. We acknowledge the contributions of 
Jeffery Hatten in the Dept. of Forestry at Mississippi State 
University and landowners of the research fields in the 
watershed for this research.  

 

REFERENCES 
[1] Im, S., Brannan, K., S. Mostaghimi, and Cho, J. 2003. A 

comparison of SWAT and HSPF models for simulating 
hydrologic and water quality responses from an urbanizing 
watershed. Transactions of the ASAE, Las Vegas, NV.  
Paper number 032175. 

[2] Nair, S. S., King, D. W., Witter, J. D., Sohngen, B. L., and 
Fausey, N. R. 2011. Importance of crop yield in calibrating 
watershed water quality simulation tools. Journal of the 
American Water Resources Association, 47(6): 1285-1297. 

[3] Kinery, J. R., J. D. Macdonald, A. R. Kemanian, B. Watson, 
G. Putz, & E. E. Prepas. (2008) Plant growth simulation for 
landscape-scale hydrological modeling. Hydrological 
Sciences, 53(5): 1030-1042. 

[4] Stratton, B. T., V. Sridhar, M. M. Gribb, J. P. McNamara, & B. 
Narasimhan. (2009) Modeling the spatially varying water 
balance processes in a semiarid mountainous watershed of 
Idaho. Journal of the American Water Resources Association, 
45(6): 1390-1408. 

[5] Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 

0

1

2

3

4

5

6
19

89
19

90
19

91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11

Y
ie

ld
 (M

g/
ha

)

Corn

NASS SWAT

Calibration Validation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

Y
ie

ld
 (M

g/
ha

)

Soybeans

NASS SWAT

Calibration Validation

0.0

0.5

1.0

1.5

2.0

2.5

2008 2009 2010 2011

Y
ie

ld
 (M

g/
ha

)

Soybean Yield
Actual SWAT NASS - Lee County



 American Journal of Environmental Engineering 2014, 4(3): 46-55  55 
 

 

1998. Large area hydrologic modeling and assessment, Part I: 
model development. Journal of American Water Resources 
Association, 34(1): 73-89.  

[6] Gassman, P.W., Reyes, M.R., Green, C.H., & Arnold J.G. 
(2007) The Soil and Water Assessment Tool: historical 
development, applications, and future research directions. 
Transactions of the ASABE, 50(4):1211–1250. 

[7] National Climatic Data Center (NCDC) (2011) Locate 
weather observation station record. Available at: http://www.
ncdc.noaa.gov/oa/climate/stationlocator.html. Accessed on: 
June 13, 2011. 

[8] U.S. Department of Agriculture-Natural Resources 
Conservation Service (USDA-NRCS).  (2011) Planting and 
harvesting giant miscanthus as a biomass energy crop. Plant 
Materials Program, Technical Note 4. Available at: 
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stel
prdb1044768.pdf. Accessed on: May 21, 2012. 

[9] U. S. Environmental Protection Agency (US EPA). (2006) 
Waterbody Report for Town Creek. http://oaspub.epa.gov/
tmdl/attains_waterbody.control?p_list_id=MS013TE&p_cyc
le=2006&p_state=MS&p_report_type=T. Accessed on: 
March 26, 2011. 

[10] Pearl River Basin Development District (PRBDD). (2011) 
Topography and History. PRBDD. Available at: http://www.
pearlriverbasin.com/topography_and_history.php Accessed 
on: 6/18/2011. 

[11] Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & J. R. Williams. 
(2005) Soil and water assessment tool (SWAT), theoretical 
documentation. Blackland Research Center, Grassland, Soil 
and Water Research Laboratory, Agricultural Research 
Service, Temple, TX.  

[12] USDA‐SCS. (1972) Chapter 4‐10, Section 4: Hydrology. In 
National Engineering Handbook. Washington, D.C.: 
USDASCS. 

[13] Williams, J. R., Jones, C. A., Kiniry, J. R., & Spanel, D. A. 
(1989) The EPIC crop growth model. Transactions of the 
American Society of Agricultural Engineers, 32(2): 497-511. 
Poulos, H. G., 1971, Behavior of laterally loaded piles-I: 
Single piles., J. Soil Mech. and Found. Div., 97(5), 711–731. 

[14] U.S. Geological Survey (USGS). (2010) National Elevation 
Dataset.  Available at: http://seamless.usgs.gov/ned1.php. 
Accessed on: September 20, 2010. 

[15] U.S. Department of Agriculture, Natural Resources 
Conservation Service (USDA-NRCS). (2006) U.S. General 
Soil Map (STATSGO2) for Mississippi. http://soildatatmart.
nrsc.usda. Accessed on October 12, 2010. 

[16] U.S. Department of Agriculture, National Agricultural 
Statistics Service (USDA/NASS). (2009) Mississippi 
Cropland Data Layer. Available at: http://datagateway.nrcs.
usda.gov/. Accessed on: September 20, 2010. 

[17] Sharpley, A. N. & J. R. Williams (eds). (1990) EPIC-Erosion 
Productivity Impact Calculator, 1. Model Documentation. 
U.S. Department of Agriculture, Agricultural Research 
Service, Technical Bulletin, 1768. USDA-ARS Grassland, 
Soil, and Water Research Lab: Temple, TX. 

[18] Parajuli, P. B., Nathan, O. N., Lyle, D. F., & R. M. Kyle. 
(2009) Comparison of AnnAGNPS and SWAT model 
simulation results in USDACEAP agricultural watersheds in 
south-central Kansas. Hydrological Processes, 23(5): 
748–763. 

[19] Moriasi D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., 
Harmel, R. D., & Veith, T. L. (2007) Model evaluation 
guidelines for systematic quantification of accuracy in 
watershed simulations. Transactions of the ASABE, 50(3): 
885–900. 

[20] Parajuli, P. B. (2010) Assessing sensitivity of hydrologic 
responses to climate change from forested watershed in 
Mississippi. Hydrologic Processes, 24 (26): 3785–3797.   

[21] Srinivasan, R., Zhang, X., & J. G. Arnold. (2010) SWAT 
Ungauged: Hydrological budget and crop yield predictions in 
the upper Mississippi River basin. American Society of 
Agricultural and Biological Engineers, 53(5): 1533-1546.  

[22] Green, C. H. & Griensven, A. V. (2007) Autocalibration in 
hydrologic modeling: using SWAT 2005 in small-scale 
watersheds. Environmental Modelling & Software, 23(4): 
422–434. 

[23] Kannan, N., C. Santhi, J. R. Williams, & Arnold, J. G. (2008) 
Development of a Continuous Soil Moisture Accounting 
Procedure for Curve Number Methodology and Its Behavior 
with Different Evapotranspiration Method. Hydrological 
Processess, 22(13): 2114-2121. 

[24] Gassman, P. W. 2008. Simulation assessment of the Boone 
River Watershed: Baseline calibration/validation results and 
Issues, and future research needs. Ph.D. Dissertation 
submitted to Department of Environmental Sciences, Iowa 
State University. 

[25] U.S. Department of Agriculture, National Agricultural 
Statistics Service (USDA-NASS). 2011. Mississippi office of 
USDA’s NASS, County Estimates. Available at: 
http://www.nass.usda.gov/Statistics_by_State/Mississippi/Pu
blications/County_Estimates/index.asp. Accessed on: March 
26, 2011.  

[26] Faramarzi, M., H. Yang, R. Schulin & Abbaspour, K.C. (2010) 
Modeling wheat yield and crop water productivity in Iran: 
Implications of agricultural water management for wheat 
production. Agricultural Water Management, 97(11): 
1861-1875. 

[27] Hu, X., McIsaac, G. F., David, M. B. & Louwers, C. A. L. 
(2007) Modeling riverine nitrate export from an East-central 
Illinois watershed using SWAT. Journal of Environmental 
Quality, 36: 996-1005. 

 




