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Abstract  The Debye relaxation equation and its derivatives were used to analyze the experimental permittivity data of 
high purity Butan-1-ol and Ethanol over the frequency up to 10GHz and temperature range of 10°C to 50°C. The plots of 
dielectric constant 𝜀𝜀′  and loss factor  𝜀𝜀′′  against the frequency were found useful in determining how well experimental 
data fits the Debye equation and these methods were also found capable of reproducing good results for both coaxial cell (i.e. 
reflection and 14mm-transmission cell) and the results fitted using single-Debye, Debye-Г or double-Debye. The dielectric 
constant of Ethanol was found decreasing as the temperature increases beyond 10°C but that of Butan-1-ol showed an 
increase at temperature 20°C before decreasing as the temperature increased beyond 20°C. The loss factor on the other hand 
was found decreasing as the temperature increases for both Butan-1-ol and Ethanol. However, Butan-1-ol has the highest loss 
factors and the least dielectric constants as compared with Ethanol within the frequency and temperature range studied in this 
work.  
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1. Introduction 
Most industries need a better knowledge of the materials 

they are working with to shorten design cycles, improve 
incoming inspection, process monitoring, and quality 
assurance. Every material has a unique set of electrical 
characteristics that dependent on its electric properties. 
Accurate measurements of these properties can provide 
scientists and engineers with useful information to properly 
incorporate the material into its intended application for solid 
designs or to monitor a manufacturing process for improved 
quality control. 

A dielectric materials measurement can provide critical 
design parameter information for many electronics 
applications. For instance, the loss of a cable insulator, the 
impedance of a substrate, or the frequency of a dielectric 
resonator can be related to its dielectric properties. 
According to Agilent Basics of measuring the dielectric 
properties of materials the information on electric properties 
of materials is also useful for improving ferrite, absorber and 
packaging designs. Today the knowledge of dielectric 
properties can be apply in areas such as aerospace, 
automotive, food and medical industries. The knowledge of 
dielectric properties of materials is important because the 
data if properly interpreted will provide information on the  
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electrical properties of the sample and can be used as an 
analytical tool whereby the dielectric data is related to other 
properties such as changes in crystal structure or gel 
morphology [1]. 

Atoms, molecules, and defects available in materials 
re-adjust in equilibrium in response to an applied electric 
field. This re-adjustment of atoms, molecules, and defects in 
materials in response to an electric field is known as 
dielectric relaxation. The relaxation behaviour depends on 
the lattice properties, frequency, and the temperature [2]. 
Dielectric relaxation is a many particle phenomenon; it can 
be used as suitable tool to insight into specific molecular 
interactions in polar liquids [3, 4].  

Dielectric constant among other applications can be used 
to distinguish non-polar solvents from polar solvents. For 
instance, solvents with a dielectric constant less than 15 are 
generally considered nonpolar while those with dielectric 
constant more than 15 are known as polar solvents. 
Technically, the dielectric constant measures the solvent’s 
ability to reduce the field strength of the electric field 
surrounding a charged particle immersed in it. This reduction 
is then compared to the field strength of the charged particle 
in a vacuum. In layman’s terms, dielectric constant of a 
solvent can be thought of as its ability to reduce the solute’s 
internal charge. Dielectric relaxation can also be used for the 
study of H-Bonded liquids [5]. The polarity, dipole moment, 
polarizability and hydrogen bonding of a solvent determines 
what type of compounds it is able to dissolve and with what 
other solvents or liquid compounds it is miscible. As a rule of 
thumb, polar solvents dissolve polar compounds best and 
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nonpolar solvents dissolve nonpolar compounds best.  
The dielectric constant and loss factor of Butan-1-olhas 

been fitted by Gregory and Clarke [6] using Debye-Г, and 
double-Debye depending on the temperature and that of 
Ethanol was also fitted by the same authors using Debye-Г in 
the frequency range of 𝟎𝟎.𝟏𝟏 ≤ 𝒇𝒇 ≤ 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 . The 
mathematical expression of these two Debye models is given 
in equations (1) and (2) below. 

  𝜺𝜺∗ = 𝜺𝜺∞ + 𝜺𝜺𝒔𝒔−𝜺𝜺𝒉𝒉
𝟏𝟏+𝒋𝒋𝒇𝒇 𝒇𝒇𝒓𝒓𝟏𝟏

�
+ 𝜺𝜺𝒉𝒉−𝜺𝜺∞

𝟏𝟏+𝒋𝒋𝒇𝒇 𝒇𝒇𝒓𝒓𝟐𝟐
�

         (1) 

And 𝜺𝜺∗ = 𝜺𝜺𝒉𝒉+𝜺𝜺𝒔𝒔
𝟏𝟏+𝒋𝒋𝒇𝒇

𝒇𝒇𝒓𝒓�
− 𝒋𝒋𝒇𝒇  Г            (2) 

Equations (1) and (2) are called double-Debye (5 
parameters) containing two dielectric relaxations and 
Debye-Г (4 parameters) with a single relaxation [6]. 
However, in this work, attempt have been made to fit the 
same dielectric constant and loss factor using Debye and its 
derivatives as used by Kuang and Nelson [7] and the results 
generated by this method shall be compared with the coaxial 
cell and work done using double-Debye and Debye-Г. 

2. Mathematical Derivation of the Debye 
Equations 

Let us consider a capacitor that consists of two plane 
parallel electrodes in a vacuum having an applied alternating 
voltage as: 

𝑣𝑣 = 𝑉𝑉𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                (3) 
Where 𝑣𝑣  is the instantaneous voltage, 𝑉𝑉𝑚𝑚  is the 

maximum instantaneous, 𝑣𝑣  and 𝑐𝑐 = 2𝜋𝜋𝜋𝜋  is the angular 
frequency in radian per second. 

Let us also assume that the current passing through the 
capacitor is given by: 

                                   𝑖𝑖1 = 𝐼𝐼𝑚𝑚 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜋𝜋
2

)             (4) 

𝐼𝐼𝑚𝑚  is maximum current and is defined as 

  𝐼𝐼𝑚𝑚 = 𝑉𝑉𝑚𝑚
𝑧𝑧

                  (5) 

Where 𝑧𝑧 is the impedance and if 𝑧𝑧 = 𝜒𝜒𝑐𝑐 , then 

  𝜒𝜒𝑐𝑐 = 1
2𝜋𝜋𝜋𝜋𝑐𝑐𝑐𝑐

= 1
𝑐𝑐𝑐𝑐𝑐𝑐

              (6) 

Substituting equation (6) into equation (5), we have 

⇒ 𝐼𝐼𝑚𝑚 = 2𝜋𝜋𝜋𝜋𝑐𝑐𝑐𝑐𝑉𝑉𝑚𝑚 = 𝑉𝑉𝑚𝑚
𝑧𝑧

= 𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝑚𝑚            (7) 

In equation (7) 𝑐𝑐𝑐𝑐  is the vacuum capacitance, sometimes 
referred to as the geometric capacitance. 

In an ideal dielectric the current leads the voltage by 90𝑐𝑐  
and there is no component of the current in phase with the 
voltage. If a material of dielectric constant 𝜀𝜀′  is placed 
between the plates the capacitance increases to 𝑐𝑐𝑐𝑐𝜀𝜀′  and the 
current is given by: 

  𝑖𝑖2 = 𝐼𝐼𝑚𝑚 �𝑐𝑐𝑐𝑐 + �𝜋𝜋
2
� − 𝛼𝛼�               (8) 

Where 𝛼𝛼 is the loss angle 

  𝐼𝐼𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀′𝑉𝑉𝑚𝑚                     (9) 
The dielectric constant is a complex quantity and it is 

represented by: 
  𝜀𝜀∗ = 𝜀𝜀′ − 𝑗𝑗𝜀𝜀′′                    (10) 

𝜀𝜀′  is the real part while 𝜀𝜀′′  is the imaginary part of the 
complex dielectric constant, 𝜀𝜀∗ in an alternating dielectric 
field.  

The component in the phase with the applied voltage gives 
rise to dielectric loss 𝛼𝛼which is the loss angle and given by: 

⇒ 𝛼𝛼 = 𝑐𝑐𝑡𝑡𝑡𝑡−1 �𝜀𝜀
′′

𝜀𝜀′
�               (11) 

Where 𝛼𝛼  the loss is angle and 𝜀𝜀′′  is the loss factor. The 
horizontal component; is the current which is given by: 

 𝐼𝐼𝑥𝑥 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀′′                    (12) 
But 

 𝑐𝑐𝑐𝑐 = 𝜀𝜀𝑐𝑐𝐴𝐴
𝑑𝑑

                  (13) 

Substituting equation (13) into (12) gives  

  𝐼𝐼𝑥𝑥 = 𝑉𝑉𝑐𝑐𝜀𝜀𝑐𝑐𝐴𝐴𝜀𝜀′′

𝑑𝑑
                   (14) 

The electric field can also be defined by: 

𝐸𝐸 = 𝑉𝑉
𝑑𝑑
                   (15) 

∴ 𝐼𝐼𝑥𝑥 = 𝐴𝐴𝑐𝑐𝜀𝜀𝑐𝑐𝜀𝜀′′ 𝐸𝐸              (16) 
We also defined current density as: 

                                              𝑗𝑗𝑥𝑥 = 𝐼𝐼𝑥𝑥
𝐴𝐴

                  (17) 

Now, substituting equation (16) into equation (17), we 
obtain 

  𝑗𝑗𝑥𝑥 = 𝐴𝐴𝑐𝑐𝜀𝜀𝑐𝑐𝜀𝜀′′ 𝐸𝐸
𝐴𝐴

= 𝑐𝑐𝜀𝜀𝑐𝑐𝜀𝜀′′            (18) 

The alternating current conductivity is given by 
                             𝜎𝜎𝑡𝑡𝑐𝑐 = 𝜎𝜎′ + 𝑗𝑗𝜎𝜎′′               (19) 

Where  

𝜀𝜀′′ = 𝜎𝜎
2𝜋𝜋𝜋𝜋𝜀𝜀𝑐𝑐

                 (20) 

⇒ 𝜎𝜎 = 2𝜋𝜋𝜋𝜋𝜀𝜀𝑐𝑐𝜀𝜀′′  , 𝜎𝜎′ = 𝑐𝑐𝜀𝜀′′ 𝜀𝜀𝑐𝑐  and 𝜎𝜎′′ = 𝑐𝑐𝜀𝜀𝑐𝑐(𝜀𝜀′ − 𝜀𝜀∞) 
∴ 𝜎𝜎𝑡𝑡𝑐𝑐 = 𝑐𝑐𝜀𝜀′′ 𝜀𝜀𝑐𝑐 + 𝑗𝑗𝑐𝑐𝜀𝜀𝑐𝑐(𝜀𝜀′ − 𝜀𝜀∞) 
𝜎𝜎𝑡𝑡𝑐𝑐 = 𝑐𝑐𝜀𝜀𝑐𝑐[𝜀𝜀′′ + 𝑗𝑗(𝜀𝜀′ − 𝜀𝜀∞)]            (21) 

When 𝑗𝑗(𝜀𝜀′ − 𝜀𝜀∞) very small, equation (21) becomes 
𝜎𝜎𝑡𝑡𝑐𝑐 = 𝑐𝑐𝜀𝜀𝑐𝑐𝜀𝜀′′                  (22) 

And the total conductivity is given by 
𝜎𝜎𝑇𝑇 = 𝜎𝜎𝑡𝑡𝑐𝑐 + 𝜎𝜎𝑑𝑑𝑐𝑐 = 𝑐𝑐𝜀𝜀𝑐𝑐𝜀𝜀′′ + 𝜎𝜎𝑑𝑑𝑐𝑐        (23) 

Where 𝜎𝜎𝑑𝑑𝑐𝑐  is the direct current conductivity 

3. Polarization Build up 
When a dc voltage is applied to a polar dielectric, then, the 

polarization builds from zero to the final value. Referring to 
the exponential law, we can write our polarization as 
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function of time as: 

𝑃𝑃(𝑐𝑐) = 𝑃𝑃∞(1 − 𝑒𝑒−𝑐𝑐 𝜏𝜏� )              (24) 
Where 𝑃𝑃(𝑐𝑐)the polarization at time is, 𝜏𝜏 is the relaxation 

time and it is the function of temperature and independent of 
the time. 

If 𝑐𝑐 = 2𝜋𝜋𝜋𝜋𝑐𝑐,𝑐𝑐𝜏𝜏 = 2𝜋𝜋𝜋𝜋𝑐𝑐 ; then differentiating equation 
(24) with respect to time t using product rule. i.e. 

𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

=
𝑑𝑑𝑃𝑃∞
𝑑𝑑𝑐𝑐

�1 − 𝑒𝑒−𝑐𝑐 𝜏𝜏� � 

We let 𝑢𝑢 = 𝑃𝑃∞   𝑡𝑡𝑡𝑡𝑑𝑑 𝑑𝑑𝑢𝑢
𝑑𝑑𝑐𝑐

= 0 

𝑣𝑣 = �1 − 𝑒𝑒−𝑐𝑐 𝜏𝜏� � 𝑡𝑡𝑡𝑡𝑑𝑑 
𝑑𝑑𝑣𝑣
𝑑𝑑𝑐𝑐

= −
1
𝜏𝜏
𝑒𝑒−𝑐𝑐 𝜏𝜏�  

𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

= 𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑐𝑐

+ 𝑣𝑣 𝑑𝑑𝑢𝑢
𝑑𝑑𝑐𝑐

            (*) 

Substituting the above expression into equation (*), we 
have 

𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

= 𝑃𝑃∞ �−
1
𝜏𝜏
𝑒𝑒−𝑐𝑐 𝜏𝜏� � + �1 − 𝑒𝑒−𝑐𝑐 𝜏𝜏� �(0) 

⇒ 𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

= − 1
𝜏𝜏
𝑃𝑃∞ =

𝑃𝑃
∞𝑒𝑒−

𝑐𝑐 𝜏𝜏�

𝜏𝜏
        (25) 

Expanding the right hand side of equation (24), we have 
𝑃𝑃(𝑐𝑐) = 𝑃𝑃∞ − 𝑃𝑃∞𝑒𝑒−

𝑐𝑐 𝜏𝜏�  

⇒ 𝑃𝑃∞𝑒𝑒−
𝑐𝑐 𝜏𝜏� = 𝑃𝑃∞ − 𝑃𝑃(𝑐𝑐)             (26) 

Dividing equation (26) both sides by 𝑃𝑃∞ , we have 

𝑒𝑒−𝑐𝑐 𝜏𝜏� = 𝑃𝑃∞−𝑃𝑃(𝑐𝑐)
𝑃𝑃∞

                 (27) 

Substituting equation (27) into equation (25), we obtain 
𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

= 𝑃𝑃∞−𝑃𝑃(𝑐𝑐)
𝜏𝜏

                (28) 

We can now express our total polarization as: 
𝑃𝑃𝑇𝑇(𝑐𝑐) = 𝑃𝑃𝑡𝑡(𝑐𝑐) + 𝑃𝑃𝑒𝑒                 (29) 

Where 𝑃𝑃𝑡𝑡(𝑐𝑐)  is the atomic polarization and 𝑃𝑃𝑒𝑒  is 
electronic polarization. The final value attained by the total 
polarization is given by: 

𝑃𝑃𝑇𝑇(𝑐𝑐) = 𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 1)𝐸𝐸              (30) 
𝑃𝑃𝑒𝑒(𝑐𝑐) = 𝜀𝜀𝑐𝑐(𝜀𝜀∞ − 1)𝐸𝐸           (31) 

Where 𝜀𝜀𝑐𝑐  and 𝜀𝜀∞  are the dielectric constant under direct 
voltage and at infinity frequency respectively. 

The 𝜀𝜀∞  is defined in Maxwell’s relation as: 
𝜀𝜀∞ = 𝑡𝑡2                 (32) 

Substituting equations (30) and (31) into (29), we have 

𝑃𝑃𝑡𝑡(𝑐𝑐) = 𝑃𝑃𝑇𝑇(𝑐𝑐) − 𝑃𝑃∞  
(𝑐𝑐) = 𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 1)𝐸𝐸 − 𝜀𝜀𝑐𝑐(𝜀𝜀∞ − 1)𝐸𝐸        (33) 
𝑃𝑃𝑡𝑡(𝑐𝑐) = (𝜀𝜀𝑐𝑐𝜀𝜀𝑐𝑐 − 𝜀𝜀𝑐𝑐)𝐸𝐸 − (𝜀𝜀𝑐𝑐𝜀𝜀∞ − 𝜀𝜀𝑐𝑐)𝐸𝐸 
𝑃𝑃𝑡𝑡(𝑐𝑐) = 𝜀𝜀𝑐𝑐𝜀𝜀𝑐𝑐𝐸𝐸 − 𝜀𝜀𝑐𝑐𝐸𝐸 − 𝜀𝜀𝑐𝑐𝜀𝜀∞𝐸𝐸 + 𝜀𝜀𝑐𝑐𝐸𝐸  
𝑃𝑃𝑡𝑡(𝑐𝑐) = 𝜀𝜀𝑐𝑐𝜀𝜀𝑐𝑐𝐸𝐸 − 𝜀𝜀𝑐𝑐𝜀𝜀∞𝐸𝐸 = 𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸    (34) 

Representing the alternating electric field as: 

𝐸𝐸 = 𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐                (35) 
Substituting equation (34) into equation (28), we have 

𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

= 1
𝜏𝜏

[𝐸𝐸(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝜀𝜀𝑐𝑐 − 𝑃𝑃(𝑐𝑐)]       (36) 

Substituting equation (35) into equation (36), we have 
𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

=
1
𝜏𝜏

[𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝜀𝜀𝑐𝑐 − 𝑃𝑃(𝑐𝑐)] 

Adding on both sides of the expression 1
𝜏𝜏
𝑃𝑃(𝑐𝑐), we have 

𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

+ 1
𝜏𝜏
𝑃𝑃(𝑐𝑐) = 1

𝜏𝜏
[𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝜀𝜀𝑐𝑐]   (37) 

Solving equation (37) using integration by factor; let the 
integrating factor be 𝑒𝑒∫𝑡𝑡𝑑𝑑𝑐𝑐 , where 𝑡𝑡 = 1

𝜏𝜏
 

𝑄𝑄(𝑐𝑐) =
1
𝜏𝜏
𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐  

𝑒𝑒∫
1
𝜏𝜏𝑑𝑑𝑐𝑐 = 𝑒𝑒𝑐𝑐 𝜏𝜏�  

Multiplying equation (37) by 𝑒𝑒𝑐𝑐 𝜏𝜏� , we have 

𝑒𝑒𝑐𝑐 𝜏𝜏� .
𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

+ 𝑒𝑒𝑐𝑐 𝜏𝜏� .
1
𝜏𝜏
𝑃𝑃(𝑐𝑐) = 𝑒𝑒𝑐𝑐 𝜏𝜏� .

1
𝜏𝜏

[𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 ] 

Note that the left hand side of the above expression is the 
derivative of 𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑃𝑃(𝑐𝑐) 

∴   𝑒𝑒𝑐𝑐 𝜏𝜏�
𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

=
1
𝜏𝜏

[𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 ] 

Taken the integral both sides, we have 

𝑒𝑒𝑐𝑐 𝜏𝜏� �
𝑑𝑑𝑃𝑃(𝑐𝑐)
𝑑𝑑𝑐𝑐

=
1
𝜏𝜏
�𝑒𝑒1 𝜏𝜏� [𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 ] 

𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑃𝑃(𝑐𝑐) = 1
𝜏𝜏
𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 ∫ 𝑒𝑒

𝑐𝑐 𝜏𝜏� . 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐   (38) 

Note: 

�𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐 = �𝑒𝑒�
1
𝜏𝜏+𝑗𝑗𝑐𝑐 �𝑐𝑐𝑑𝑑𝑐𝑐 

= 𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐
1
𝜏𝜏+𝑗𝑗𝑐𝑐

= 𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1+𝑗𝑗𝑐𝑐𝜏𝜏 )
           (39) 

Substituting equation (39) into equation (38), we have 

𝑒𝑒𝑐𝑐 𝜏𝜏� 𝑃𝑃(𝑐𝑐) =
𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒

𝑐𝑐 𝜏𝜏� . 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) + 𝑐𝑐 

Dividing the above expression by the factor 𝑒𝑒𝑐𝑐 𝜏𝜏� , we have 

𝑃𝑃(𝑐𝑐) =
𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒

𝑐𝑐 𝜏𝜏� . 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1 + 𝑗𝑗𝑐𝑐𝜏𝜏)𝑒𝑒−𝑐𝑐 𝜏𝜏�
+ 𝑐𝑐𝑒𝑒−𝑐𝑐 𝜏𝜏�  

𝑃𝑃(𝑐𝑐) = 𝑐𝑐𝑒𝑒−𝑐𝑐 𝜏𝜏� + 𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐−𝜀𝜀∞ )𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1+𝑗𝑗𝑐𝑐𝜏𝜏 )       (40) 

Where 𝑐𝑐 is a constant and if time𝑐𝑐is sufficiently large 
when compared with𝜏𝜏, then the first term on the right hand 
side of equation (40) becomes so small that it can be 
neglected and we get solution for 𝑃𝑃(𝑐𝑐) as: 

𝑃𝑃(𝑐𝑐) = 𝜀𝜀𝑐𝑐
(𝜀𝜀𝑐𝑐−𝜀𝜀∞ )𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1+𝑗𝑗𝑐𝑐𝜏𝜏 )         (41) 
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Substituting equation (41) into equation (39), we get 

𝑃𝑃𝑇𝑇(𝑐𝑐) = 𝑃𝑃𝑡𝑡(𝑐𝑐) + 𝑃𝑃𝑒𝑒  

⇒ 𝑃𝑃𝑡𝑡(𝑐𝑐) = 𝜀𝜀𝑐𝑐(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐  

𝑃𝑃(𝑐𝑐) = 𝜀𝜀𝑐𝑐(𝜀𝜀∞ − 1)𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 + 𝜀𝜀𝑐𝑐
(𝜀𝜀𝑐𝑐−𝜀𝜀∞ )𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐

(1+𝑗𝑗𝑐𝑐𝜏𝜏 )    (42) 

Simplifying equation (42), we obtain 

𝑃𝑃(𝑐𝑐) = 𝜀𝜀𝑐𝑐 �(𝜀𝜀∞ − 1) +
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)
(1 + 𝑗𝑗𝑐𝑐𝜏𝜏)� 𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒

𝑗𝑗𝑐𝑐𝑐𝑐  

𝑃𝑃(𝑐𝑐) = �𝜀𝜀∞ − 1 + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

� 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐         (43) 

Equation (43) shows that 𝑃𝑃(𝑐𝑐) is a sinusoidal function 
with the same frequency as the applied voltage. The 
instantaneous value of the flux density D is given by: 

𝐷𝐷(𝑐𝑐) =  𝜀𝜀𝑐𝑐𝜀𝜀∗𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝜀𝜀𝑗𝑗𝑐𝑐𝑐𝑐               (44) 
The flux density is equal to 

𝐷𝐷(𝑐𝑐) = 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 + 𝑃𝑃(𝑐𝑐)              (45) 
Equating equation (44) with equation (45), we have 

𝜀𝜀𝑐𝑐𝜀𝜀∗𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝜀𝜀𝑗𝑗𝑐𝑐𝑐𝑐 = 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 + 𝑃𝑃(𝑐𝑐)         (46) 
Substituting equation (43) into equation (46) and 

simplifying it, we get 
𝜀𝜀∗𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝜀𝜀𝑗𝑗𝑐𝑐𝑐𝑐 = 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐  

+�𝜀𝜀∞ − 1 + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

� 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐         (47) 

Dividing equation (47) by the factor 𝜀𝜀𝑐𝑐𝐸𝐸𝑚𝑚𝑡𝑡𝑥𝑥 𝑒𝑒𝑗𝑗𝑐𝑐𝑐𝑐 , we have 

𝜀𝜀∗ = 1 + �𝜀𝜀∞ − 1 + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

�            (48) 

Equating equation (10) with equation (48), we have 

(𝜀𝜀′ − 𝑗𝑗𝜀𝜀′′ ) = 1 + �𝜀𝜀∞ − 1 + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

�        (49) 

Solving for real and imaginary parts of equation (49), we 
have 

𝜀𝜀′ − 𝑗𝑗𝜀𝜀′′ = 1 + 𝜀𝜀∞ − 1 +
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)
(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) 

𝜀𝜀′ − 𝑗𝑗𝜀𝜀′′ = 𝜀𝜀∞ +
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)
(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) 

This gives 

𝜀𝜀′ = 𝜀𝜀∞ + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

+ 𝑗𝑗𝜀𝜀′′               (50) 

Now setting 

 𝜀𝜀′′ = 
(𝜀𝜀𝑐𝑐−𝜀𝜀∞ )𝑐𝑐𝜏𝜏
(1+𝑐𝑐2𝜏𝜏2)                  (51) 

Substituting equation (51) into equation (50), we have 

𝜀𝜀′ = 𝜀𝜀∞ +
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)
(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) + 𝑗𝑗

(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)𝑐𝑐𝜏𝜏
(1 + 𝑐𝑐2𝜏𝜏2)  

𝜀𝜀′ = 𝜀𝜀∞ + (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞) �
1

(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) +
𝑗𝑗𝑐𝑐𝜏𝜏

(1 + 𝑐𝑐2𝜏𝜏2)� 

Taking the LCM of the above expression and cancelling 
out common terms gives 

𝜀𝜀′ = 𝜀𝜀∞ + (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑐𝑐2𝜏𝜏2)

                  (52) 

To obtain 𝜀𝜀′′ , we again consider the imaginary part of 
equation (49), i.e. 

𝑗𝑗𝜀𝜀′′ = 𝜀𝜀′ − 𝜀𝜀∞ − (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )
(1+𝑗𝑗𝑐𝑐𝜏𝜏 )

                (53) 

Substituting equation (52) into equation (53), we have 

𝑗𝑗𝜀𝜀′′ =
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)

(1 + 𝑐𝑐2𝜏𝜏2) −
(𝜀𝜀𝑐𝑐 − 𝜀𝜀∞)
(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) 

𝑗𝑗𝜀𝜀′′ = (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞) �
1

(1 + 𝑐𝑐2𝜏𝜏2) −
1

(1 + 𝑗𝑗𝑐𝑐𝜏𝜏)� 

Dividing the above expression by 𝑗𝑗, we have 

𝜀𝜀′′ = (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞) �
1

(1 + 𝑐𝑐2𝜏𝜏2) −
1

(1 + 𝑗𝑗𝑐𝑐𝜏𝜏)�
(−𝑗𝑗) 

Taking the LCM of the above expression, we obtain 

𝜀𝜀′′ = (𝜀𝜀𝑐𝑐 − 𝜀𝜀∞) �
1(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) − 1(1 + 𝑐𝑐2𝜏𝜏2)

(1 + 𝑐𝑐2𝜏𝜏2)(1 + 𝑗𝑗𝑐𝑐𝜏𝜏) � (−𝑗𝑗) 

Simplifying the above expression yields 

𝜀𝜀′′ = (𝜀𝜀𝑐𝑐−𝜀𝜀∞ )𝑐𝑐𝜏𝜏
(1+𝑐𝑐2𝜏𝜏2)                  (54) 

Equations (52) and (54) are known as the Debye 
equations [7] and they describe the behaviour of polar 
dielectric at various frequencies. The temperature enters the 
discussion by way of the parameter known as the relaxation 
time, 𝝉𝝉.   In this work, the value of relaxation time, 𝝉𝝉 is 
obtained using the relationship below 𝟐𝟐𝟐𝟐𝒇𝒇𝒓𝒓𝝉𝝉 = 𝟏𝟏. 
Equations (52) and (54) were used to compute the values of 
the dielectric constant, loss factor, and relaxation time 
respectively. The values of the complex permittivity 𝜺𝜺∞  
and static permittivity 𝜺𝜺𝒔𝒔 used in this work were adapted 
from National Physical Laboratory Report MAT 23 [6] as 
shown in tables (1) and (2) below. Maple-13 has been used 
to generate the results used in this work as shown in the 
Appendix A below. 

Table 1.  Parameters for Butan-1-ol 

Temperature 𝜀𝜀𝑐𝑐 𝜀𝜀∞  

10 19.54 3.412 

20 18.19 3.406 

30 16.89 3.418 

40 15.65 3.418 

50 14.44 3.416 

Table 2.  Parameters for Ethanol 

Temperature 𝜀𝜀𝑐𝑐 𝜀𝜀∞  

10 26.79 4.624 

20 25.16 4.531 

30 23.65 4.471 

40 22.16 4.410 

50 20.78 4.378 
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Figure 1.  The graph of permittivity of Butan-1-ol at 10°C against the 
frequency 

 

Figure 2.  The graph of permittivity of Butan-1-ol at 20°C against the 
frequency 

 

Figure 3.  The graph of permittivity of Butan-1-ol at 30°C against the 
frequency 

 

Figure 4.  The graph of permittivity of Butan-1-ol at 40°C against the 
frequency 

 

Figure 5.  The graph of permittivity of Butan-1-ol at 50°C against the 
frequency 

 

Figure 6.  The graph of permittivity of Ethanol at 10°C against frequency 
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Figure 7.  The graph of permittivity of Ethanol at 20°C against frequency 

 

Figure 8.  The graph of permittivity of Ethanol at 30°C against frequency 

 
Figure 9.  The graph of permittivity of Ethanol at 40°C against the 
frequency 

 

Figure 10.  The graph of permittivity of Ethanol at 50°C against the 
frequency 

4. Discussion 
The dielectric constant and the loss factor of Butan-1-ol, 

and Ethanol were computed using Debye relaxation method. 
The results revealed that the dielectric constant 𝜀𝜀′  is higher 
at low frequencies for both Butan-1-ol and Ethanol. 
However, as the temperature increases the dielectric constant 
of Ethanol was found decreasing. Unlike that of Butan-1-ol 
which has its highest dielectric constant at temperature 20°C. 
This decreased in the dielectric constant as the result of 
increased in the temperature may be due to the relaxation 
time which has been found to be fast at high temperatures 
and increases dramatically at low temperatures, suggesting a 
freezing of electric dipoles at low temperatures [8]. The loss 
factor on the other hand was found decreasing throughout in 
our calculation. However, Butan-1-ol has the highest value 
of the loss factor. 

The higher value of dielectric constant 𝜀𝜀′  at low 
frequencies may be due to the effect of ionic conductivity 
which varies inversely proportional to the frequency. 
Butan-1-ol has the least dielectric constant and high value of 
the loss factor as when compare to Ethanol for all 
frequencies and temperatures considered in this work. It is 
also observed that Butan-1-ol recorded its highest dielectric 
constant value at 20°C. This also implies that Butan-1-ol is 
better solvent at the temperature 20°C. The higher value of 
dielectric constant 𝜀𝜀′  as observed in this work at low 
frequencies may be to the overall conductivity which 
consists of different conduction mechanisms. The most 
prevalent one in moist materials is the ionic conductivity. 

The graphs of dielectric constant 𝜀𝜀′  and loss factor 𝜀𝜀′′  
against the frequency in gigahertz at various temperatures 
revealed that the dielectric constant 𝜀𝜀′  for both Butan-1-ol 
and Ethanol studied in this work have higher value of 
dielectric constant 𝜀𝜀′  at low frequencies then decreased 
sharply with increasing frequency and after that it remains 
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almost constant over the entire frequency. The loss factor 𝜀𝜀′′  
which is believed to be dominant by the influence of 
electrolytic conduction caused by free ions which exist in the 
presence of a solvent behave very similar in nature like the 
dielectric constant 𝜀𝜀′ . The loss factor  𝜀𝜀′′  on the other hand 
decreased rapidly and becomes almost constant afterwards as 
shown in the above graphs. According to Karmakar et al [9] 
this behaviour indicates a normal behaviour of the dielectric. 

The decrease of dielectric constants in higher frequency 
range for both Butan-1-ol and Ethanol studied in this work 
may be due to the fact that the dipoles cannot follow up the 
fast variation of the applied field. The higher values of 𝜀𝜀′  
and 𝜀𝜀′′  at lower frequencies may be due to the contribution 
from all the four types of polarization (i.e. space charge, 
dipole, ionic and electronic polarization). Salman et al [10] 
Observed that at higher frequencies, only the ionic and 
electronic polarizations contribute to the values of dielectric 
constant of materials. The decrease of dielectric constant 𝜀𝜀′  
with increasing frequency means that, the response of the 
permanent dipoles decreases as the frequency increases and 
the contribution of the charge carriers (ions) towards the 
dielectric constant decreases [11, 12]. 

5. Conclusions 
The Debye equation and its derivatives have been used to 

compute the dielectric constant and loss factor of both 
Butan-1-ol and Ethanol. The results revealed that within the 
frequency range of 0.1 ≤ 𝜋𝜋 ≤ 10𝐺𝐺𝐺𝐺𝑧𝑧  Ethanol has the 
highest values of the dielectric constant and least value of the 
loss factor. This mean that Ethanol is better solvents when 
compare with Butan-1-ol for those temperatures. On the 
other hand Butan-1-ol has highest value of the dielectric 
constant at temperature 20°C which implies that Butan-1-ol 
is the better solvent at this temperature. This showed that the 
Debye relaxation method and its derivative are capable of 
mimicking good results for both the coaxial cells and work 
done using Debye-Г or double-Debye. 
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