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Abstract  Ab-initio density functional theory (DFT) calculations coupled with large unit cell method (LUC) and using 
generalized gradient approximation (GGA)were carried out to simulate the electronic structure of AlSb nanocrystal for 8, 16, 
54 and 64 core atoms. Results shows that the size of the core atoms effects on the electronic properties for a limited value of 
number of core atoms then most properties tends to behave more stable. The energy gap, lattice constant and total energy are 
inversely proportional with the number of core atoms. Significant result occurred that the energy gap of aluminum antimony 
nanocrystal drop to a very small value (0.03) eV at 54 core atoms and this amount of energy is in the range of conductor 
materials. The density of states increased with increasing of number of core atoms. 
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1. Introduction 
Semiconductor nanocrystals of III-V compounds are of 

great significance due to their applications in various 
electronic and optical devices [1]. Rapid advances that have 
occurred in the preparation and characterization of 
nanocrystals, finally enables the studies of transformations 
between stable states of finite systems. Aluminum antimony 
(AlSb) seems to be a promising candidate for transistors and 
p-n junction diodes due to large band gap [2]. AlSb 
nanoclusters have also been synthesized by nanoscale electro 
deposition [3-5]. 

Aluminum antimony (AlSb) has been ranked as one of the 
most promising materials for detection of γ-rayradiation at or 
near ambient temperatures [6]. Yee et al. [7] concluded that 
at room temperature AlSb should make an intrinsically better 
high-energy photon detector than CdTe, Si, and Ge. 
Applications with particular interest in such detectors 
include the interception and assessment of nuclear material 
in the field; nuclear-weapon control and disarmament 
(material protection, control, and accounting); the 
monitoring of nuclear-material processing; dismantling 
nuclear weapons; and remote unattended monitoring [8]. 
GaAs and In P both suffer from limited or inaccessible 
supplies of Ga and in thereby making the large-scale 
implementation of large arrays impossible. In considering  
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materials availability, Al is one of the more 
abundantelements in the earth’s crust. Sb, while less 
abundant, is still considered common and is more abundant 
than As, Be, Bi, Cd, Te, and W. AlSb was originally a 
material system of great interest because of its potential 
applications inelectronic and photonic devices at high 
temperatures such as transistors, p–n junction diodes [7, 9, 
10] and photovoltaic cells [6, 11, 12]. However, AlSb-based 
technologiesnever made any progress due to poor quality of 
surfaces that inhibits device processing and application. 
AlSb rapidly oxidizes when exposed to air, the growth of 
epitaxial layers and devices on AlSb substrates very 
difficult. Hence development of suitable chemical treatment 
of the wafer surface is crucial. 

AlSb crystal is used in a multitude of device applications, 
including light-emitting diodes (LEDs), lasers, detectors, 
and communication devices. It is also fabulous optical 
material, where it can be made to emit light efficiently, 
convert light energy into electrical energy, modulate the 
intensity of light and used as optical filters, mirrors, lenses, 
etc. [13]. Structural Phase Transition and the structural 
stability of lnm sized AlSb nanocrystal in its zinc blende 
(B3), rocksalt (Bl) and CsCl (B2) type phases under high 
compression of AISb Nanocrystal has been investigated by 
Neha et al. using density functional theory [14]. 

Haider et al. studied the AlSb nanocrystals using 
restricted Hartree-Fock method [15]. In the present work we 
have used density functional theory formalism coupling 
with large unit cell method to investigate the electronic 
properties for AlSb nanocrystal for core atoms 8, 16, 54 and 
64. The Slater Type Orbitals (STO) basis set is used in the 
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calculation besides we have used unrestricted Hartree-Fock 
formalism. These calculations were carried out using the 
Gaussian 03 software package [16].  

2. Theory 
The Schrödinger equation for one particle system can be 

solved simply, but it becomes more complicated for systems 
containing many particles. One of the most important goals 
of physics is to describe the physical properties of interacting 
many-particle systems. Such derivation requires the solution 
of the Schrödinger equation in 3N spatial variables and N 
spin variables. 

The Schrödinger equation of many body systems can be 
given by 
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The Hamiltonian for a system containing n electrons and 
N nuclei. 
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The most common ab-initio calculations is LCAO based. 
That is, the MO’s are written as linear combination of the 
atomic basis set orbitals. ab-initio offers a variety of basis set 
such as Slater Type Orbitals (STOs) [17]. These wave 
functions are expressed in spherical polar coordinates to be 
[18, 19]: 

, , ( ) ( , )
ln l m nl lmR r Yϕ θ φ=           (3) 

, , ln l m
 are the principal, azimuthal, and magnetic 

quantum numbers, respectively. 
The radial nodes, in practice, make little difference to the 

description of bounding, but considerably complicated the 
calculation of electron-electron repulsion integrals. Slater 
proposed a series of radial functions lacking nodes [20]:    
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Z is the atomic number, S is shielding parameter and n* = 
effective principal quantum number the shielding parameter  
S is given an empirical value based on n and l. Theradial 
function generates a set of atomic orbital-like basis functions, 
in combination with the angular functions that have 
subsequently become known as Slater-type orbitals (STOs). 

Several theories gave approximate solutions to calculate 
the electronic structure, one of these powerful theories is the 
density functional theory (DFT). It gives a superior accuracy 
to Hartree-Fock theory, ab-initio and the semi-empirical 

approaches. DFT is applicable from atoms, molecules 
containing heavy atoms and solids to nuclei, quantum and 
classical fluids [21, 22]. 

The central quantity in DFT is the electron density ρ(r). It 
is defined as the integral over the spin coordinates of all 
electrons and over all but one of the spatial variables (x=r,s):  

2
1 2 1 2( ) ...... ( , ,....., ) ......N Nr N x x x ds dx dxρ ψ= ∫ ∫

       (5) 

Where ρ(r) is the probability of finding any of the N 
electrons within a volume element dr. Because ρ(r) 
represents the probability, this means that ρ(r) is a 
non-negative function and vanishes at infinity and integrates 
to the total number of electrons N. 

The concept of DFT was put by Thomas-Fermi (1927) 
which is based on the uniform electron gas [23]. They 
proposed the following functional for the kinetic energy: 
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Then, the energy can be given completely in terms of the 
electron density )(rρ  by using the classical expression for 
the nuclear-nuclear potential and electron-electron potential: 
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The initial work on density functional theory was reported 
in two publications: the first with Pierre Hohenberg 
(Hohenberg and Kohn, 1964) [24], and the second with Lu J. 
Sham (Kohn and Sham, 1965) [25]. Hohenberg and Kohn 
made the DFT possible by two ingeniously simple theories: 

The first theorem states that “the external potential Vext.(r) 
for any interacting particles is a unique functional of the 
ground state density i.e. E=E[ )(rρ ]. So the total energy can 
be written as:  

[ ] ( ) ( ) [ ]Ne HKE r V r dr Fρ ρ ρ= +∫
  

      (8) 

where 

[ ] [ ]HK eeF T Eρ ρ= +           (9) 

FHK[ρ] is a universal functional of ρ. The second theorem 
of Hohenberg-Kohn states ”FHK[ρ], the functional that 
delivers the ground state energy of the system, delivers the 
lowest energy if and only if the input density is the true 
ground state density” i.e.,  

0 [ ] [ ] [ ] [ ]NE eeE E T E Eρ ρ ρ ρ≤ = + +       (10) 

It means that for any trial density )(~ rρ , which satisfies 
the necessary boundary conditions such as 

( ) 0, ( ) ,r r dr Nρ ρ≥ =∫
  

 

 
and associated with some 

external potential .( )extV r , the obtained energy from the 
functional of equation (7) represents the upper of the ground 
state energy E0.  
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In 1965 Kohn-sham [26] derived two sets of differential 
equations enabling the ground state density )(~ rρ  to be 
found.  

Kohn and Sham introduced the following separation of the 
functional F[ρ]: 

[ ] [ ] [ ] [ ]s xcF T J Eρ ρ ρ ρ= + +        (11) 

Where Ts do not equal to the true kinetic energy of the 
system, and Exc is the exchange-correlation energy. 

This exchange-correlation energy is the functional that 
contains everything that is unknown. Then the energy of the 
interacting system will be: 

[ ] [ ] [ ] [ ] [ ]s xc NeE T J E Eρ ρ ρ ρ ρ= + + +      (12) 

The Exc[ρ] term has no explicit form, and the functional 
derivative of Exc with respect to ρ gives the 
exchange-correlation potential i.e.: 

xc
xc

EV δ
δρ

=               (13) 

In order to minimize the energy a condition for the orbitals 
{ }iψ  must be given, with the usual constraint 

ijji δψψ =  and using the variational principle we get 

the resulting equation which is known as Kohn-Sham 
equation: 
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The Kohn-Sham formalism solves the Schrodinger 
equation iteratively in a self-consistent field (SCF) fashion. 
SCF is needed because the Coulomb potential and the 
exchange-correlation potential are functional of the density 
which itself depends on the unknown orbitals. 

3. Results and Discussion 
The software used in the present work is the Gaussian 03 

to simulate some of the properties of AlSb nanocrystal such 
as the optimized lattice constant, total energy, energy gap, 
etc… . The optimized value of 8, 16, 54 and 64 core atoms of 
AlSb nanocrystal have been calculated to find the minimum 
value of total energy (ground state) of each of these core 
atoms. Figure (1) shows the variation of total energy with 
lattice constant. The minimum energy means that the 
equilibrium point has been reached. Decreasing the distance 
between atoms leads to a decrease in the total energy, when 
the atoms become nearer to each other, the repulsive force 
will be the dominant. While at large distances the attractive 
force is the dominant. Stability of AlSb nanocrystal at 
equilibrium lattice constant is due to the equality of attractive 
and repulsive forces. Equilibrium lattice constant (aequ.) 
decreases as the number of core atoms increases. Results 
shows a good agreement with results recorded in Ref. [15]. 
For bulk AlSb the lattice constant is (0.6235) nm [27]. The 
aequ. for 8, 16, 54 and 64 AlSb core atoms were (0.6125, 
0.6095, 0.603 and 0.6 nm) respectively. It is clear that the 
AlSb nanocrystal’s lattice constant tends to be close to the 
bulk value at small core atom.  

 
Figure 1.  Shows the total energy variation with lattice constant of 54 core atoms of AlSb nanocrystal 
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The total energy decreases with increasing the number of core atoms (Fig. 2). This is due to increasing of the binding 
energy when the number of atoms is increase.  

 
Figure 2.  Shows the total energy as a function of number of core atoms for AlSb nanocrystal 

 
Figure 3.  The variation of cohesive energy Vs the number of core atoms for AlSb nanocrystal 

The cohesive energy has been calculated using the 
following equation [28] 

0. EE
n
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T
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FreeE  is the experimental free atom energy, 0E  
represents the correction to the cohesive energy for the 
zero-point motion of the nuclei [29] the theoretical value of 
the cohesive energy of bulk AlSb is (8.08 ev) according to 
Ahmed, et al [30] and experimentally Wyckoff found it to be 
(6.60eV) [31], while Aresti and Vermafount its experimental 
value to be (7.155 and 6.0245 eV) respectively [32, 33]. The 
calculated values in this work for AlSb nanocrystal for 8, 16, 
54 and 64 core atoms was fluctuating about 6.90 eV see fig. 
(3). 

Several studies indicated that the lattice constant decreases 
with increasing the number of core atoms [34]. 

The lattice constant decreases as the number of core atoms 
increase (fig. 4). The lattice constant for low values of 
number of core atoms converges to the value of the 
experimental bulk AlSb (6.136 nm) [35]. 

Fig.5 shows the (highest occupied molecular orbitals 
(HOMO) and lowest unoccupied molecular orbitals (LUMO) 
energies as a function of the number of core atoms. HOMO 
and LUMO orbitals shows shape effects. There is a continues 
fluctuated indefinitely as a result of the formation of 
different surfaces in larger nanocrystals [36]. Moreover, 
electric affinity, Fermi level and ionization are included in 
the HOMO and LUMO orbital energies. Fermi level is the 
average of LUMO and HOMO energies [37]. As a result of 
these relatives, the behavior for both HOMO and LUMO is 
approximately the same. 

Fig. 6 gives the relationship between the energy gap and 
the number of core atoms. Remarkable behaviors occur in 
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this study that the energy gap tends to become too small 
when the number of core atoms becomes large. This is due to 
the increasing in the Al metal atoms, so the dominant is the 

aluminum atomsin the AlSb nanocrystal. The AlSb 
nanocrystals at high core atom behaves like a conductor. 

 
Figure 4.  The variation of the lattice constant with the number of core atoms for LUC AlSb nanocrystal 

 
Figure 5.  Shows the HOMO and LUMO as a function of number of core atoms for AlSb nanocrystal 

 
Figure 6.  Shows the variation of energy gap with the number of core atoms for AlSb nanocrystal 
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The highest density of states as a function of number of 
core atoms is shown in Fig. (7). Linear dependency is 
obvious in the graph, increasing the LUC core atoms means 
generating more energy states. Density of state shaping if 
different between the nanocrystals and bulk materials due to 
the confinement effect (the quantum size effect on the 
electrons) [38]. This variation in the DOS between bulk an 
nanostructure effect is caused by the dependency of DOS on 
the energy, where for bulk materials the density of states is 

proportional to E1/2, while The density of states diverges as 
(E-Eij)-1/2 [39], Where Eij is the subband energy state. 

Finally the density of states for 8 and 64 LUC core atoms 
is shown in figures 8 and 9. The number of energy states for 
any specific energy value is increased gradually with 
increasing the number of core atoms. Also the energy levels 
seems to be nearer to each other as No. of core atoms 
increased. 

 

 
Figure 7.  Shows the highest density of states as a function of number of core atoms for AlSb nanocrystals 

 
Figure 8.  Shows the density of states Vs the total energy for 8 atoms AlSb nanocrystal 
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Figure 9.  Shows the density of states Vs the total energy for 64 atoms AlSb nanocrystal 

4. Conclusions 
A remarkable results found in this study is that the AlSb 

nanocrystals have a significant properties than bulk AlSb 
material. Ab-initio using the Gaussian 03 software stimulates 
some of important properties of nanocrystals rather than bulk 
materials. In the present work we can conclude that, the total 
energy, lattice constant and the energy gap are inversely 
proportional with the number of LUC core atoms while the 
density of states is proportional to the number of core atoms. 
The cohesive energy showed a fluctuated value with respect 
to increasing the number of core atoms. No significant 
dependency shown in this study between Ecoh. And the 
number of core atoms. Same behavior for both HOMO and 
LUMO with varying the number of core atoms. 
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