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Abstract  We calculated the exact self energy and the exact Green’s function for the Bethe lattice in the hopping model 

using the Dyson’s equation and from the fourth order of perturbation theory. The self energy is found from processes where 

an electron hops to its neighbors and includes terms where the particle hops twice to a next nearest neighbor (NNN) and 

then hops back. 
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1. Introduction 

The Bethe lattice has received huge interest in statistical 

mechanics because of its peculiar structure. Several 

interesting physical problems involving interactions are 

exactly solvable when defined on the Bethe lattice[1 – 5]. 

This has made it the candidate lattice to investigate various 

kinds of interactions and models. The Bethe lattice is an 

infinite tree graph, where any two points are connected by a 

single path and each vertex has the same number of 

branches[6]. Like most many body problems, it is not 

straightforward to obtain simple analytical approaches to 

explore the physics emanating from the Bathe lattice system. 

Within the harmonic approximation, the Green’s function 

represents perhaps the simplest type of many body 

problems. The Green’s function approach provides a unified 

systematic method for calculating various quantities of 

physical interest. It gives the ground state energy of a 

system and provides information on the excitation energies 

of the system[7]. It is applied to difficult problem of lattice 

dynamics of a harmonic crystal. Green’s function makes it 

possible to evaluate measurable thermodynamic and 

transport properties by studying the response of a simple 

perturbation[8, 9]. The local Green function for a quantum- 

mechanical particle with hopping between its nearest 

neighbor (NN) and next nearest neighbor (NNN) on the 

Bethe lattice has been calculated[10], where the on-site 

energies may alternate on sub-lattices. For infinite 

connectivity the renormalized perturbation expansion was  
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carried out by counting all non-self intersecting paths, 

leading to an implicit equation for the local Green function. 

By integrating out branches of the Bethe lattice, the same 

equation is obtained from a path integral approach for the 

partition function. In this study, the electron Green’s 

function will be used to calculate the exact Green’s function 

and self energy for the Bethe lattice in the hopping model. 

Though it is not one of the goals of our study here, it is 

pertinent to point out that the self energy can be used to 

obtain the vertex function which contains all the 

information on the kinetic and interaction behaviour of the 

particles in the system. Interestingly the vertex function can 

be decoupled into the charge vertex function and spin 

vertex function, thereby enabling the studying of either 

non-spin ordering systems or spin ordering system 

independently. 

2. The Electron Green’s Function 

The electron Green’s function is defined as[6]  

.    (1) 

Re-expressing Eqn. (1) in the Heisenberg representation 

           (2) 

so that  is independent of time , we obtain 
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.              (4) 

The bracket  on an operator 0 means we should take 

the thermodynamic average which is a trace over the 

complete set of states. The Hamiltonian is replaced by H-N 

where  is the chemical potential and N is the particle 

number operator. This definition of the Green’s function 

applies to a many particle system. It can also be used very 

successfully for one particle in an empty band. Here it is 

consider for an electron. 

An equivalent definition of the Green’s function is  

       (5) 

The factor  is a -ordering operator which arranges 

operators with earlier  to the right (closest to -). It serves 

the same function as the time ordering operator in the zero 

temperature Green’s functions. The subscript  is affixed to T 

to distinguish this operator from the temperature. The 

thermodynamic potential Ω in exp(- Ω) is the usual 

normalization factor for a thermodynamic average. 

3. Exact Green’s Function for the Bethe 
Lattice 

The Green’s function for the Bethe lattice will be 

calculated from the Hamiltonian with the NN hopping term, 

as given by[9] 

         (6) 

where t is the kinetic hopping term that describes the 

itinerancy tendency of the electron and the other parameters 

retain their usual meanings[11, 12]. 

The summation over δ runs over the z neighbors. Spins 

plays no role in this calculation and will be omitted. The last 

term contains the chemical potential . The standard model 

of particle motion has hopping between nearest neighbor 

sites using a tight-binding model. 

Defining the electron Green’s function of Eqn. (1) as  

          (7) 

where all the parameters retain their earlier definitions. The 

expectation value in Eqn. (7) can be transformed into trace 

                  (8) 

where the symbol Tr
 denotes trace. 

Taking into account Eq. (8) and the Heisenberg 

representation, 

           (9) 

Eq.(7) becomes  

 (10) 

.          (11) 

For compactness, we introduce . 

Then considering , we obtain  

.  (12) 

Using the theorem that trace is unchanged by a cyclic 

variation of the operators, 

    (13) 

it can be shown that  

:  (14) 

By using the cyclic property of the trace several times, 

Eqn. (14) can be re-arrange into  

: . (15) 

The factor exp ( ) is not cycled since it is not an 

operator. These terms can be regrouped by adding exp 

( ) to the first terms to give  

:  

. (16) 

We deploy the fermion Green’s function property, 

            (17) 

when , to obtain the term on the right side of 

Eqn. (17) as  

.   

These steps show that  

    (18) 

Expanding the Green’s function in the Fourier series as  

     (19) 

 (20) 

Eqn. (19) serves as the definition G(l, ipn), where ipn is 

always an odd multiple of π/β for fermions.  

The non-interacting Green’s function is obtained from 

Eqn. (12) by the use of the Hamiltonian 

           (21) 

The  dependence of the Green’s function is 

 (22) 

 (23) 

           (24) 

where (µ) is the expectation of the number operator 
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             (25) 

which gives  

 .             (26) 

Obtaining the Green’s function of frequency for l = 0 

          (27) 

    (28) 

.    (29) 

The second term in the numerator may be simplified upon 

recalling that 

            (30) 

with               (31) 

which gives  

      (32) 

From Eqn (26), 

  .          (33) 

Therefore,   

     (34) 

           (35) 

Equation (35) is the non-interacting Green’s function for l 

= 0 

Consider the Green’s function of energy defined by taking 

the usual Fourier transform with respect to the time variable 

equation, we obtain  

. 

The Fourier transform in time is applied to each term in 

the S-matrix summation  

 

      (36) 

 (37) 

The Green’s function integral is 

 

        (38) 

 

 

  (39) 

Summing the terms in the series Eqn. (39) yield self 

energy diagrams which may be collected into the Dyson 

equation. 

      (40) 

where the total self energy  is the summation of 

all the different self energy contribution 

.         (41) 

The Dyson’s equation is really a theorem which states that 

one may sum the series of energy terms which develops in 

higher order and the form of Eqn. (40) is obtained with each 

distinct contribution to  occurring just once[9]. 

The Dyson’s Eqn. (40) can be re-written as Eqn. (35); thus  

. 

The self energy  is found from processes 

where an electron hops to its neighbors and then hops back. 

Each hop has a matrix element t. The total number of hops in 

each self-energy is an even number such as 2n. For 2n hops, 

which return the particle to the original site, the lowest order 

self-energy (n = 1) is from the process where a particle hops 

to the neighbors and then hops back to the original site. There 

are z neighbors and the intermediate Green’s function at the 

neighboring site must be G(0)(0,ipn). The self-energy from 

double hops is  

 .           (42) 

The next in the self energy comes from the fourth order of 

perturbation theory and includes terms where the electron 

hops twice to a NNN and then hops back. The first hop has a 

bandwidth of z–1 since the hop back to the starting point has 

already been included and the resulting self energy will be 

        (43) 
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Therefore, including both terms gives 

        (44) 

 , (45) 

where the terms in the bracket are with higher dimension in 

the perturbation expansion. The terms in the series in the 

brackets describes processes where after hopping to the first 

neighbor, the electron hops to and from its neighbors 

multiple times before hopping back to the original site once. 

When it hops away from the original site the second time, it 

counts as another self energy function. 

The factor multiplying zt2 in Eqn. (44),  
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Every denominator is the same. Further terms in the 

continued fraction describe processes where the particle hops 

further away in the lattice. The continued fraction contains 

all forward hops to all sites. This expression is the self 

energy. 

Defining the self energy in the denominator of Eqn. (44) 

as D, then 

             (47) 

The continued fraction yields a quadratic equation which 

is solved easily: 

       (48) 
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Substituting D of Eqn. (49) into Eqn.(50) gives  

  (51) 

which is the exact self energy. Thus the exact Green’s 

function for the Bethe lattice in the hopping model becomes 

.         (52) 

4. Conclusions 

We have developed an exact Green’s function and self 

energy for the Bethe lattice in the hopping model. The 

physics of most strongly correlelated systems are generally 

believed to be influenced by the hopping of the electron often 

referred to as the electron itinerancy. For systems with broad 

energy band, they have large kinetic energy so that the 

electrons are highly itinerant thereby spending less time at 

the atomic sites. Such delocalized electrons can be described 

by assuming an independent particle picture[12]. For 

systems with narrow energy band, they have small kinetic 

energy so that the electrons spend more time at the atomic 

sites. Such localized electrons are correlated and therefore 

need to be described as quasiparticles. Now for system that 

are partially itinerant and partially localized such as in 

correlated systems, most model Hamiltonians formulated to 

explore them usually have the electron itinerancy 

represented to competes with the correlated interaction[11 – 

14]. Therefore it is expected that our formulation will be very 

useful in investigating the effects of the electron itinerancy in 

these models using the Bathe lattice. Further, we have 

considered the hopping restricted to the NNN here. It will 

also be worthwhile to investigate the effects which hopping 

beyond NNN has on the physics of interacting many-body 

and disordered systems on the Bethe lattice.  
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