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Abstract  Based on the self-consistent ab in itio the full-potential linear muffin-tin  orbital (FP-LMTO) method, the 
structural, electronic, optical, and thermodynamic properties of AlAs1-xPx ternary semiconductor alloys have been 
investigated. The exchange–correlation potential was calcu lated using both the local density approximation (LDA) and 
generalized gradient approximat ion (GGA). The ground-state properties are determined for the cubic bulk materials AlAs, 
AlP, and their mixed crystals at various concentrations (x = 0.25, 0.5, and 0.75). Deviat ion of the lattice parameter from 
Vegard’s law and the bulk modulus from linear concentration dependence has been examined. The microscopic orig ins of the 
band-gap bowing parameter have been discussed. Moreover, the refractive index fo r AlAs1-xPx is studied using Reedy and 
Nazeer model. Besides, the thermodynamic stability of the alloys of interest is investigated by means of the miscibility 
critical temperature. 
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1. Introduction 
Recently, III–V zinc blende semiconductors compounds 

have become an area of great technological activity. The 
reason for this is the possibility of producing novel materials 
with ad justable electronic and magnetic properties. Among 
them, the aluminum compounds AlAs and AlP are 
concerned in this paper. AlAs is one of the most important 
electronic and optoelectronic materials because of its 
frequent incorporation into GaAs-based heterostructures 
[1,2]. AlP, with the largest direct gap of the III–V compound 
semiconductors, is undoubtedly the most ‘‘exotic’’ and least 
studied[1]. However, in recent years, it is attracted special 
attention to its incorporation in the AlAs/AlP and GaP/AlP - 
based heterostructures. AlAs/AlP superlattices are attractive 
due to their potential applications in optoelectronic devices 
because they are expected to become direct band gap 
materials[3]. 

GaP/AlP-based heterostructures are att ract ive in  their 
characteristics for the development of optoelectronic devices 
operating in the yellow-green spectral region[4,5] and are 
considered as an alternative to a GaN/AlGaN system for the 
development of infrared semiconductor lasers and detectors 
[6]. Although there have been numerous calculations[7–9] of 
the structural, electronic and optical properties of aluminum 
compounds using different methods, to our knowledge there 
are few reports that had used the full potential calculation  
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FP-LAPW to calcu late the electronic, structural and optical 
properties for those compounds. Khanin and Kulkova[10] 
and Reshak and Auluck[11] used FP-LAPW method within 
local density approximation (LDA)[12] of the exchange – 
correlation energy to calculate the electronic and optical 
properties respectively. Recently, Briki et al.[13] studied the 
effects of relativistic on the structural and transport 
pr op ert i es of II I– V  co m p ou n ds ut i lizin g L D A  an d PBE-GGA
[14] for the exchange– correlation energy. 

In the present work, we have aimed to combine AlP and 
AlAs compounds having different structural and electronic 
properties in order to obtain new materials, AlAs1-xPx ternary 
alloys with intermediate properties. However, to the best of 
our knowledge, no experimental or theoretical investigations 
of AlAs1-xPx alloys have been appeared in the literature. The 
present work study the structural, electronic, optical, and 
thermodynamic propert ies of these alloys by using a 
full-potential, linear muffin-tin-o rbital (FP-LMTO) method. 
The physical origins of gap bowing are calculated following 
the approach of Zunger and co-workers[15]. 

A brief description of the computational details and 
methodology are given in Section 2. We present the 
theoretical results and discussion concerning the structural, 
electronic, optical and thermodynamic properties in Section 
3. The conclusion is given in Section 4. 

2. Computational Details 
The calculations reported here were carried out using the 

ab-init io fu ll-potential linear muffin-tin o rbital (FP- LMTO) 
method as implemented in the Lmtart code[16-18]. The 
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exchange and correlation potential was calculated using the 
local density approximation (LDA)[19] and the generalized 
approximation (GGA)[20]. Th is is an improved method 
compared to p revious (LMTO) methods. The FP-LMTO 
method treats muffin-tin  spheres and interstitial regions on 
the same footing, lead ing to improvements in the precision of 
the eingen-values. At the same t ime, the FP-LMTO method, 
in which the space is divided into an interstitial regions (IR) 
and non overlapping muffin-tin spheres (MTS) surrounding 
the atomic sites, uses a more complete basis than its 
predecessors. In the IR regions, the basis functions are 
represented by Fourier series. Inside the MTS spheres, the 
basis functions are represented in terms of numerical 
solutions of the radial Schrödinger equation for the spherical 
part of the potential mult iplied by spherical harmonics. The 
charge density and the potential are represented inside the 
MTS by spherical harmonics up to lmax = 6. The integrals 
over the Brillouin zone are performed up to 55 special 
k-points for binary com-pounds and 27 special k-points for 
the alloys in the irreducible Brillouin zone (IBZ), using the 
Blöchl’s modified tetrahedron method[21]. The self - 
consistent calculations are considered to be converged when 
the total energy of the system is stable within 10–5 Ry. In 
order to avoid the overlap of atomic spheres the MTS radius 
for each atomic position is taken  to be different for each case. 
Both the plane waves cut-off are varied to ensure the total 
energy convergence. The values of the sphere radii (MTS), 
number of plane waves (NPLW). 

3. Results and Discussions 
3.1. Structural Parameters 

In this section the structural properties of the binary 
compounds AlAs and AlP were analyzed in the zinc blend 
structure. The alloys were modeled  at some selected 
compositions x = 0.25, 0.5, 0.75 with ordered structures 
described in terms of periodically repeated supercells. For 
the considered structures, we perform the structural 
optimization by minimizing the total energy with respect to 
the cell parameters and also the atomic positions (as 
prototype, Table 1 summarizes the atomic positions for 
AlAs1-xPx). For the composition x = 0.25 and 0.75 the 
simplest structure is an eight-atom simple cubic lattice 
(luzonite): the anions with the lower concentration form a 
regular simple cubic lattice. For x = 0.5, the smallest ordered 
structure is a four-atom tetragonal cell, corresponding to the 
(0 0 1) superlattice. For the considered structures, the 

calculated total energy at many different volumes around 
equilibrium was fitted to the Murnaghan’s equation of 
state[22] in  order to  obtain the equilibrium lattice constant 
and the bulk modulus for the b inary compounds AlAs and 
AlP fo r different approximat ions of exchange–correlation 
energy GGA and LDA. The results of our calculations were 
summarized in Tab le 2 and were compared to other 
experimental and theoretical pred ictions.  

The lattice constants obtained within the LDA for the 
parent binary system AlP and AlAs are respectively 0.38 % 
and 0.11 % lower than the experimental value, while the 
corresponding bulk modulus are 1.24% and 2.59% larger 
than the experimental value, which is the usual level of 
accuracy of the LDA. When comparing the results obtained 
within GGA, the lattice constant are 1.66 % for AlAs and 
1.17 % for AlP larger than the experimental values and the 
corresponding bulk modulus are 20.38% and 4.77% s maller 
than the corresponding experimental values. Hence it  is safe 
to conclude that the LDA bulk modulus and lattice constants 
is in fact in better agreement with the experimental data than 
the GGA values. The calculated bulks modulus using both 
approximation  LDA and GGA decreases in going from AlP 
to AlAs, suggesting the more compressibility for AlP 
compared to that for AlAs.  

Our GGA results of lattice constant and bulk modulus of 
AlAs and AlP show a good agreement with experiment and 
are more accurate than recent ones calculated by FP-LAPW 
within PBE-GGA[13]. The LDA and GGA of exchange – 
correlation energy have been employed to calculate the 
structural properties of AlAs1-xPx alloys. The results are 
presented in Table 3. 

In Fig. 1, we p resent our calculated lattice constants as a 
function of P concentration along with Vegard’s law result. 
The lattice constant scales linearly with  composition thus 
obeying Vegard’s law[25]. Our results show a marginal 
upward bowing parameter equal to 0.00457 A° for LDA and 
0.011 A° for GGA. Fig. 2 shows the bulk modulus as a 
function of concentration x for the alloys. A small deviation 
of the bulk modulus from the linear concentration 
dependence (LCD) with downward bowing equal to 4.026 
GPa for LDA and 9.298 GPa for GGA is observed. The 
deviation from LCD should be mainly due to the bulk 
modulus mis match between AlAs and AlP compounds. A 
more precise comparison for the behavior of the AlAs1-xPx 
ternary alloys shows that a decrease of the lattice constant is 
accompanied by an increase of the bulk modulus. It 
represents bond strengthening or weakening effects induced 
by changing the composition. 
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Table 1.  Atomic positions for AlAs1-xPx alloys 

x Atom 
 Atomic position 

 
0.25 

 
 
 

0.5 
 
 
 

0.75 
 
 
 

 
Al 
As 
P 
 

Al 
As 
P 
 

Al 
As 
P 

 
(1/4 1/4 1/4), (3/4 3/4 1/4), (3/4 1/4 3/4), (1/4 3/4 3/4) 

(0 1/2 1/2), (1/2 0 1/2), (1/2 1/2 0) 
(0 0 0) 

 
(1/4 1/4 1/4), (3/4 3/4 1/4), (3/4 1/4 3/4), (1/4 3/4 3/4) 

(0 1/2 1/2), (1/2 0 1/2) 
(0 0 0), (1/2 1/2 0) 

 
1/4 1/4 1/4), (3/4 3/4 1/4), (3/4 1/4 3/4), (1/4 3/4 3/4) 

(0 1/2 1/2) 
(0 0 0), (1/2 0 1/2), (1/2 1/2 0) 

Table 2.  The optimized lattice constant (a,A°), bulk modulus, (B, GPa), and first-order pressure derivative of bulk modulus (B0) calculated by different 
exchange–correlation energy approximations for AlAs and AlP compounds. The other calculated and measured values are given for comparison 

 
 

Present work 
 

LDA 

 
 

GGA 

Other works 
 

Theoretical 

 
 

Experimental 

AlAs 
a 
B 
B' 

AlP 
a 
B 
B' 

 
5.654 
70.133 
3.727 

 
5.449 
87.067 
2.704 

 
5.754 

65.281 
3.602 

 
5.534 
81.89 
2.88 

 
 

 
5.74a, 5.731b, 5.726b, 6.039b 

66.8a, 67.732b, 68.272b, 48.96b 

4.47a, 3.891b, 3.851b, 3.533b 

 
 

5.51a, 5.511b, 5.507b, 5.745b 

82.5a, 82.097b, 82.619b, 63.834b 

4.11a, 4.08b, 4.054b, 3.577b 

 

 
5.66c 
82c 

- 
 

5.47c 
86c 

- 

aRef[13] : M. Briki, M. Abdelouhaba, A. Zaoui, M. Ferhat, Superlatt. Microstruct. 45 (2009)80.  
bRef[23] : F. Annane, H. Meradji , S. Ghemid , F. El Haj Hassan, Computational Materials Science 50 (2010) 274–278. 
cRef[24] : K.-H. Hellwege, O. Madelung (Eds.), Semi-Conductor, Intrinsic Properties of Group IV Elements and III_V, II_VI and I_VII Compounds, 
Landolt-Bornstein New Series, Group III, vol. 22, Pt Springer, Berlin, 1982. 
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Figure 1.  Composition dependence of the calculated lattice constants (solid squares) of GGA and (solid circle) of LDA of AlAs1-xPx alloy compared with 
Vegard’s prediction (dot line) 
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Table 3.  Calculated band gaps for AlAs and AlP compounds along different line in k-space under LDA & GGA (all in eV) 

Energy gap 
 

Present work 
 

LDA 

 
 

GGA 

Other works 
 

Theoretical 

 
 

Experimental 

 
AlP 
(Γ- Γ) 
(Γ- X) 
AlAs 
(Γ- Γ) 
(Γ- X) 

 

 
 

3.366 
1.465 

 
1.951 
1.374 

 
 

3.088 
1.638 

 
1.688 
1.494 

 
 
 

2.94a, 3.910b, 3.083b 

1.54a, 2.570b, 1.632b, 1.49c 

 
1.65a, 2.486b, 1.787b 

1.43a, 2.349b, 1.502b, 1.39c 

 

 
 

3.63d 

2.52d ,2.5e 

 

3.13d 

2.24d,2.3e 

 

aRef[13] : M. Briki, M. Abdelouhaba, A. Zaoui, M. Ferhat, Superlatt. Microstruct. 45 (2009)80.  
bRef[23] : F. Annane, H. Meradji , S. Ghemid , F. El Haj Hassan, Computational Materials Science 50 (2010) 274–278. 
cRef[11] : Ali Hussain Reshak, S. Auluck, Physica B 395 (2007) 143. 
dRef[26] :  M.P. Thompson, G.W. Auner, T.S. Zheleva, K.A. Jones, S.J. Simko, J.N. Hilfiker, J.Appl. Phys. 89 (2001) 3321. 
eRef[7] :  (a) M.-Z. Huang, W.Y. Ching, Phys. Rev. B 47 (1993) 9449; (b) M.-Z. Huang, W.Y. Ching, Phys. Rev. B 47 (1993) 9464. 
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Figure 2.  Composition dependence of the calculated bulk modulus (red solid) of  LDA and  (black solid) of GGA of AlAs1-xPx alloy 

3.2. Electronic Properties 

The self consistent scalar relativ istic band gaps of the 
compounds under investigation and their alloys were 
calculated within LDA and GGA schemes. An indirect band 
gap (Г –X) has been observed for AlAs and AlP compounds. 
The results are presented in Table 3. The values obtained for 
the band gap within GGA are in better agreement with 
available experimental results in comparison with the values 
calculated by LDA. In  fact, it  is well known that the LDA 
usually underestimates the energy gap[27]. It is noticeable 

that the GGA scheme, which is based on potential 
optimization, is capable of giving a more reliable band 
structure. The calculated energy gaps for A lAs1-xPx alloys are 
presented in Table 4. In Fig. 3, we d isplay the composition 
dependence of the calculated band gaps using LDA and 
GGA schemes. The results are shown in Fig. 3 and obey the 
following variations: 

Eg
GGA (x) = 1.498 + 0.220 x − 0.081x2       (1) 

Eg
LDA (x) = 1.377 + 0.138 x− 0.052x2         (2) 
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Table 4.  The concentration dependence of the lattice constants (a), bulk modulus (B), first order pressure derivatives of bulk modulus (B0) and energy band 
gaps (Eg) calculated under GGA(LDA) schemes for AlAs1-xPx alloys 

x a(A) B(Gpa) B' Eg(eV) 

 
AlAs 

AlAs0.75P0.25 
Present work 
Other works 

AlAs0.5P0.5 
Present work 
Other works 
AlAs0.25P0.75 

Present work 
Other works 

AlP 

 
5.754(5.654) 

 
5.698(5.601) 

5.672a 
 

5.641(5.550) 
5.618a 

 
5.586(5.501) 

5.563a 

5.534(5.449) 

 
65.281(70.133) 

 
66.839(73.867) 

70.494a 
 

71.456(77.778) 
74.960a 

 
76.455(81.454) 

78.445a 

81.89(87.067)  

 
3.602(3.727) 

 
3.445(3.664) 

4.093a 
 

3.675 
4.036a 

 
3.379(3.809) 

4.284a 

2.88(2.704) 

 
1.494(1.374) 

 
1.563(1.416) 
2.388a ,1.525a 

 
1.597(1.430) 
2.446a ,1.562a 

 
1.624(1.448) 
2.513a ,1.599a 

1.638(1.465) 

aRef[23] : F. Annane, H. Meradji , S. Ghemid , F. El Haj Hassan, Computational Materials Science 50 (2010) 274–278. 

 
Figure 3.  Variation of the calculated band gap versus x concentration of AlAs1-xPx alloys using both GGA and LDA exchange and correlation potentials 

From Fig. 3, it is clear that the alloys show a weakly  
compositional-dependent energy gap as conventionally 
known for III–V alloys[28]. In order to better understand the 
physical orig ins of the gap bowing parameter in AlAs1-xPx 
alloys, we fo llow the procedure of Bernard and Zunger[15] 
and decompose the total bowing parameter b into physically 
distinct contributions. Since the compositional effect on the 
bowing is considered to be small, the band gap bowing 
equations of Bernard and Zunger have been defined only by 
the contributions of the volume deformat ion (bVD), charge 
transfer (bCT) and the structural relaxation (bSR) o f the alloys 
as follows: 

b = bVD + bCT + bSR            (3) 

bVD = 2[EAlAs(aAlAs ) −EAlAs (a) + EAlP (aAlP )− EAlP (a)](4) 

bCT = 2[EAlAs (a) + EAlP (a) − 2EAlAsP (a)]      (5) 

bSR = 4�EAlAsP (a) − EAlAsP �aeq ��       (6) 
Here, aAlAs, aAlP, and aeq are the equilibrium lattice 

constants of AlAs, AlP and AlAs1-xPx alloys, respectively. 
The lattice constant (a) is calcu lated by linear composition 
dependence rule[25] fo r the alloys. All these energy gaps 
occurring in expressions (4)–(6) have been calculated for the 
indicated atomic structures and lattice constants. The 
calculated gap bowing contributions of the direct band gap 
are presented in Table 5. The total gap bowing for AlAs1-xPx 
alloys has been found to be very small. The low value of bVD 
is related to the weak mismatch of the lattice parameters of 
AlAs and AlP compounds and that of bCT is due to the weak 
electronegativity[29] difference between As and P atoms. 
The small contribution of the structural relaxation to the 
bowing parameter it due to that our calcu lations are for 
ordered structure. 
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Table 5.  Decomposition of optical bowing into VD, CT and SR contributions 

 
Parameter 

 

Present work 
 

LDA 

 
 

GGA 

Other works 
  

 
bVD 

bCT 
bSR 

b 

 
0.082 
4.826 
0.005 
4.914 

 
0.072 
3.089 
0.009 
3.172 

 
-0.006a,-0.01a 

0.064a,0.038a 
-0.004a,-0.008a 

0.054a,0.02a,0.051a,0.023a 

 

 

aRef[23] : F. Annane, H. Meradji , S. Ghemid , F. El Haj Hassan, Computational Materials Science 50 (2010) 274–278. 

3.3. Linear Optical Properties 

It is well known that the basic optical properties of 
semiconductors result from the electronic excitation in 
crystals when an electromagnetic wave is incident on them. 
The calculation of the optical properties of the solids is beset 
with numerous problems. The knowledge of the dielectric 
functions 𝜀𝜀(𝜔𝜔) = 𝜀𝜀1(𝜔𝜔) + 𝑖𝑖𝜀𝜀2(𝜔𝜔) allows to describe the 
optical properties of the medium at all phonon energies. 
Calculations of the dielectric function involve the energy 
eigen-values and the electron wave functions. These are the 
natural output of the ab initio band structure calculation 
which is usually performed under LDA and 
GGA[30,31] .We have calculated the frequency dependent 
imaginary d ielectric function and real dielectric function. 
The effects of using K points in the BZ have already been 
discussed in the earlier work by Khan et al (1993)[32]. The 
knowledge of both the real and the imaginary parts of the 
dielectric function allows the calculat ion of important optical 
functions. In this paper, we also present and analyze the 
refract ive index 𝜀𝜀(𝜔𝜔) given by: 

𝑛𝑛(𝜔𝜔) = �𝜀𝜀1(𝜔𝜔)

2
+

�𝜀𝜀1
2(𝜔𝜔) +𝜀𝜀2

2(𝜔𝜔)

2
�

1/2

         (7) 

At low frequency (𝜔𝜔 = 0 ), we obtain the following 
relation: 

𝑛𝑛(0) = 𝜀𝜀
1
2(0)                 (8) 

The refractive index and dielectric constants are very 
important to determine the optical and electric properties of 
the crystal. Advanced applications of these alloys can 
significantly benefit from accurate index data. The use of fast 
non-destructive optical techniques for epitaxial layer 
characterizat ion (determination of thickness or alloy 
composition) is limited by the accuracy with which 
refract ive indices can be related to alloy composition. These 
applications require an analytical expression or known 
accuracy to relate the wavelength dependence of refractive 
index to alloy composition, as determined from simple 
techniques as photoluminescence. Different theoretical 
models relate the refractive  

index to the energy band gap for a large set of 
semiconductors[33–36]. Especially, for the III–V 
semiconductors and its alloys we take the most realistic 
model, proposed by Reedy and Nazeer Ahammed[36]: 

𝑛𝑛 = �
12 .417

�𝐸𝐸𝑔𝑔 −0.365
                (9) 

where 𝐸𝐸𝑔𝑔  is the energy gap in eV. This equation is a 
straightforward modification of the original Moss 
equation[34], with a second arbitrary constant (0.365) added 
in order to improve the results obtained. 

In Table 6, we summarize the calculated values of the 
refract ive index for the alloy under investigation, obtained 
by using the FP-LMTO method and Reddy et al. model. 
Comparison with the available data has been made where 
possible. It is clear that the values of the refractive index 
obtained by the FP-LMTO occur within  the range of those 
obtained using Reddy et al. model; and for the end-point 
compounds (i.e. AlAs and AlP) are in good agreement with 
available experimental results. 

Fig. 4 shows the variation of the calculated refract ive 
index versus concentration for the alloys. One can notice that 
the refractive index decreases monotonically with increasing 
P content over the entire range of 0–1 for both FP-LMTO 
and model used. The calculated refractive index versus 
concentration is fitted by a polynomial equation. The results 
are summarized as follows: 

n(x) = 2.271 − 0.186 x− 0.024x2   FP-LMTO (LDA) (10) 

n(x) = 2.324 − 0.449 x− 0251 x2  FP-LMTO (GGA) (11) 

n(x) = 3.512 + 0.116 x− 0.045x2   Reddy et al.(LDA) (12) 

n(x) = 3.414 − 0.161 x + 0.064x2   Reddy et al.(GGA)(13) 

From these equations, we can note the weak non-linear 
dependence of the refract ive index of the alloys with 
concentration x. Interestingly, we note on going from AlAs 
to AlP the band gap of AlAs1-xPx increases (see Fig. 3) but 
the refractive index decreases. This is in  agreement with the 
quantum-mechanics equation (n(Eg))[38] which states that 
when the band gap Eg increases, the refractive index n 
decreases, and vice versa, but not linearly. 
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Table 6.  Refractive index of AlAs1-xPx alloys for different compositions x 

 

Present work 
FP-LMTO 

LDA 
 

 
   GGA 

 
Reedy model 

LDA 
 

 
    GGA 

Other works 
Theoretical 

 
 

 
Experimental 

 
AlAs 

AlAs0.75P0.25 
AlAs0.5P0.5 

AlAs0.25P0.75 

AlP 

 
2.276 
2.218 
2.186 
2.153 
2.106 

 

   2.330 
2.216 
2.160 
2.142 
2.119 

 
3.515 
3.480 
3.468 
3.454 
3.440 

 

    3.418 
3.368 
3.360 
3.326 
3.317 

   2.833a, 2.969a 
2.757a,2.955a 
2.715a,2.934a 

2.671a,2.911a 
2.651a,2.892a 

 
3.00b 

- 

- 

- 

2.75b 

 
aRef[23] : F. Annane, H. Meradji , S. Ghemid , F. El Haj Hassan, Computational Materials Science 50 (2010) 274–278. 
bRef[37] : R.R. Reedy et al., J. Alloys Compd. 473 (2009) 28. 
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Figure 4.  Variation of the calculated refractive index versus x concentration of AlAs1-xPx alloys using both GGA and LDA exchange and correlation 
potentials 

3.4. Thermodynamic Properties 

In this section we present a rigorous theoretical study of 
the thermodynamic propert ies of AlAs1-xPx alloys, the 
calculations carried out here are based on ab initio method 
within GGA  scheme. We calculate the Gibbs free energy of 
mixing ∆Gm (x, T) which allows us to access the T–x phase 
diagram and obtain the crit ical temperature, Tc, for 
miscibility. Details of the calculations are given in 
Refs.[39–41]. For alloys, Gibbs free energy of mixing ∆Gm 
is expressed as: 

∆𝐺𝐺𝑚𝑚 = ∆𝐻𝐻𝑚𝑚 − 𝑇𝑇∆𝑆𝑆𝑚𝑚          (14) 
where  

∆𝐻𝐻𝑚𝑚 = Ω𝑥𝑥(1 − 𝑥𝑥)            (15) 
∆𝑆𝑆𝑚𝑚 = −𝑅𝑅[𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙 + (1 − 𝑥𝑥)ln⁡(1 − 𝑥𝑥)]      (16) 

∆𝐻𝐻𝑚𝑚  and ∆𝑆𝑆𝑚𝑚  are the enthalpy and entropy of mixing, 
respectively; Ω  the interaction parameter and depends on 
material; R the gas constant and T  the absolute temperature. 

Indeed, an importance contribution arises from the mixing   

enthalpy, which can be obtained from the calculated total 
energies as ∆𝐻𝐻𝑚𝑚 =  𝐸𝐸AlAs 1−xPx − (1 − 𝑥𝑥)𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑥𝑥𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 , 
where 𝐸𝐸AlAs 1−xPx  , 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and 𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴 are the respective 
energies of AlAs1-xPx alloy, and the binary compounds AlAs 
and AlP. We then calculated ∆𝐻𝐻𝑚𝑚  to obtain Ω as a function 
of concentration. From a linear fit we obtained: 

Ω(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚⁄ ) =  4.566 − 2.721𝑥𝑥  
which shows the marg inal dependence of Ω  to the 
concentration x for AlAs1-xPx alloys. 

Now, we first calculate ∆𝐺𝐺𝑚𝑚  by using Eqs. (14)–(16). 
Then we use the Gibbs free energy at  different 
concentrations to calculate the T–x phase diagram which 
shows the stable, metastable and unstable mixing regions of 
the alloy. At a temperature lower than the critical 
temperature Tc, the two  binodal points are determined as 
those points at which the common tangent line touches the 
∆𝐺𝐺𝑚𝑚  curves. The two spinodal points are determined as 
those points at which the second derivative of ∆𝐺𝐺𝑚𝑚  is zero; 
𝜕𝜕2 (∆𝐺𝐺𝑚𝑚 )/𝜕𝜕𝑥𝑥2 = 0. 
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Figure 5.  T–x phase diagram for AlAs1-xPx alloys. Dotted line: binodal curve; solid line: spinodal curve 

Fig. 5 shows the calculated phase diagram including the 
spinodal and binodal curves for the alloy of interest. We have 
calculated the phase diagram by using the average value of 
the x-dependent  Ω , hence the phase diagram looks 
symmetric. We observed a critical temperature Tc of 719K 
for AlAs1-xPx alloys. The spinodal curve in the phase 
diagram marks the equilibrium solubility limit, i.e. the 
miscibility gap. For temperatures and compositions above 
this curve a homogeneous alloy is predicted. The wide range 
between spinodal and binodal curves indicates that the alloy 
may exist as a metastable phase. Hence our results indicate 
that the AlAs1-xPx alloys are stable at relatively high 
temperature. 

4. Conclusions 
In this paper, the structural, electronic, optical and 

thermodynamic properties of the zinc blend AlAs1-xPx 
ternary alloys as a function of the composition x are 
presented using density-functional theory within different 
approximations of exchange-correlation energy: LDA and 
GGA. A nonlinear behavior of the lattice constant, bulk 
modulus and band gap dependence on x has been observed. 
Our results are in favorable agreement with the previous 
theoretical works. The bowing is found to be main ly caused 
by the charge transfer effect, while the volume deformation 
and the structural relaxat ion contribute to the bowing 
parameter at smaller magnitude. 

We find that n(Eg) fo r AlAs1-xPx alloys increases with 
decreasing energy gap, in agreement with the quantum- 
mechanics equation. The investigation of the thermodynamic 

stability allowed us to calculate the critical temperature 
which is 719K. 
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