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Abstract  A theoretical analysis of a homogeneous magnetic field the action on the electronic terms of the bipolaron in the 
triplet 3

,2 z x iyP ±  state is made. It is shown that the action of the magnetic field, on the one hand, leads to displacement of the 
triplet terms  to the low-energy region and thus to stabilization of the bipolaron and, on the other hand, appreciable weakens 
the criteria that limit  the conditions of their existence. It  is shown that the inclusion of electron-electron correlat ion leads to 
the stabilization of the triplet b ipolaron, as well as to expand the boundaries of his existence. 
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1. Introduction 
It was postulated previously[1] the possibility o f the ex-

istence in polar media of a bound two polarons (bipolaron) 
formations in  a trip let (23P) state whose structure resembles 
the helium atom in the excited ,1 2 z x iys p ±  state. Such two 
polarons species can be formed in polar media where 
autolocalization is associated with the formation of a fairly 
deep and wide polarization potential well. It was shown that 
polarons can exist in the ground and relaxat ion-excited states. 
As is well known[2], optical excitation of a polaron 
Franck-Condon transition occurs between the electronic 1s 
and ,2 z x iyp ± - states, the oscillator strength is ~ 0.9. At the 
same t ime the possible existence of singlet axially- sym-
metrical b ipolarons has been widely d iscussed[3-10]. The 
most probable dipole-actives the optical t ransition for ground 
state of Landau-Pekar bipolaron will be 1 12(1 ) (1 2 )s s p→∑ ∑ . 

For the special case * / 1.075ε ε∞ =  (a polaron in ammonia), 
we obtain the transition frequency eV82.0=Ω , which is 
very close to the experimental value 0.81eV[10]. 

The bipo larons in  triplet  state will have an anomalous 
chemical act ivity and, in v iew of the translational invariance 
of the system, can transfer the trapped energy quantum in a 
selected direction. The spin prohibition of the emission of a 
photon from a metastable state is lifted as a result of rela-
tivistic interactions, but this deactivation mechanism is in-
efficient. A lso possible are T→S  (triplet→singlet) transition 
due to the interaction of the electron spin with the transverse 
phonons of the polar media. They lead to a change in the  
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spatial symmetry of the bipolaron. From a centrally symetric 
state it changes to a singlet quasi-molecular bipolaron. 
However, in view of the small magnitude of the magnetic 
interactions, the spontaneous T→S transitions are of low 
probability. Triplet  bipolarons may  be treated as active cen-
ters having an inverted population relative to the ground 
singlet state. 

It is known[11] that a magnetic field lowers the energy of 
a polarons and stabilizes the relaxation-excited states relative 
to the processes of nonradiative deactivation. The present 
paper analyzes the conditions of triplet  bipolarons existence 
and the effect of a magnetic field on the energy terms bipo-
laron in t rip let state.  

2. Basic Equations and Mathematical 
Method 

In the adiabatic approximat ion the wave function of the 
system, the electron and the field of longitudinal long- 
wavelength phonons of polar medium can be described as 
the product 

Φ=Ψ ),( 21 rrχ                 (1) 
of a  two-electron wave function ),( 21 rrχ and a wave 

function Φ  of normal vibrations of a d ielectric  continuum. 
To determine the energy of the two polarons system it  is 
necessary to minimize the functional  

ΨΨ= ||HF ,                  (2) 
under the additional conditions | 1χ χ =  and | 1Φ Φ = ; 

to describe the behavior of electrons in a polarizing medium 
we use the generalized Hamiltonian 

)(v zzz KPH −−=H ,            (3) 
where Pz is the component of the total momentum operator, 

Kz is its eigenvalue, and zv is the mean translation velocity 
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where rj is the radius vector of the jth electrons; bq and bq
+ 

are the Bose operators of annihilation and creation of a 
quantum of longitudinal phonons with quasi-momentum 

q  and longitudinal eigenfrequency ω0 (q = 0); and the 

Fourier coefficients 1/2
0( 4 / )cV i Vα π ω=q 

 * 1/4
0( / 2 )m ω

 ×
1| |−q  characterize the interaction of the electron with the 

polarization continuum. The dimensionless coupling con-
stant is 2 * 1/2 * 1

0 0( / 2 )(2 / )c e mα ω ω ε −=  
, m* is the effective 

electron mass in the approximation of the isotropic and 
quadratic law of d ispersion, and V is the volume of the main 
region of the continuum. The effective permittivity  is 

* 1( )s sε ε ε ε ε −
∞ ∞= − , ∞ε  and sε are the h igh-frequency and 

static permitt ivities of the polar medium. The vector poten-
tial of a constant homogeneous magnetic field directed along 
the z axis will be chosen in the symmetric form 

( H / 2,H / 2,0)z zy x= −A . 
Varying Eq. (2) with respect to Φ  and allowing for Eqs. 

(1) and (3), we obtain the following equation for the eigen-
values for the polarization continuum: 
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The left-hand side of Eq. (5) can be rewritten as follows: 
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We introduce the unitary transformat ion 
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which converts Eq. (6) to a diagonal form. 
The unknown functions fq and fq* are determined from the 

condition of min imum of the functional S+HS. Considering 
the operator identities 

S b S b f+ = −q q q , S b S b f+ + += −q q q  
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Varying Eq. (8) with respect to fq and fq* , we find the 
unknown functions 
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where  
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0 vz zqϖ ω= − . 
Substituting Eq.(9) into Eq.(8) we obtain the total energy 

functional, which  takes into account the translational dis-
placement of the bipolaron as a whole 
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Considering the cylindrical symmetry of the problem, for 
slow velocity zv  the electronic part of the wave function 
will be written in the form 

0 *
1 2 1 2 1 2( , ) ( , )exp[ v ( ) / ]zim z zχ χ= +r r r r  .      (11) 

Substituting Eq. (11) into Eq.(10), we obtain the following 
equation for total energy of two-polaron system 
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Assuming that | |z zK P=< Ψ Ψ >
, as well as the defini-

tions Eqs.(1) and (11), for the eigenvalue of the momentum 
operator, we find 
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Substituting Eq. (13) into Eq. (12), we can readily obtain a 
general expression for the total energy of a bipolaron in a 
magnetic field allowing fo r its translational displacement: 
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We expand [ ]ε χ  in power of zv  and keeping only the 
quadratic terms in the series, obtain 
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where the longitudinal translational mass of the bipolaron 
is 
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Thus, for slow velocities, the energy of translational mo-
tion can be separated from the intrinsic energy of the polaron. 
This makes it possible to consider 0 0[ ]ε χ  separately in Eq. 
(15). It is convenient henceforth to change from the q rep-
resentation in Eq. (15) to a coordinate representation, and to 
introduce the one-electron spinless density function, which 
in the general case of an N-electron system may be written 
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with 1 1 1 1 1( ) ( , )ρ ρ≡r r r , and the two-electron spinless den-
sity function is 
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Then the self-consistent total energy of the stationary bi-
polaron formation may be written as follows: 
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where ML is the projection of the orbital angular momen-
tum L on the selected axis z, the cyclotron frequency is 

*H /c ze m cω = , the electron-electron interaction operator is 
2

1 2 1 2( , ) / | |g e= −r r r r , and the energy is reckoned from the 
bottom of the conduction band at Hz = 0. In the derivation of 
Eq. (19), the identity 

1 2 1 2
1 2 1 2| | (2 ) exp[ ( )]i q dπ− − −− = −∫r r q r r q  

was considered, and the operator transformations of Ref. 
[12] were used. 

We shall consider triplet singly excited electronic states 
(for distances R → ∞ the energy of the two polaron system 
corresponds to the ,1 2 z x iys p ±+ configuration). 1 2| |R = −R R  
is the distance between centers of polarons gravity [1,9], 
while the vector ri is associated with oscillat ion motion of 
electron in polarizat ion potential well near Ri. The 
two-electron wave function of the electronic excited state, 
approximating the eigenfunction 1 2( , )r rχ  should be anti-
symmetric with respect to the transposition of both electrons 
orthogonal to the ground state. In the approximation of 
quasi-independent electrons, the electronic part of the 
two-center wave function (the centers of the potential wells 
are found at points a and b, separated by distance R) will be 
written in the Heitler-London form 

0
1 2 1 , 1 2 , 2 1 , 1 2 , 2( , ) [ ( ) ( ) ( ) ( )]s a p b s b p am mr r N r r r rχ χ χ χ χ= − , (20) 

where N  is the normalizat ion constant. Subscripts a and b 
refer to polarons located at R1 and R2, respectively. χ1s and

2 pmχ are one-particle wave functions of the 1s and 2pm states, 
and m = z, x±iy. The coordinate one-particle wave functions 
are chosen in the form of orthonormalized  two-parameter 
Gaussian-type functions 
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2 2 2( ) / 2 ]x y η− + , ml = ± 1.          (21) 

The min imization of Eq . (19) must be carried out with 
respect to the parameters α, β, γ, μ, ξ and η for fixed values of 
R and ε*/ε∞ .  

The magnetic field  removes the degeneracy with respect 
to the magnetic quantum number ML of bipolaron, and the 
total energy Eq. (19) for the states 23Pz(ML = 0) and 
23Px±iy(ML = ± 1) may be written in the form  
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1 2 3(2 )zP K U U Uε = − + + ,             (22) 

0 3 '' '' '' ''
1 2 3(2 ) / 2x iy cP K U U Uε ω± = − + + ±  .          (23) 

The variational parameters can be found only numerically, 
and in the selfconsistent state the virial theorem should be 
satisfied. We introduce the scale transformation r → tr, R → 
tR, χ(r) → t3/2χ(tr) and then obtain for the function of the total 
energy (without magnetic field) 

)()()()()( 321
20 wtUwtUwtUwKtw ++−=ε , tRw = , (24) 

where K  is the mean kinetic energy of electrons, U1  is the 
mean energy of interaction between electrons exchanging 
phonons, U2 is diamagnetic part of the energy, and the mean 
Coulomb interaction energy of electrons is U3. Minimizing 
Eq. (22) with respect to t and assuming t = 1, we obtain the 
virial relation 

0/)()()()()(2 0
321 =+++− dRRRdRURURURK ε . (25) 

The virial relat ion Eq.(25) should be satisfied for all in-
terpolaron distances. 

The trip let bipolaron in 3
,2 z x iyP ± state will be stable to 

adiabatic dissociation by two polarons with conservation of 
the total spin and orbital angular momentum if the binding 
energy  
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where 0
1 ( )s Rε → ∞  and 0

2 ( )pm Rε → ∞  are the self-consistent 
total energy of the polarons in 1s and 2pm states.  

Figure 1 shows the total energy of the bipolaron on the 
distance R for dielectric parameters * / 1.075ε ε∞ = . Trip let 
bipolaron has min ima when R = 0. For R = 0 in extreme case 

∞>> εε s  the ratio Q = 0 3 0 0
, 1 2(2 ) / ( )

mz x iy s pPε ε ε± + =1.22. 

With a decrease in the value of Q ratio decreases and reaches 
unity at * /ε ε∞  = 1.15 (or /sε ε∞  > 7.67). 

Let us consider the change in the total energy of the triplet 
bipolaron in the limit of a weak magnetic field : 3 1U U<< . In 
this case, we assume that the bipolaron has central symmetry 
( βα =  and ηξµγ === ). Hence, to determine the en-
ergy change, use may be made of the methods of perturba-
tion theory, which for the 23Pz state gives the energy cor-
rection 
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since 0 0µ µ β β− > −  and 0 0( ) / ( ) 1µ µ β β+ + > [10] it is evi-
dent that in the presence of a magnetic field 

0 3 0 3(2 ;H 0) (2 ;H 0)z z z zP Pε ε∆ ≠ > ∆ = , i.e., the term of the total 
energy of the triplet bipolaron becomes lower, and is stabi-
lizat ion takes place. 0 0,β µ  and 0η  are the parameters for 
Hz = 0. The corresponding inequality can also be written for 
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since 0 0η η β β− > −  and 0 0( ) / ( ) 1η η β β+ + > .  

In magnetic fields (d imensionless) *0.1 /c Ryδ ω≤ ⋅ , 

where * * 4 *2 2 2
0/ 2 cRy m e ε α ω= = 

, the change in coupling  
energy for states with ML  = 0 and ML  = ± 1 is d ifferent, and 
independently of the ratio  of the permittivit ies of the medium, 
always 0 0( ) ( )x iy zε ε±∆ ∆ > ∆ ∆ . However, in  magnetic fields: 

0.1δ ≥ , the energy change of the 23Pz term becomes more 
significant than that of the 23Px±iy term, and for polar media 
with a s maller ratio of * /ε ε∞ , this shift takes place in lower 
fields. 

 
Figure 1.  Triplet terms of the bipolaron as function of the polaron-polaron 
distance. * / 1.075ε ε∞ =   

 
Figure 2.  The binding energy of the triplet bipolaron as function of the 
magnetic field (dimensionless). 1 - * / 1.00ε ε∞ = , 2 - * / 1.075ε ε∞ =  
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In the range of magnetic field values for which U1 > U3, 
i.e., *H / * 2ze m c Ry≤

, a variation calcu lation of the change 
in total energy terms is shown in Fig.2 for two cases: 

* / 1.075ε ε∞ =  and ext reme ratio * / 1.00ε ε∞ =  ( )sε ε∞>> . 
These results fully  confirm the conclusions that follow from 
Eqs. (26) and (27). Irrespective of the permittivity rat io, a 
constant homogeneous magnetic field decreases the energy 
of the trip let bipolaron, and this in turn leads to stabilization 
of bipolarons with respect to dissociative decay. Moreover, 
the action of the magnetic field expands the range of d ielec-
tric media where bound two-polaron formation can exist.  

Thus for the 23Pz state, even in a d imensionless field as 
low as 02.0=δ , the limitation ( 7.7/ ≥∞εε s ) on the di-
electric  parameters of medium is reduced and will be 

2.7/ ≥∞εε s , whereas for the 23Px±iy state the effect of the 
magnetic field is still greater: 2.6/ ≥∞εε s .  

Using the virial relat ion Eq. (25) is easy to show that the 
triplet  bipolaron  has spherical symmetry. Really, using the 
relation Eq. (25) and the condition 0)0H;(Δ 0 >=zRε  we 
find  

0)/1( 2
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>=< )()(|),(|)()( 2,22,1211,21,12 rrgrrV bpbsapas mm

χχχχ rr
. 

In addition we assumed that for rough estimates of the 
one-electron wave functions of the polaron and bipolaron 
are the same (this gives the underestimat ion of the binding 
energy).  

Hence the requirement of positive 0Δ ( )Rε  of Eq. (28) 
reduces to the inequality *

2 1/ 1 /V Vε ε∞ < + . Using numerical 

values for V1 and V2 we obtain * /ε ε∞  = 1.17 which is found 
in accordance with the result of the variat ional calcu lations 
of the triplet  bipolaron. For the case R  ≠ 0 near zero, when S=

1 , 2 ,( ) | ( )ms a p br rχ χ< > <<1, the inequality 0Δ ( 0;H 0)zRε > = <

0Δ ( 0;H 0)zRε = =  is satisfied if 

∞<+− εε //)(2/ *
14312 SVVVVV ,     (29) 

which is always valid, since V1 > V2 > 0, V3 ≈ SV1, V4 ≈ SV2 
and S also are all positive. Here  

>=< )(|),(|)()( 2
2

,1211,21,13 rgrrV asbpas m
χχχ rr

, 
>=< )()(|),(|)( 1,22,1211

2
,24 rrgrV bpasbp mm

χχχ rr
. 

Thus, it has been shown that R = 0 is really the total energy 
minimum. Consequently, in contrast to the singlet axial- 
symmetric bipolarons[9,10] electron-excited trip let bipola-
rons are spherically symmetrical formations. 

3. Interelectron Correlations 
We now show that the inclusion of interelectron correla-

tion leads to deeper potential well of the trip let bipolaron and 
extension of the dielectric media in which such formation 

may be exist. In the Hartree-Fock (HF) approximat ion for 
electrons with parallel spin correlation is partially accounted. 
However, this approximation not taken into account inter-
shell Coulomb correlation. To account for this correlation, 
we need to  introduce exp licitly  the interelectronic distance 
r12 in the symmetrized two-electron wave function  

2
1 2 12 1 1 2 2 1 2( , ) (1 ) ( 1) ( ) ( ) ( , )p T

s p
M

r r N r M r r s sχ γ χ χ χ= + −∑ (30) 

here ),( 21 ssTχ  is antisymmetric spin-function, M  is the 
operator of electron coordinates permutation, p is number of 
individual pairs of transpositions in the permutation M, γ is 
the additional variational parameter. As shown by calcula-
tions for extreme  case ∞>> εε s , cα  > 10 parameter 

3 2 *
00.994 10 ( / )c mγ α ω−= − ⋅ 

. We make up the ratio fo r the 

self-consistent total energies. 0 0( ) / ( )corr HFε ε =1.025 
(magnetic field Hz = 0). That is, the electron-electron corre-
lations leads to a decrease in  the total energy of the trip let 
bipolaron in comparison with the Hartree-Fock approxima-
tion and the expansion of the existence of the triplet  bipola-
ron. Macroscopic dielectric  constants must now satisfy the 
weaker inequality / 6.3sε ε∞ > , than in  the case of 
quasi-independent electrons / 7.7sε ε∞ > .  

An alternative method of accounting electronic correla-
tions is the series enhancement of electronic part of the wave 
function of the electronic configurations of the same sym-
metry  (multip licity). Assuming that the total spin S is a con-
stant of the motion, we expand the electronic wave function 
of the 23Pz,x±iy term of the system of eigenfunctions of a 
centrally symmetric field  

1 2( , )r rΨ = 12
1 2,1 2 1

(cos )l l ln nl l l ln n n

A P ϑ
>

×∑ ∑  

1 2 1 2
1 2

( 1) ( ) ( ) ( , )p T
l ln l n lM

MR r R r s sχ× −∑ ,     (31) 

where 12ϑ  is the angle between the radius vectors of the 
first and second electrons.  

For example, take into account the superposition Eq. (31), 
two excited elecron ic configurat ions 1s2p and 2s2p. More-
over, the radial part of the single-particle 2s function chosen 
in the quasi-Coulomb form 20( ) ~R r (1 )(1 )exp( )r r r rµ µ µ− + − . 
Extremalization two-particle functional (2) under the addi-
tional condition of orthonormality of electronic configura-
tions leads to the next  value of self-consistent total energy 
(for the extreme case sε ε∞>> , cα >10): 0 2

0( ) 0.1812 ccorrε α ω= − 

 
when the values of parameters are optimal * 1/2

00.615 ( / )c mα α ω= 

, 
* 1/2

00.615 ( / )c mβ α ω= 

, * 1/2
00.194 ( / )c mµ α ω= 

, and mixing ratio  

0 11 2
0.9940A = , 0 12 2

0.1093A = − . Dimensionless ratio 0 0( ) / ( )corr HFε ε = 

1.02. That is already in the approximat ion of two configura-
tions of most of the correlat ion energy can be accounted for. 
Lowering the total energy of the triplet  bipolaron 23Pz,x±iy by 
electron-electron correlat ion has important consequences, 
which leads to enhancement of permissible limits of its ex-
istence. Macroscopic dielectric constants must now satisfy a 
somewhat weaker inequality / 6.3sε ε∞ >  than / 7.5sε ε∞ >  
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that was obtained without taking into account inter-shell 
electron correlation[1]. It should be noted that in the range 

∞>> εε s  of the continual polaron theory methods are ap-
plicable, if the dimensionless ratio */ 0.5m mε∞ >> [1]. This 
inequality limits the range of existence of bipolaron forma-
tion, giving an  upper bound for the dynamic polarizability. 
At the same t ime test the applicability  of the adiabatic ap-
proximat ion * *2

0( / )eVm mε ω>>   holds the better, the 
higher the ratio /sε ε∞ . 

4. Conclusions 
We establish conditions for the existence of electronically  

excited trip let bipolarons. It is shown that under certain 
conditions imposed on the macroscopic parameters of the 
dielectric medium, there may be quasi-stationary two- elec-
tron bipolaron format ion in the triplet spin state. In contrast 
to the singlet bipolarons, triplet bipolarons are spherically 
symmetric. Similarly, the trip let bipolaron in 23P state can 
exist triplet  23S b ipolaron. In this case, one electron occupies 
the 1s single-electron level and the other electron occupies 
the 2s one-electron level[10]. However, the triplet term in 
the energy scale is lower than the init ial single-particle states. 
The prohibition on the electron spin makes it impossible for 
the radiative deactivation of electron-excited triplet forma-
tion. Nonradiative deactivation is not effective also[10]. The 
action of a uniform magnetic field stabilizes the triplet bi-
polaron. 

According to estimates[10], the nonradiative decay of the 
triplet b ipolaron is of o rder ( 6 1

010τ ω−≈ ), which is consid-

erably longer than the characteristic phonon time ( 1
0ω
−≈ ), as 

well as time ( 2 1
0сα ω− −≈ ) electron oscillations in the bipolaron 

potential well. The damping of the trip let bipolaron ( 1γ τ −= ) 
due to phonon emission decreases rapidly with increasing 

сα . Thus, the trip let bipolaron for times of order 6 1
010 ω−≈  

can be regarded as an equilib rium. In principle such triplet 
electron-excited bipolarons being the quasi-stationary for-
mat ions, but with a sufficiently long lifetime, can  transfer the 
trapped energy in a uniform electric field in the selected 
direction. 
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