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Abstract  Based on the resonant and parametric frequencies of the nonlinear dynamic system and the peculiarities of 

vibration damping in them, a new method is developed that allows to create their linear dynamic models with sufficient 

accuracy and to determine their stable operating modes and low level of vibrations in them. The latter method is based on a 

system of four linear differential equations, in which each equation is supplemented with the modulus of the vibration 

damping force vector. A method for determining the magnitude of the damping force vector modulus of a dynamic system is 

presented. It is determined that the nonlinear dynamical system has a main coordinate system with a fixed coordinate 

reference point in the frequency scale. It is shown that in a nonlinear dynamic system, the magnitude of vibration damping is 

several tens of times higher than the damping of viscous damping forces. The accuracy of the analysis methods presented in 

the article was verified by numerical calculations.  
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1. Introduction 

Nonlinear systems have a range of behavior not seen in 

linear vibrating systems. In the absence of exact solutions, 

the analysis of nonlinear systems is usually undertaken using 

approximate analysis, numerical simulations and geometrical 

techniques. Sy - Miin Chow [1] emphasizes that in the 

absence of exact solutions, the analysis of nonlinear systems 

is usually performed by applying approximate analysis, 

numerical simulations, and geometric techniques, when the 

energy of the vibrating system is dissipated by various 

mechanisms. Many different models are used to evaluate the 

damping of dynamic systems in the work of Zu, Zheng and 

Yiming [2]. When designing nonlinear dynamic systems,   

it is very important to be able to evaluate the damping 

properties and possibly change their size during the process. 

In the analysis of damping in a dynamic system, in many 

mathematical models the damping forces are related to the 

movements of the degrees of freedom of the system.The 

efficiency of the proposed vibration isolation strategy is 

numerically demonstrated over the original device. Williams 

et al. [3], for example, solved the problems of vibration 

damping by developing a nonlinear dynamic vibration 

damper with properly selected parameters based on the 

geometry of the overlap truss. Xuechuanan at al. in the book  
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[4] describes various approximate methods: starting from 

classical asymptotic, finite difference and weighted residual 

methods, typical methods for solving nonlinear dynamical 

systems are considered. In addition, new high-performance 

methods are proposed, such as time-domain collocation and 

local variation iteration. Vincent et al. [5] showed that the 

control of nonlinear systems with external excitation can 

lead to many intriguing and important phenomena, one of  

the most prominent of which is resonance. In the presence  

of additional harmonic or stochastic excitation, two exotic 

forms of resonance can occur: vibrational resonance or 

stochastic resonance, respectively. Several promising recent 

technologies are discussed here. These include improving 

image quality, designing machines and devices that vibrate 

materials, harvesting energy from various forms of 

environmental vibrations, and controlling aerodynamic 

instabilities. In the last work, it is shown that stochastic 

frequencies can appear in the studied systems. Saunders    

et al. [6] examines “Freeplay” integrally smooth normal 

nonlinearities of dynamical systems, which can lead to 

undesirable and potentially dangerous responses. The latter 

work numerically investigates the effect of multiple segment 

parameters during the evolution of the bifurcation diagram 

along with the induced multiple behavior and different 

bifurcations. To study the latter phenomena, they use a variety 

of tools such as harmonic balance, basins of attraction, phase 

planes, and Poincaré section analysis. Abdelbaki, Paidoussis 

and Mirsa [7], for example, a full nonlinear model is 

developed for the dynamics of a hanging tabular cantilever. 
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It is a nonlinear equation of motion obtained via Hamilton’s 

principle to third-order accuracy. Peng, Lang and Billings   

[8] studied the vibration frequencies of nonlinear dynamic 

systems. They showed that, in addition to the vibrations 

generated by the excitation frequency of the system, 

vibrations of certain frequencies are additionally excited, 

which they call resonant frequencies. It is shown that the 

vibration frequencies of the system are multiples of its 

excitation frequency. Yang [9] examines the approximate 

nonlinear response of the system at super/subharmonic 

resonance. He shows that in many cases, single resonance 

mode is often observed to be leading as systems enters   

into super/ sub harmonic resonance. An illustrative example 

of the discrete mass-spring-damper vibration system is 

provided for illustration. In the book by Rand [10], nonlinear 

frequencies of the system are examined by approximate 

analytical and experimental methods and possibilities to 

reduce system vibrations are explored. In Zhu [11], a two 

degree of freedom vibration system with nonlinear damping 

and nonlinear spring is investigated. The results of the 

analysis showed that the amplitude and vibration reduction 

goals can be achieved by properly adjusting the system 

parameters and evaluating the value of the exciting 

frequency. Numerical simulations show that the system 

exhibits periodic motions, quasiperiodic motions and 

chaotic motions. Xie et al. [12] performed bifurcation 

tracking based on the harmonic balance method used for 

tuning nonlinear dynamic systems. Narayanan and Sekar 

[13] used a numerical-analytical method for the analysis   

of a nonlinear dynamic system. Yu [14] considered an 

efficient computational method for the vibrational responses 

of piecewise-linear dynamic systems with multiple degrees 

of freedom and an arbitrary number of gap-actuated springs. 

At each time step an auxiliary displacment vector, 

complimentary to the contact force vector is introduced. 

With the help of a simple tranforrmation the vibration is 

reduced to a standard linear can be obtained. Eliot et al. [15] 

showed that the energy dissipation mechanism in mechanical 

systems is often nonlinear. Even though there may be other 

forms of nonlinearity in the dynamics, nonlinear damping is 

the dominant source of nonlinearity in a number of practical 

systems. The analysis of such systems is simplified.     

For simplicity, it is assumed that the system is stable and  

that the nonlinear damping force depends on the nth power 

of the velocity. For sinusoidal excitation, it is shown that   

the response is often also almost sinusoidal, and methods   

for calculating the amplitude are described based on the 

harmonic balance method. In general, iterative methods need 

to be used to calculate the equivalent linear damper. 

However, all the methods mentioned above are approximate. 

When the mathematical models of the linear dynamic system, 

which change the nonlinear system models, are created,   

the resonant and parametric vibration frequencies of the 

nonlinear dynamic system are not properly evaluated. Mariūnas 

[16-18] studied the vibrations of nonlinear dynamic systems 

with one and two degrees of freedom, determined the 

frequencies of resonant and parametric vibrations and a 

model of a linear dynamic system based on them is created. 

In recent works, it has been determined that some resonant 

frequencies may coincide, but cannot be a multiple of the 

system's excitation frequency. However, it does not fully 

explain the physics of vibration damping and does not 

indicate a method to evaluate the way of vibration damping 

when the mathematical model of a nonlinear system is 

replaced by a model of a linear dynamic system. Thus,    

the aim of the work is to analyze the vibrations of one degree 

of freedom nonlinear dynamic systems, depending on     

the frequency of the excitation force and its magnitude, to 

determine (find out) the peculiarities of vibration damping in 

a nonlinear system and show ways to determine vibration 

damping in a nonlinear dynamics system. To find out the 

nonlinear dynamic peculiarities of system vibration damping, 

especially their dependence on the system excitation 

frequency, and to create a method that would allow to 

approximately determine the magnitude of vibration 

damping of a linear dynamic system changing the model of a 

nonlinear dynamic system. 

2. A Study of Vibration Damping 
Peculiarities of a Nonlinear Dynamic 
System of One Degree of Freedom  

This article is basically a continuation of the paper by 

Mariunas [18]. The work examines the peculiarities of 

vibration damping of nonlinear dynamic systems, which 

were not discussed in the latter work. In recent works, it has 

been shown that the excitation force excites a wide range   

of vibration frequencies in a nonlinear dynamic system. 

However, the regularities of vibration generation in linear 

dynamic systems do not allow to explaining the ongoing 

phenomenon in a nonlinear dynamic system during the 

generation and damping of vibrations. Let us study a 

second-order nonlinear dynamical system of one degree   

of freedom, the parameters of which are: M = 5.0 kg;       

k = 100000 N/m; 𝐹𝑠  = 100000 N; 𝑐 = 0.05; n = 2. The 

resonant frequencies of the subsystems of the latter 

dynamical system are: 𝑓𝑠𝑢𝑚 1= 12.99Hz; 𝑓𝑒𝑛𝑔 1 = 18.39Hz; 

𝑓𝑓= 22.52Hz; 𝑓𝑠𝑡= 31.85Hz and the resonant frequencies of 

the main (overall) system are: 𝑓𝑠1 = 7.80; 𝑓𝑠2 = 21.38; 
𝑓𝑠3 = 28.85; 𝑓𝑠4 = 50.31Hz (see [17]).  

The results of the nonlinear dynamic response of the 

system to different excitation frequencies of the system 𝑓1 

when 𝑓1 = 10 and 14Hz are shown in Figure 1. It can be 

seen that the phase-space diagrams and the vector diagrams 

in Figure 1a, b and c are different, although in the vibration 

frequency bands Figure 1d and e, when 𝑓1 = 10  and 

𝑓1 = 14Hz, the order of frequency variation is the same 

 𝑓𝑖 = 𝑖𝑓1 , i =1, 2, 3,… It means: 𝑓10,1 = 𝑓10.𝑎𝑐𝑡 ;  𝑓10,2 =
2𝑓10,𝑎𝑐𝑡 ;  𝑓10,3 = 3𝑓𝑎𝑐𝑡  and 𝑓14,1 = 𝑓14.𝑎𝑐𝑡 ;  𝑓14,2 = 2𝑓14,𝑎𝑐𝑡 ; 
𝑓14,3 = 3𝑓14,𝑎𝑐𝑡 . Thus, when the dynamic system is excited 

at frequencies 𝑓1 = 10Hz and 𝑓1 = 14Hz, its vibration 

frequencies change according to the same law, but the 

rotation angles of the vectors 𝑘1𝐴1;  𝑘2𝐴2  and 𝑘3𝐴3 in the 
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coordinate system xy𝛼 will be different size. For example, it 

can be seen from Figure 1 that when the dynamic system will 

be excited at a frequency of 𝑓1 =10Hz, then the vector 𝑘1𝐴1 

will rotate at an angle of 𝛼1 =π/2, when system will be 

excited at 𝑓1 =14Hz, then the vector 𝑘1𝐴1  will rotate by 

angle 𝛼2, whose magnitude is 𝛼2>𝛼1, and when the system 

will be excited 𝑓1 =6Hz then the vector 𝑘1𝐴1 will rotate by 

an angle 𝛼3, the magnitude of which will be 𝛼3 < 𝛼1. The 

vectors 𝑘2𝐴2  and 𝑘3𝐴3  in the above example will also 

rotate by different angles (see (1)). The nonlinear dynamic 

system itself performs the transformation of the origin 

reference point of coordinates for each excitation frequency 

𝑓1  into the reference point of the dynamic system in the 

frequency scale as follows: 

𝛼𝑟1 =
𝑓1

𝑓𝑔1
𝛼𝑔1;  𝛼𝑟2 =

𝑓2

𝑓𝑔1
𝛼𝑔1 − 𝜋;  𝛼𝑟2 =

𝑓3

𝑓𝑔1
𝛼𝑔1 − 𝜋. (1) 

Where, 𝛼𝑔1  is the selected size of the rotation angle of 

the force vector 𝑘1𝐴1  in the global (main) coordinate 

system and 𝑓𝑔1 is the fundamental lowest frequency in the 

base reference system that corresponds to the origin of the 

coordinates; 𝛼𝑟𝑖  is the real size of the rotation angles of   

the force vectors 𝑘1𝐴1;  𝑘2𝐴2  and 𝑘3𝐴3  in the global 

coordination system.  

There are also different phase-space diagrams for different 

excitation frequencies in Figure 1b and c. Figure 1a 

graphically shows how the phase-space diagrams are formed 

when the dynamic system is excited at 𝑓1 =14Hz. Active 

forces are marked in red, green and blue, and their 

representative of forces are marked in purple. It can be seen 

from Figure 1 that when the rotation angle 𝛼1 of the vector 

𝑘1𝐴1  is small, then the magnitude of the representative    

of the acting forces is also small, i.e. it is close to zero.  

When increasing the size of the angle of rotation 𝛼1, the 

representative of the forces increases for a certain time, and 

when the value of the angle 𝛼1 approaches the value 𝜋, then 

the size of the representative of the forces does not approach 

zero, i.e. as shown in Figure 1c. This shows that the nonlinear 

dynamic system uses the same reference frame in the 

frequency scale with the same reference point as when it is 

excited at 10Hz. Phase-space diagrams are drawn with the 

same reference point on the frequency scale and when the 

nonlinear dynamic system is excited at other frequencies. 

Thus, the nonlinear dynamical system uses the same main 

coordinate system and the same reference point in the 

frequency scale for all excitation frequencies of the system. 

The latter main (or basic) reference system is (defined) based 

on the resonant frequency 𝑓𝑓  of the nonlinear dynamic 

system (in the case under consideration, approximately 20Hz) 

and its subharmonic frequency 𝑓𝑓 /2, generated by the 

peculiarities of the force relations of the system and the 

resonance frequency 𝑓𝑠𝑡  (in the case of the study, approximately 

30Hz), which is generated by the characteristics of the 

stiffness connection. In addition, the subharmonic frequency 

𝑓𝑓 /2 in this case coincides with the excitation frequency of 

the system, and the harmonics of the excitation frequency, 

which are parametric excitation frequencies, coincide with 

the resonance frequencies 𝑓𝑓  and 𝑓𝑠𝑡 , i.e. coincides with the 

fundamental resonant frequencies of the system. 

 

a) 

   

b)       c) 

           𝑓1 = 10𝐻𝑧; 𝑛 = 2;
𝐹𝑠

𝑘
= 1.                𝑓1 = 14𝐻𝑧; 𝑛 = 2;

𝐹𝑠

𝑘
= 1 

 

d) 

𝑓1 = 10Hz;  𝑛 = 2;  𝐹/𝑘 = 1;  𝑞1 = 0.3405; 𝑞2 = 0.1283 

 

e) 

 𝑓1 = 14Hz;  n = 2; 𝐹/𝑘 = 1; 𝑞1 = 0.3527; 𝑞2 = 0.2167. 

Figure 1.  Plans of the acting force vectors at the points of the 

characteristic diagrams and frequency bands of the spatial oscillation 

spectral density when the nonlinear dynamical systems are excited at 

different frequencies where 𝒌𝑨𝟏 is displacement force vector of 𝐴1; 𝑘𝑨2 

is displacement force vector of 𝐴; 𝑐1𝜔1𝑨𝟏 is velocity force vector of 𝐴1; 

𝑐1𝜔2𝐴2 is velocity force vector of 𝐴2; 𝑐1𝜔2𝐴2𝑥  is the projection of the 

vector 𝑐1𝜔2𝑨𝟐𝒙 on the coordinate axis 0x; 𝑀𝜔2
2𝐴2𝑥  is the projection of the 

vector 𝑀𝜔2
2𝑨𝟐 on the coordinate axis 0x; 𝑀𝜔2

2𝐴2𝑦  is the projection of the 

vector 𝑀𝜔2
2𝑹𝟐 on the coordinate axis 0y; c is coefficient of damping 
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Above the axis 𝐵0𝑓  (Figure 1d and e), the resonant 

frequencies of the dynamic system (green and black colors, 

that is not shaded in the overall picture, harmonic and 

subharmonic frequencies are not shown) are placed, below 

them there are the frequencies of parametric vibrations (thick 

vertical red lines), their subharmonics (red vertical thin lines) 

and the vibration frequencies and their amplitudes of the 

dynamic system (thick vertical blue lines). The vibration 

amplitudes calculated by the method under consideration are 

marked in orange with vertical lines. From the results in 

Figure 1, it can be seen that the vibration amplitude values 

determined by the developed method and the Runge-Kutta 

method differ by approximately 15-20 percent, and the 

vibration frequency spectrum with significant vibration 

amplitudes completely coincide. The larger difference in 

amplitudes is at higher frequencies. However, their vibration 

amplitudes are significantly smaller than the amplitudes of 

the excitation frequency. It is noticed that there are parametric 

frequency subharmonics in the nonlinear dynamic system 

(see Figure1d and e). 

In order to determine the peculiarities of vibration 

damping in a nonlinear dynamic system, let's examine the 

forces acting on it and their relationship with the excitation 

frequency of the system. From the vector plan of the acting 

forces in Figure 1, when 𝑓1 =10 Hz and the rotation angle of 

the vector 𝑘1𝐴1  is equal to 𝛼1 = 𝜋 /2, the following 

dependence can be written: 

𝐹𝑠
2 = 𝐴1

2𝑀2{[(
𝑘1

𝑀
− 𝜔1

2)+𝑞1(
𝑘2

𝑀
− 𝜔2

2) −
𝑐

𝑀
𝑞2𝜔3]2 + 

[𝑞2  −
𝑘3

𝑀
+ 𝜔3

2 − 
𝑐

𝑀
(𝜔1 + 𝑞1𝜔2)]2}; 𝑞1 =

𝐴2

𝐴1
; 𝑞2 =

𝐴3

𝐴1
 (2) 

Let's rearrange the expression (2) into the following form: 

𝐹𝑠
2 ≈ 𝐴1

2𝑀2{ [(
k1

M
− ω1

2 )2 +
c2

M2 ω1
2] + [𝑞1

2[(
𝑘2

𝑀
− 𝜔2

2)2+ 

𝑐2

𝑀2 𝜔2
2]] +|[𝑞2

2[ 
𝑘3

𝑀
− 𝜔3

2)2 +
𝑐2

𝑀2 𝜔3
2  ] +2𝑞1[(

𝑘1

𝑀
− 𝜔1

2)(
𝑘2

𝑀
 

−𝜔2
2) +

𝑐2

𝑀2 𝜔1𝜔2] −2
𝑐

𝑀
𝑞2[ 

𝑘1

𝑀
− 𝜔1

2 𝜔3 + (−
𝑘3

𝑀
+

𝜔3
2)𝜔1]  

−2𝑞1𝑞2
𝑐

𝑀
[(

𝑘2

𝑀
− 𝜔2

2)𝜔3 −(
𝑘3

𝑀
− 𝜔3

2)𝜔2]}           (3) 

The first three members of equation (3) (in square brackets) 

are the magnitudes of the vector modules of forces 𝑘1𝐴1, 

𝑘2𝐴2, and 𝑘3𝐴3 generated by the relationship peculiarities 

of the nonlinear dynamic system. The remaining members of 

the last equation evaluate the effect of the mutual influence 

of the above mentioned forces on the system's dynamic 

stiffness and vibration damping and the frictional forces 

generated by the viscous damping forces. 

Thus, if we remove the first term marked with square 

brackets from equation (3), we get additional stiffness and 

damping created by the nonlinear dynamic system to damp 

the vibrations in it. Denoting it as a new variable  𝑢1
2, we 

have the following expression: 

𝑢1
2 ≈ [𝑞1

2[(
𝑘2

𝑀
− 𝜔2

2)2+
𝑐2

𝑀2 𝜔2
2] + 

[𝑞2
2(

𝑘3

𝑀
− 𝜔3

2)2 +
𝑐2

𝑀2 𝜔3
2]] +2𝑞1[(

𝑘1

𝑀
− 𝜔1

2)(
𝑘2

𝑀
 –𝜔2

2) 

+
𝑐2

𝑀2 𝜔1𝜔2] −2
𝑐

𝑀
𝑞2[(

𝑘1

𝑀
− 𝜔1

2)𝜔3+ 2
𝑐

𝑀
𝑞2  

𝑘3

𝑀
− 𝜔3

2 𝜔1 

−2𝑞1𝑞2
𝑐

𝑀
[ 

𝑘2

𝑀
− 𝜔2

2 𝜔3 + 2𝑞1𝑞2
𝑐

𝑀
∗ (

𝑘3

𝑀
− 𝜔3

2)𝜔2     (4) 

Parameter 𝑢1
2  is the module squared of the vibration 

additional damping vector (or dynamic stiffness and damping) 

generated by the nonlinear dynamic system. We assume that 

in linear system (in the system under consideration) when the 

magnitude of the vibration amplitude 𝐴1 changes, then the 

dynamic parameters of the system: 𝑘1; 𝑘2; 𝑘3; 𝜔1; 𝜔2; 𝜔3; 

𝑞1; 𝑞2 values are constant. Equation (4) is used to determine 

the square of the total vibration damping vector module 

according to one coordinate axis 0x. In the investigated 

dynamic system in Figure 1, the stiffness springs are 

connected in parallel. And in the mathematical model (5) of 

the linear dynamic system, they are connected in series. 

Therefore, the differences in the mathematical models of the 

latter dynamical systems will be evaluated by an additional 

modulus of the force vector 𝑘𝑥 . Thus, after supplementing 

the linear mathematical model Mariūnas [16] with an additional 

vector module 𝑘𝑥𝑖  according to each displacement coordinate 

axis, we will get a new system of differential equations: 

𝑀1𝑧 1 + 𝑐𝑧 1 + 𝑘𝑧1+𝑘𝑥1𝑥1 = 𝐹 𝑡 − 𝑀𝑥 2 − 𝑘𝑥1𝑥1; 

𝑥1 = 𝑧1 + 𝑥2; 

𝑀𝑧 2 + 𝑐𝑧 2 + 𝑛𝑘𝑧2 + 𝑘𝑥2𝑥2= −𝑀𝑥 3−𝑘𝑥2𝑥2;  

𝑥2 = 𝑧2 + 𝑥3; 

𝑀𝑧 3 + 𝑐𝑧 3 + 𝑘𝑒𝑛𝑔 𝑧3 +𝑘𝑥3𝑥3 = −𝑀𝑥 4 − 𝑘𝑥3𝑥3;  

𝑥3 = 𝑧3 + 𝑥4;  

𝑀𝑧 4 + 𝑐𝑧 4 + 𝑘𝑠𝑢𝑚 𝑧4 + 𝑘𝑥4𝑥4 =−𝑘𝑥4𝑥4; 𝑥4 = 𝑧4.  

𝐹 𝑡 = 𝐹0sin 𝜔𝑡 +
𝐹0

(𝑆2+𝑝𝑝 )2 sin 𝑠2𝜔𝑡 + 
𝐹0

(𝑆3+𝑝𝑝 )2 ∗ 

sin 𝑠3𝜔𝑡 +
𝐹0

(𝑆4+𝑝𝑝 )2 sin 𝑠4𝜔𝑡  +
 𝐹0

(𝑆5+𝑝𝑝 )2 sin 𝑠5𝜔𝑡 + 

𝑝𝑝
𝑓1𝐹0

𝑓𝑝𝑆2
2 sin((

𝑓1

𝑓𝑝
)𝜔𝑡).                            (5) 

When the excitation frequency is lower than the maximum 

resonant frequency of system then 𝑝𝑝 = 0, and when it is 

higher then the maximum resonant frequency then 𝑝𝑝 =1. 

However, there are still unknown values of the vector 

modulus 𝑘𝑥𝑖  when 𝑖 = 1; 2; 3; 4. Therefore, it is assumed 

that in a linear dynamic system in which the stiffness springs 

are connected in series (5), the size of the vibration damping 

force vector module 𝑢1
2 can be calculated as the average of 

the squares of the vector modules of the forces acting in the 

dynamic system, and 𝑘𝑥𝑖  - as the average of the three vector 

modules:  

𝑘𝑥𝑖 ≈ abs(sqrt((𝑢1 + [ 𝑀 ∗ 𝜔1+1
2 )2 + [2  

𝑘1+1

𝑀
− 𝜔1+1

2  ∗  

(
𝑢1𝑖𝑟

𝑀
− 𝜔2+1

2 )] + [4𝑐2/𝑀2𝜔1
2)]))/(sqrt(3.)));        (6) 

𝑢1
2 ≈ abs(𝑎𝑞1 + 𝑎𝑞2 + 𝑎2𝑞1 + 𝑎2𝑞2 + 𝑎2𝑞1𝑞2𝑖)𝑀

2/7. (7) 

𝑢1 ≈ sqrt 𝑢1
2 ;  𝑖 = 1; 2; 3; 4; 𝑘1 = 2𝑘;  𝑘2 = 𝑘;  
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𝑘3 = 𝑘𝑒𝑛𝑔 1; 𝑘4 = 𝑘𝑠𝑢𝑚 1; 𝑎𝑞1 = 𝑞1
2((

1

𝑀
− 𝜔1

2)2+
𝑐2

𝑀2 𝜔2
2); 

(8) 

𝑎𝑞2 = 𝑞2
2((

𝑘3

𝑀
− 𝜔3

2)2 +
𝑐2

𝑀2 𝜔3
2); a2𝑞1 ≈ {2𝑞1[(

𝑘1

𝑀
− 𝜔1

2) 

+
𝑐2

𝑀2 𝜔1𝜔2] + 2𝑞1
𝑐

𝑀
[ 

𝑘1

𝑀
− 𝜔1

2 𝜔2 +  
𝑘2

𝑀
− 𝜔2

2 ∗ 

𝜔1]}
1

2
; 𝑎2𝑞2 ≈ {−2

𝑐

𝑀
𝑞2[(

𝑘1

𝑀
− 𝜔1

2)𝜔2 − (
𝑘3

𝑀
− 𝜔3

2)𝜔1] 

+ 2𝑞2
𝑐

𝑀
[(

𝑘1

𝑀
− 𝜔1

2)𝜔3 + (
𝑘3

𝑀
− 𝜔3

2)𝜔2]}/2;          (9) 

𝑎2𝑞1𝑞2 ≈ {−2𝑞1𝑞2

𝑐

𝑀
[ 

𝑘2

𝑀
− 𝜔2

2 𝜔3 −  
𝑘3

𝑀
−𝜔3

2 ∗ 

𝜔2] + (
𝑘3

𝑀
− 𝜔3

2)(
𝑘3

𝑀
− 𝜔3

2) +
𝑐2

𝑀2 𝜔2𝜔3]}
1

2
.          (10) 

The results of the study showed that the assumption that 

the 𝑘𝑥𝑖  vector module can be considered as the average of 

the force modules acting in the dynamic system was justified. 

They also show that 𝑢1
2 is a constant value in the nonlinear 

dynamic system for the value of the corresponding excitation 

frequency 𝑓1 according to each coordinate axis. Since there 

are seven modules of vector forces in equation (7) (see (4)), 

their sum must be divided by seven. The variable part of 

equation (6) has three terms for each coordinate axis of the 

dynamic system. They are marked with square brackets (see 

(6)). Since there are four equations in the system of equations 

(5), that is, four coordinates, so when creating the fourth 

equation for determining the size of the vibration damping 

vector module 𝑘𝑥4, the value of the (𝑖+1= 5) parameter in 

equation (6) will be higher than in the system of equations 

(5). This means that such stiffness and velocities will not 

exist in the considered system. The result of the study is that 

the magnitude of the additional force vector module of the 

fourth equation of vibration damping has a very small 

influence on the final result. Therefore, when (i+1) = 5, then 

the values of stiffness and velocities corresponding to the 

value of the parameter i = 4 were taken in the research, this 

means that 𝑘𝑥4 ≈ 𝑘𝑥3. In this way, during the study it was 

determined that when the system is excited at a frequency  

of 𝑓1 = 10Hz, then the size of the vector module 𝑢1
2  is 

sufficiently accurately determined as the average of the 

vector modules of the forces acting on the nonlinear dynamic 

system. However, there are still undetermined values of 𝑞1 

and 𝑞2 parameters. Since there are two unknowns 𝑞1 and 

𝑞2, it is necessary to form two equations. So, in the first step, 

we transform (2) into the following form: 

 
𝐴1𝑓 ≈

𝐹𝑠

𝑀 𝑎𝑞1𝑞1
2+𝑎𝑞2𝑞2

2+𝑎2𝑞1+𝑎2𝑞2+𝑎2𝑞1𝑞2
. (11) 

Below is a system of nonlinear algebraic equations that 

allows us to estimate the magnitudes of the variables 𝑞1 and 

𝑞2: 

 

 
 
 

 
 

𝑘𝑘𝑠1𝐹𝑠𝑘1𝑞1
2

𝑀 𝑎𝑞1𝑞1
2+𝑎𝑞2𝑞2

2+𝑎2𝑞1+𝑎2𝑞2+𝑎2𝑞1𝑞2

−
3

2
[𝑘1(1 − 𝑞1)2 + 

𝑘2 𝑞1 − 𝑞2)2 + 𝑘𝑒𝑛𝑔 1𝑞2
2 ≈ 0.

𝑎21𝑞1
2 + 𝑎22𝑞2

2  − 𝑎23𝑞1𝑞2 + 𝑎24  𝑞1 + 𝑎25 ≈ 0.

 (12) 

𝑎21  =𝑘1 + 𝑘2 −M(𝑟2𝜔)2; 𝑎22  = 𝑘2 + 𝑘𝑒𝑛𝑔 1 − 𝑀(𝑟 ∗ 𝜔3)2 and 

𝑎23 = −2𝑘2; 𝑎24=−2𝑘1; 𝑎25 = (𝑘1 − 𝑀𝜔1
2)/2.  (13) 

𝑘𝑠1 ≈ 2(
𝑘1𝑘2𝑘𝑒𝑛𝑔 1

𝑘1𝑘2+𝑘1𝑘𝑒𝑛𝑔 1+𝑘2𝑘𝑒𝑛𝑔 1
 /(𝑘1 + 𝑘 + 𝑘𝑒𝑛𝑔 1))2.  (14) 

In order to create the first equation of the system of 

equations (12), the following steps are performed: 

-  we compare the expressions of nonlinear and linear 

potential energies: 

 
1

3
𝑘1𝑥1

3 =
1

2
[𝑘1(𝑥1 − 𝑥2)2 + 𝑘2(𝑥2 − 𝑥3)2 + 𝑘3𝑥3

2] (15) 

-  from equation (15), we express 𝑥1, the maximum value 

of which is the amplitude 𝐴1. Evaluating the difference 

in stiffness of springs connected in parallel and in series 

with the help of coefficient 𝑘𝑠1 (14) and equating the 

latter value of 𝐴1 with the value of 𝐴1𝑓  (11), we will 

get the first equation of system equations (12). The 

second equation of the system of equations (12) is 

formed by comparing the linear dynamic kinetic and 

potential energy expressions of the system, in which the 

springs are connected in series: 

𝑀

2
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 ) =
1

2
[𝑘1(𝑥1 − 𝑥2)2  

 +𝑘2(𝑥2 − 𝑥3)2 + 𝑘3𝑥2
2].  (16) 

By rearranging equations (16), we obtain the second 

equation of the system of equations (12).  

Before turning to the function "fsolve" to solve the system 

of nonlinear algebraic equations used in MATLAB 

(MATLAB is a high-performance language for technical 

computing), it is necessary to calculate the values of such 

parameters according to the formulas (5); (6) and (12).  

When the parametric frequency subharmonic frequencies 

coincide or are close to the resonance frequency subharmonic 

frequencies, then vibrations at the latter frequencies are 

generated in the system (see Figure 2 and 3). In this way, the 

determined peculiarities of vibration damping in the nonlinear 

dynamic system allowed to change the model of the nonlinear 

dynamic system to a linear model with additional vibration 

damping (see (5)). The results of calculating the vibration 

spectral density when the dynamic system is excited at a 

frequency of 10Hz and 14Hz are shown in Figure 1d and e. 

However, it is necessary to make sure that the 

mathematical model created when the dynamic system is 

excited at 𝑓1=10Hz is also suitable for other cases, that is, 

when the nonlinear dynamic system is excited at 𝑓1 ≠10Hz. 

Although in a nonlinear dynamic system, when it is excited 

at 10 and 14Hz, the vibration frequencies varies according to 

the same low 𝑓𝑖 = 𝑖𝑓1, 𝑖 =1; 2; 3…, but in a more detailed 

overview we will notice the following main differences and 

peculiarities: 

–  when the dynamic system is excited at frequencies 

𝑓1 =10Hz or 𝑓1 =14Hz and the conditions that 𝛼1 = 0 

and 𝑡 = 0 are satisfied, then between the vector forces 

𝑘1𝐴1, 𝑘2𝐴2 and 𝑘3𝐴3 there is the same phase size, that 

is: 𝛼01= 0; 𝛼02= –π; 𝛼03 = –π, since the initial point in 

the phase - space diagram is at the coordinate origin, it 

means, when x ≈ 0 and y ≈ 0 (see Figure 1). And that 
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condition can be fulfilled only in the case when 

𝐴1 ≈ 𝐴2 + 𝐴3, that is, when the amplitudes of 𝐴2 and 

𝐴3 will be in opposite phase to the amplitude of 𝐴1 or 

the vectors 𝑘2𝐴2  and 𝑘3𝐴3  will be collinear and 

opposite in direction to the vector 𝑘1𝐴1; 

–  if the excitation frequency 𝑓1 of the nonlinear dynamic 

system coincides or is approximately equal to the 

resonant frequency of the first subharmonic of the main 

resonant frequencies 𝑓𝑠𝑡  or 𝑓𝑠3 of the system, then the 

vibration of the first harmonic of the parametric 

vibrations of the dynamic system will be in opposite 

phase for excitation frequency. In both considered cases, 

the vibration frequencies of the system will change 

according to the same law 𝑓𝑖 = 𝑖𝑓1; 𝑖 = 1; 2; 3,… but 

when the system is excited at 𝑓𝑠3/2  subharmonic 

frequency then the following inequality 𝐴1 > 𝐴2 > 𝐴3 

will be satisfied, and when the system is excited at  

𝑓𝑓/2  subharmonic frequency then such inequality 

𝐴1 > 𝐴2 < 𝐴3, but 𝐴1 > 𝐴3;  

–  it is determined that when the dynamic system is in the 

excitation frequency range 2 - 60Hz, that is, more than 

three times lower than the system's lowest resonant 

frequency and higher than its highest resonant 

frequency in the frequency interval, then in all cases in 

the phase - space diagrams, when t = 0, then x ≈ 0 and 

y ≈ 0.  

In this way, from the peculiarities of the nonlinear 

dynamic system presented above, it can be seen that 

changing the frequency of the excitation system changes 

some of its peculiarities or its physical characteristics, which 

can have a significant impact on the dynamic and 

mathematical models of the nonlinear dynamic system. So, 

based on the peculiarities of the nonlinear system listed 

above, it is clarified that when it is excited at frequencies that 

are in the range of subharmonic frequencies of the main 

resonant frequencies of the system, i.e. from (𝑓𝑟3/2 − 1) to 

(𝑓𝑠𝑡/2 + 1) Hz, then the frequencies of the vibration 

amplitudes will change according to this rule 𝑓𝑖 = 𝑖𝑓1, 𝑖 = 

1; 2; 3;... When the dynamic system is excited 𝑓1 ≥ 𝑓𝑠𝑡/2 + 1 

to 𝑓𝑠𝑡 + 2Hz approximately within these limits, then the 

frequencies of vibration amplitudes will change according to 

the rule 𝑓𝑖 = 𝑖𝑓1, 𝑖 =1; 3; 5;... Moreover, in the latter case, 

the vibration amplitude 𝐴3 ≈ 0  and 𝑞2 ≈ 0,  because its 

size is many times smaller than 𝐴1. Therefore, based on the 

clarified features of the nonlinear dynamic system, the 

mathematical model examined above is checked to see if it is 

suitable when the system is excited at a frequency of 

𝑓1=14Hz. From the forces vector diagram in Figure 1a, when 

it is excited with the frequency 𝑓1=14Hz, it can be seen that 

the values of the latter vector projections in the coordinate 

axes 0x and 0y will be different than in the case when the 

dynamic system is excited with the frequency 𝑓1=10Hz. This 

means that for each excitation frequency 𝑓1 of the dynamic 

system, the mathematical model of the latter system needs to 

be refined. 

So based on (2); (3) and (4), when evaluating the 

projections of the acting vectors onto the coordinate axes 

(see Figure 1a), the following dependence is obtained: 

𝐹𝑠
2 ≈ 𝑀2𝐴1

2{[0.8090  
𝑘1

𝑀
− 𝜔1

2 − 0.3090𝑞1(
𝑘2

𝑀
− 𝜔2

2) − 

0.5878𝑞2  
𝑘3

𝑀
− 𝜔3

2 − 0.5278
𝑐

𝑀
𝜔1 − 0.9511𝑞1

𝑐

𝑀
𝜔2 +  

0.8090𝑞2
𝑐

𝑀
𝜔3]2 + [−0.5878  

𝑘1

𝑀
− 𝜔1

2 − 

0.9511𝑞1  
𝑘2

𝑀
− 𝜔2

2 + 0.8090𝑞2  
𝑘3

𝑀
− 𝜔3

2 −

0.8090
𝑐

𝑀
𝜔1 

+0.3090𝑞1
𝑐

𝑀
𝜔2 + 0.5878𝑞2

𝑐

𝑀
𝜔3]2}.            (17) 

Expression (17) is rearranged into the following form: 

𝐹𝑠
2 ≈ 𝑀2𝐴1

2[[ 
𝑘1

𝑀
− 𝜔1

2)2 +
𝑐2

𝑀2 𝜔1
2   

+[𝑞1
2  

𝑘2

𝑀
− 𝜔2

2)2 +
𝑐2

𝑀2
𝜔2

2  

+[𝑞2
2  

𝑘3

𝑀
− 𝜔3

2)2  +
𝑐2

𝑀2 𝜔3
2 + 𝑢1𝑠

2 }    (18) 

We will notice that the first three terms of expression's (18) 

(in square brackets) are the same as in expression (3). 

However, the term 𝑢1𝑠
2  in expression (18) is quite complex 

and would take up a lot of space when expanding it. The 

value of the last term of the bases of equations (3) and (18) 

can be determined as follows: 

𝑢1𝑠
2  ≈{[0.8090  

𝑘1

𝑀
− 𝜔1

2 − 0.3090𝑞1(
𝑘2

𝑀
− 𝜔2

2) − 

0.5878𝑞2  
𝑘3

𝑀
− 𝜔3

2 − 0.5278
𝑐

𝑀
𝜔1 − 0.9511𝑞1

𝑐

𝑀
𝜔2 

+ 0.8090𝑞2
𝑐

𝑀
𝜔3]2 + 

[−0.5878  
𝑘1

𝑀
− 𝜔1

2 −0.9511𝑞1(
𝑘2

𝑀
− 𝜔2

2) +

0.8090𝑞2  
𝑘3

𝑀
− 𝜔3

2 − 0.8090
𝑐

𝑀
𝜔1+0.3090𝑞1

𝑐

𝑀
𝜔2 

+0.5878𝑞2

𝑐

𝑀
𝜔3]2} − {[ 

𝒌𝟏

𝑴
− 𝝎𝟏

𝟐)𝟐 +
𝒄𝟐

𝑴𝟐
𝝎𝟏

𝟐  

+[𝒒𝟏
𝟐(

𝒌𝟐

𝑴
− 𝝎𝟐

𝟐)𝟐 +
𝒄𝟐

𝑴𝟐 𝝎𝟐
𝟐] + [𝒒𝟐

𝟐  
𝒌𝟑

𝑴
− 𝝎𝟑

𝟐)𝟐  +
𝒄𝟐

𝑴𝟐 𝝎𝟑
𝟐 }. 

(19) 

When the nonlinear dynamic system is excited at the 

frequency 𝑓1 =14 Hz, then we will determine the modulus 

of the sum vector of the forces acting in the nonlinear 

dynamic system as follows: 

𝑢11
2 ≈ [0.8090  

𝑘1

𝑀
− 𝜔1

2 − 0.3090𝑞1(
𝑘2

𝑀
− 𝜔2

2) −

 0.5878𝑞2 

*  
𝑘3

𝑀
− 𝜔3

2 − 0.5278
𝑐

𝑀
𝜔1 − 

0.9511𝑞1
𝑐

𝑀
𝜔2+0.8090𝑞2

𝑐

𝑀
* 

𝜔3]2 + [−0.5878  
𝑘1

𝑀
− 𝜔1

2 − 0.9511𝑞1  
𝑘2

𝑀
− 𝜔2

2 +  

0.8090𝑞2(
𝑘3

𝑀
− 𝜔3

2)−0.8090
𝑐

𝑀
𝜔1 + 0.3090𝑞1

𝑐

𝑀
𝜔2 + 

0.5878𝑞2
𝑐

𝑀
𝜔3]2 − [ 

𝒌𝟏

𝑴
− 𝝎𝟏

𝟐)𝟐 +
𝒄𝟐

𝑴𝟐 𝝎𝟏
𝟐 .         (20) 

Then, we will determine the size of the vibration 

amplitude 𝐴1 in the considered case as follows: 
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𝐴1 ≈
𝐹𝑠

𝑀 𝐹𝑠𝑥
2 +𝐹𝑠𝑦

2
;  𝐹𝑠𝑥

2 ≈ [0.8090  
𝑘1

𝑀
− 𝜔1

2 − 

0.3090𝑞1(
𝑘2

𝑀
− 𝜔2

2) −  0.5878𝑞2  
𝑘3

𝑀
− 𝜔3

2 −

0.5278
𝑐

𝑀
𝜔1 − 0.9511𝑞1

𝑐

𝑀
𝜔2 

+ 0.8090𝑞2
𝑐

𝑀
𝜔3]2; 𝐹𝑠𝑦

2 ≈ [−0.5878  
𝑘1

𝑀
− 𝜔1

2 − 

0.9511𝑞1  
𝑘2

𝑀
− 𝜔2

2 + 0.8090𝑞2  
𝑘3

𝑀
− 𝜔3

2 −

0.8090
𝑐

𝑀
𝜔1 

+0.3090𝑞1
𝑐

𝑀
𝜔2 + 0.5878𝑞2

𝑐

𝑀
𝜔3]2             (21) 

Therefore, a new system of nonlinear algebraic equations 

must be created, which will allow to calculate the values of 

𝑞1 and 𝑞2. In fact, in the system of equations (12), only the 

first equation must change, because only the dependence of 

determining the size of 𝐴1 changes (see (15) and (21)).  

𝑘𝑘𝑠1𝐹𝑠𝑘1𝑞1
2

𝑀 𝑎𝑞1𝑞1
2+𝑎𝑞2𝑞2

2+𝑎1𝑥+𝑎2𝑥𝑞1+ 𝑎3𝑥𝑞2+𝑎1𝑦+𝑎2𝑦𝑞1+𝑎3𝑦𝑞2

−
3

2
[𝑘1(1 − 𝑞1)2 + 𝑘2 𝑞1 − 𝑞2)2 + 𝑘𝑒𝑛𝑔 1𝑞2

2 ≈ 0.
 

  (22) 

𝑎1𝑥 = 0.8090  
𝑘1

𝑀
− 𝜔1

2 − 0.5878
𝑐

𝑀
; 𝑎2𝑥 =

−0.3090(
𝑘2

𝑀
− 𝜔2

2) − 0.9511
𝑐

𝑀
𝜔2; 

𝑎3𝑥 = −0.5878  
𝑘3

𝑀
− 𝜔3

2 + 0.8090𝑞2
𝑐

𝑀
𝜔3;  

𝑎1𝑦 = −0.5878  
𝑘1

𝑀
− 𝜔1

2 − 0.8090
𝑐

𝑀
𝜔1;        (23) 

𝑎2𝑦 = −0.9511  
𝑘2

𝑀
− 𝜔2

2 + 0.3090
𝑐

𝑀
𝜔2;  

𝑎3𝑦 = 0.8090  
𝑘3

𝑀
− 𝜔3

2 + 0.5878
𝑐

𝑀
𝜔3.         (24) 

Thus, in the system of equations (12), by replacing the first 

equation with the equation (22), we will get a new system of 

equations that will allow us to determine the values of 𝑞1 

and 𝑞2  in the case when the excitation frequency is 𝑓1 = 

14Hz. Then we will determine the magnitude of the vibration 

damping vector module when the dynamic system is excited 

at 𝑓1 =14Hz as follows: 

𝑘𝑥𝑖 ≈ abs(sqrt((𝑢11 + (𝑀 ∗ 𝜔1
2)2 + 2(

𝑘𝑖

𝑀
− 𝜔𝑖

2)(
𝑢1

𝑀
−  

𝜔𝑖+1
2 ) + 4𝑐2/𝑀2𝜔𝑖+1

2 )))/(sqrt(3.)))              (25) 

𝑢11
2 ≈ abs((𝑎𝑞1 + 𝑎𝑞2  + 𝑎1𝑥 + 𝑎2𝑥𝑞1 + 𝑎3𝑥𝑞2 + 𝑎1𝑦+  

𝑎2𝑦𝑞1 + 𝑎3𝑦𝑞2)𝑀2/7). 𝑢1 ≈ sqrt 𝑢11 .           (26) 

𝑎1𝑥 = 0.8090  
𝑘1

𝑀
− 𝜔1

2 − 0.5878
𝑐

𝑀
;  

𝑎2𝑥𝑖 = −0.3090𝑞1(
𝑘2

𝑀
− 𝜔2

2) − 0.9511𝑞1
𝑐

𝑀
𝜔2;  

𝑎3𝑥𝑖 = −0.5878𝑞2  
𝑘3

𝑀
− 𝜔3

2 + 0.8090𝑞2
𝑐

𝑀
𝜔3;  

𝑎1𝑦 = −0.5878  
𝑘1

𝑀
− 𝜔1

2 − 0.8090
𝑐

𝑀
𝜔1;        (27) 

𝑎2𝑦 = −0.9511𝑞1  
𝑘2

𝑀
− 𝜔2

2 + 0.3090𝑞1
𝑐

𝑀
𝜔2;     (28) 

𝑎3𝑦 = 0.8090𝑞2  
𝑘3

𝑀
− 𝜔3

2 + 0.5878𝑞2
𝑐

𝑀
𝜔3.      (29) 

The size of the additional vibration damping vector 

module 𝑢11
2  (see (26)) is also constant according to each 

coordinate of the movement of the dynamic system. It is 

necessary to pay attention to the fact that only by 

summarizing the results of the above researches, the latter 

method has been developed that is suitable for all excitation 

frequencies of the dynamic system and does not require 

complex transformations in determining the magnitude of 

the additional vibration damping force vector module. So, 

the research results show that when the excitation frequency 

𝑓1  changes, the mathematical model of the system also 

changes. The frequency band of the spectral density 

determined by the considered method when the dynamic 

system is acted at the frequency 𝑓1=14Hz is shown in Figure 

1. Without changing the dynamic and mathematical models 

when the system is activated at 𝑓1=14Hz, the latter model 

was applied to the case when the system is excited at 6Hz. 

The calculation results when 𝑓1= 6Hz are shown in Figure 2.  

 

 𝑓1 = 6.0Hz; 𝑛 = 2; 𝐹/𝑘 = 1; 𝑞1 = 0.3433; 𝑞2 = 0.1322 

Figure 2.  Spatial vibration spectral density frequency bands in the B0f 

plane when the dynamic system is excited at 𝑓1 = 6Hz 

Exciting frequency 𝑓1= 6Hz was chosen so that in the case 

of parametric vibration the frequency changes 𝑓𝑝𝑎𝑟 = 𝑖𝑓1 

when i changes according to the rule i =1; 3; 5…, while when 

𝑓1=10Hz and 𝑓1=14Hz i changes according to the rule 1. 2; 3; 

4... However, in other cases, when 𝑓1 ≠ 10Hz , it is 

necessary to create a new model corresponding to the 

excitation frequency of the dynamic system. In this way, it is 

determined that when the dynamic system is excited at a 

frequency of 𝑓1 =6Hz, then there are analogous damping 

peculiarities. Except for the fact that the magnitudes of the 

rotation angles of the vectors 𝑘1𝐴1; 𝑘2𝐴2 and 𝑘3𝐴3 will be 

different than in the examples discussed above. 

Using the mathematical model method based on the 

system of linear differential equations, the spectral densities 

of the vibrations of the nonlinear dynamic system are 

calculated when the system is excited at 𝑓1 = 60Hz and 

𝑓1 = 100Hz, the results of which are shown in Figure 3. 

From the results of which it can be seen that when a 

nonlinear dynamic system is excited with frequencies higher 

than its maximum resonant frequencies, then low-frequency 

vibrations are excited in the system, which are multiples of 

the excitation frequencies and they approximately coincide 

with the frequencies of the subharmonics of the resonant 

frequencies. In the case when the work mode of the latter 

case does not suit you and you cannot change the exciting 

frequency work mode, then it is necessary to change the 

values of the main parameters of the nonlinear dynamic 

system, which would allow you to ensure safe and stable 
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work of the designed system. 

Recent results show that the latter method can be applied 

to the study of nonlinear dynamic system vibrations and their 

operational stability. It is necessary to pay attention to the 

fact that the system of linear differential equations (5) in the 

presented method is formed on the basis of four main 

stiffness of the system, which are the generators of resonant 

frequencies of the dynamic system and their sizes are 

determined by our previously published methods. Therefore, 

the mathematical model of the linear dynamic system, which 

replaces the nonlinear dynamic system model, is created not 

in an intuitive way, but in a research-based way, evaluating 

the peculiarities of the energetic, force and stiffness 

relationships of the nonlinear dynamic system. It is 

determined that the vibration damping magnitude of the 

forces generated by the peculiarities of stiffness, forces and 

energy relations in a nonlinear dynamic system is several 

tens of times higher than the vibration damping of viscous 

damping forces, which is related to velocity. Thus, the latter 

method is universal, suitable for all excitation frequencies of 

the dynamic system and can be used to study other cases of 

nonlinearity in dynamic systems. 

 

a) 

  𝑓1 = 60Hz; 𝑞1 = 0.4073; 𝑞2 = 0.0565.  

 

b) 

 𝑓1 = 100Hz; 𝑞1 = 0.3640; 𝑞2 = 0.0459. 

Figure 3.  Spatial vibration spectral density frequency bands in the B0f 

plane when the dynamic system is excited by different excitation 

frequencies and F/k = 1. ;  𝑛 = 2 

Until now, there is no determined method that would  

allow unambiguous determination of the vibration frequencies 

of a nonlinear dynamic system depending on the excitation 

frequency. Therefore, the vibration frequencies of the dynamic 

system can be also roughly determined by the intersection of 

sets A and B:  

 

 𝐷 = 𝐴 ∩ 𝑃, (30) 

where A is the set of system resonances, their harmonics and 

subharmonic frequencies; P is the set of frequencies of 

parametric vibrations, their harmonics and subharmonics 

(see Mariunas [17 and [18]]). Since the sets A and B consist 

of approximate values of frequencies, in further works, 

additional studies must be carried out, which would clarify 

the result of the solutions of the last intersection.  

3. Conclusions 

In this work, the peculiarities (process) of vibration 

damping in a nonlinear dynamic system are analyzed, and 

based on the research results, a new method of a system of 

linear differential equations is developed, suitable for 

studying the vibration dynamics of a nonlinear dynamic 

system with one degree of freedom. A method for 

determining the magnitude of the damping force vector 

modulus of a dynamic system is presented. 

The analytical results indicate that: 

1.  Based on the resonant and parametric frequencies of 

the nonlinear dynamic system and the peculiarities of 

vibration damping in them, a new method has been 

developed, which allows creating their linear dynamic 

models with sufficient accuracy and determining their 

stable operating modes and low level of vibrations in 

them. 

2.  The nonlinear dynamic system has a main coordinate 

system, the coordinates of the reference point on the 

frequency scale do not change with the excitation 

frequency. 

3.  When the excitation frequency of the nonlinear 

dynamic system changes, its mathematical model also 

changes. 

4.  The magnitude of the additional damping force vector 

module in a nonlinear dynamic system is determined 

as the mean square value of the force modules 

generated by peculiarities in it. 

The results of numerical calculations 

1.  It was determined that the results of the calculation of 

the mathematical model of the created linear dynamic 

system differ by 15-20 percent from the results 

calculated by the Runge-Kutta methods. 

2.  In a nonlinear dynamic system, the vibration damping 

magnitude of forces generated with the help of stiffness, 

forces and energy connection peculiarities is several 

tens of times higher than the damping of viscous 

damping forces.  

3.  The developed methods evaluates the nonlinear dynamic 

system vibration damping process with sufficient 

accuracy and can be used in the development of new 

systems.  
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