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Approximation of Some Nonlinear Fractional
Order BVPs by Weighted Residual Methods
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Abstract To extract the approximate solutions in the case of nonlinear fractional order differential equations with the
homogeneous and nonhomogeneous boundary conditions, the weighted residual method is embedded here. We exploit three
methods such as Galerkin, Least Square, and Collocation for the efficient numerical solution of nonlinear two-point boundary
value problems. Some nonlinear cases are examined for observing the maximum absolute errors by the considered methods,
demonstrating the accuracy and reliability of the present technique using the modified Legendre and modified Bernoulli
polynomials as weight functions. The mathematical formulations and computational algorithms are more straightforward and
uncomplicated to understand. Absolute errors and the graphical representation reflect that our method is more accurate and

reliable.
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1. Introduction

The differential equation of fractional order is acquainted
with several areas of biomedical science, fluid dynamics,
and engineering fields. Arising in these fields, fractional
differential equations (FDE) with boundary conditions of
linear or nonlinear problems have been attempted for solving
analytically [1] or numerically [2,3]. The generalized properties
of fractional derivatives and integrals and their applications
were established by Delkhosh [4]. Linear fractional order
two-point boundary value problems have been solved by many
methods such as Adomian decomposition [5], Sinc-Galerkin
[6], Cubic spline solution [7]. In [8], Cubic B-Spline wavelet
collocation method has been established while Legendre
wavelet approximation method has been developed in the
literature [9]. Further, Collocation-shooting method and
Galerkin WRM have been depicted in the works [10] and
[11], respectively.

In the past few years, most of the works have been devoted
to solving the nonlinear initial and boundary value problems
for fractional order differential equations by various methods,
such as, Elzaki and Chamekh introduced a New Decomposition
Method [12], the variational iteration method was applied by
Momani [13], Runge-Heun-Kutta method by Harker [14],
Sinc- Galerkin method by EI-Gamel [15], homotopy analysis
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method by El-Ajou et al [16], Legendre wavelet operational
matrix method by Secer et al [17], Pseudospectral method by
Delpasand [18], the operational matrix method by Lakestani
et al [19], The Least-square method by Fadhel and Jameel
[20]. In [21], Bai and Lu investigated the existence and
multiplicity of the positive solutions for nonlinear BVP of
fractional order.

Recently, Schauder fixed point theorem was used to
investigate the existence of solutions to the initial value
problem for nonlinear fractional differential equations involving
Caputo sequential fractional derivative by Ye and Huang
[22].

From the above literature review on numerical solutions of
nonlinear fractional differential equations, we are motivated
to find an efficient and reliable method for fractional BVP.
Therefore, the objective of this paper is to introduce the
application of the weighted residual method for finding the
approximation to the two-point BVP of fractional order
which is as follows:

Dx(t) = f(t,x(t), x (t),x" (t), .., x"(t)),a<t <h
subject to the boundary conditions:
xD(a) =a,y®®d) =b,i ={0,1,2,....,k — 1}

where D&x(t) is the fractional derivative of order a of
x(t) in the Caputo sense and keN.

The goal of the proposed research work is to use the
Galerkin, Least Square, and Collocation Weighted Residual
Methods for solving nonlinear fractional order boundary
value problems.
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In order to prepare this research work we organise as
follows. Some basic definitions of fractional derivatives and
notations of fractional calculus are defined in Section 2. The
mathematical formulation of three proposed methods for
nonlinear fractional order differential equations are given
elaborately in Section 3. The numerical solutions to the
specific problems and the comparison of the absolute errors
of different methods are displayed in tabular form in section
4, and finally the conclusion and references are appended.

2. Preliminaries

Fractional Derivatives: In the study of derivatives, we
need to solve the non-integer derivatives which contained in
the fractional differential equation. There are several definitions
of fractional derivatives such as Grunwald-Letnikov fractional
derivatives, Riemann-Liouville fractional derivative and Caputo
fractional derivative. The effectiveness of these definitions
has been utilized but there were some limitations that deal
with the initial conditions. To overcome this deficiency, we have
to establish the solution of some fractional order differential
equations with the boundary conditions in Caputo sense.
The main advantage of Caputo fractional derivative is the
fractional derivative of constant is always zero as well as the
basic derivative.

The Riemann-Liouvelli Fractional Derivative of order
a of the function f(x) is given as:

Df(x) = 7om a)dxnf (e =" fF()dy
where @ > 0.

The Caputo Fractional Derivative of order a of the
function f(x) is given as:

a _ 1 x _

D*f(x) = e fa (x
a>0.

Weight Functions: Throughout this research work we use
weight functions as the modified Legendre polynomial of
degree n [11]:

Pu®) =[5 (% = )" = (1) (@ - 1),
Pn(0) =p, (1) =0n=1

Similarly, the modified Bernoulli polynomial of degree n

as [11]: By(x) =1 and

y) et fM(y)dy where

B (x) = noﬂ io(-1 () e+ om -
Zlo ) k=0(— 1)k( )(k)m,mzl.

Weighted Residual Method

The weighted residuals method is an approximation
technique for solving boundary value problems that enrol
trial functions satisfying the given boundary conditions and
an integral formulation to minimize error, in normal sense,
over the problem domain.

Given a fractional differential equation of the general form:

D*[y(x),x] =0a < x < b, (1)
subject to the homogeneous boundary conditions

y(a) = y(b) = 0. )
The method of weighted residuals seeks an approximate
solution of the form
F(x) = Xisg a;iPi(x) 3)
where 7(x) denote the approximate solution can be expressed
as the product of a; unknown, constant parameters to be
determined and P;(x) are weight functions. The major
requirement allocated on the trail functions treat as the
permissible functions which are continuous over the domain
and satisfy the specified boundary conditions. The residual
function is also a function of unknown parameters a; and
it can be expressed by

R(x) = D*[y(x),x] # 0. (4)

The method of weighted residuals requires that unknown
parameters a; be evaluated such that

[?P(OR®dx =0 j = 1,2,...,n. (5)

This equation can be solved for the n values of a;.

3. Formulation of Nonlinear Fractional
Order Differential Equations

In this section, we describe elaborately three weighted
residual methods, namely, Galerkin method, Least-Square
method and Collocation method, subsequently.

(a) Formulation by Galerkin Method

To obtain the approximate solutions to the boundary value
BVP in the Galerkin weighted residual (GWR) method
using modified Legendre and Bernoulli polynomials as basis
functions, we shall denote approximate trial solution by
7i(x) by considering u(x) denotes the exact solution to
a boundary value problem. By supposing the nonlinear
fractional order two-point boundary value problems with the
boundary conditions,

< (p0 %) w0 =f(),  (63)
u(a) = ag,u(b) =by; a =15 andp = 2. (6bh)

We assume the closeness solution of the differential
equation as:

@(x) = 0y(x) + Xj=1 a;6; (x). @)
Choose y(x) =0 and 6;(0) =6,(1) =0 for each
j=01..,n
Now the residual function is given by
e = (p( ) (®)

The Galerkin weighted residual equations are then

1
f e(x)0;(x)dx =0
0

1 2 ~ d%ii
or,f [p(x) + s(x) ¢ —+ 1F (x)| 6; (x)dx

—f f(x)6;(x)dx = 0.
0
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or, equivalently
Iy [P0 3273
= [} F(0)6;(x)dx. )

Now

i 1 o~
f (x) 0 ()dx = —j p(x)Z—Z%dx since 6;(1)
0

=6,(0) = 0.
Equation (9) becomes
_f ( )du d91
+J; @ (x)6; (x)dx
= [} f(0)6,(x)dx. (10)
Insert equation (2) into (10) and solving it, we get
de; de; d®
[ [ oo s 00,00
+ (600 (06, dx]
1
- [ reoeoax
0
which can be written as
Z}l=1 ki,ja] =F, (11)

where

e ot

+ (6 (X))ﬁ (x)6;(x) | dx,

) 6,(06,00)

and F, = [} f(x)6,(x)dx,

which is clearly the matrix form of a system of n nonlinear
equations.

Solving the system (11) yields the values of parameters
and, upon substituting into equation (7) the approximate
solution of the desired FBVP (6) is obtained.

(b) Formulation by Least-Square Method

By considering a basis functions as modified Bernoulli
and Legendre polynomials in the Least-Square Method,
we obtain the approximate solutions to the boundary value
problems.

If v(x) isthe exact solution to a boundary value problem,
and then by denoting the approximate trial solution by 7(x),
consider the nonlinear fractional order two-point BVP with
the boundary conditions

p(0) T =f(,  (12a)
v(a) = ag,v(b) = by; a =15 andp = 2. (12b)

We assume the closeness of solution of differential
equation as:

T(x) = o(x) + Xj=1 a9 (x) (13)

Choose ¢@y(x) =0 and ¢;(0)
j=01..,n
Now the residual function is given by

R() = p) E 4 s(0) £2+ 58 (x) — f(x) = 0. (14)

=¢@;(1) =0 for each

In this case, weight function is chosen as W, = 2%

J Ba]-
i=12,..,n
Now this choice of W}
square residual

corresponds to minimize the mean

WR = %fdex = minimum.

The necessary condition for WR to be minimum are
given by

fR( )—dx—0]—12 (15)
The equatlon (15) is clearly the matrix form of a system of
n nonlinear equations consisting of parameters  a;.
Solving the system (15), the values of parameters are
determined and substitute into equation (13), the approximate

solutions of the desired FBVP (12) are achieved.
(c) Formulation by Collocation Method

In this case, the approximate trial solution as w(x) where
w(x) is the unknown exact solution to a BVP, and consider
nonlinear fractional order two-point BVPs with the boundary
conditions:

= f(x), (16a)
w(a) = ag,w(b) = by; a = 1.5 and g = 2. (16b)
We assume the closeness solution as:
W(x) = o (x) + Xj—y 4 (x). a7
Choose y(x) =0 and ¥;(0) =;(1) =0 for each
j=0,1,..,n, g are the unknown parameters and ; (x)
are the basis functions. We choose modified Legendre and
Bernoulli polynomials as basis functions. In another case,
Yo (x) is defined to satisfy the nonhomogeneous boundary
condition so that other basis functions satisfy the homogeneous
boundary conditions.
Now the residual function is given by

R(x) =

(18)

Insert the equation (17) into the equation (16a), we obtain
the equation of the form:

R(x) = p() = (o () + Xy g (x))
+5(0) 2 (P () + By g (1)
+ (o) + Xr 4 () (@) - ).

In Collocation method, we evaluate the residual function
at some grid points x; and setting the residual function as
R(x;) =0 by the arrangement of fractional differential
equation with the boundary conditions.

We assume that the boundary conditions on [a, b] such
as w(a) = ag,w(b) = by. If we choose the n parameters
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and the boundary point starts from a then the grid points
are described as:

— ot _
X = where j =1,2,3, ..., n.

Setting R(x;) = 0, we obtain the system in unknown
parameters a;. Putting the values of the parameters into
equation (17), we get the approximate solution of nonlinear
fractional order BVP (16).

4. Test Problems

In this section, we test the proposed formulations by
considering numerical examples which are available in the
literature and investigated by several methods. Further, the
efficiency and reliability of the proposed method is applied
for these problems by computing the error L, and the
maximum absolute error L, which are given as follows:

Ly = f; (u(x) - (x))dx and
Lo = max|u(x) — i(x)],
where u(x) and i(x) are the exact and approximate
solutions, respectively.

Problem 1: Consider the non-linear fractional BVP [18]:

DY u(x) —u®(x) = f(x) with boundary conditions
u(0) =-1,u(1) =0. (19)
where f(x) = %x“ — (x1? = 1)3.

The exact solution of this problem is u(x) = x'° — 1.
The approximate solution is derived with respect to the
unknown coefficients a; from the equation (2), (8) and (12).
Three weighted residual methods Galerkin, Least Square
and Collocation give the approximate solution i(x), ¥(x)
and w(x), respectively, of the given problem using the
modified Legendre polynomial of degree (n = 3) as basis
functions, we have:

figy () = =1 + 0.01506978x + 1.1353053x2 — 0.2236533x3 + 0.0732781x*,
P00 () = —1 + 0.0128251x + 1.1408130x2 — 0.2227155x3 + 0.0690774x*,
Wey (x) = —1 + 0.0193695x + 1.1142138x2 — 0.1962006x° + 0.0626172x*.

Similarly, when we use the modified Bernoulli polynomial as basis functions of degree (n = 3) we get another
approximate solution as given below:
Tigy(x) = -1+ 0.0151999x + 1.1351020x2% — 0.22341003x3 + 0.0732156x*,
Doy (x) = —1+0.0128251x + 1.1408130x2 — 0.2227155x% + 0.0690774x*,
Wem(x) = —1 + 0.0193800x + 1.1141910x% — 0.1961811x3 + 0.0626100x*.
Table 1.1. Absolute errors of the BVP in Equation (19)
Absolute errors obtained using modified Legendre Absolute errors obtained using modified Bernoulli
X S()Elﬁiif)tns polynomials of degree (n = 3) polynomials of degree (n = 3)
GWR Least-Square Collocation GWR Least-Square Collocation
0 -1 0 0 0 0 0 0
0.1 —0.987 544 x 107> 2.12x 1073 299 x 107* 6.46 x 1075 1.14 x 107* 3.00 x 107*
0.2 —0.953 230 x 107+ 219 %x 1073 117 x 1075 214 x107* 458 x 107* 1.04 x 1075
0.3 —0.898 2.61x107* 1.58 x 1073 215x107* 243 x107* 4.48 x 107* 213 x107*
0.4 —0.824 1.14 x 10~* 8.16 x 107* 2.85x 107* 9.70 x 1075 1.78 x 107+ 2.83x107*
0.5 —0.732 410 x 1075 1.50 x 10~* 3.16 x 107* 5.66 x 1075 1.50 x 107* 3.15x 107*
0.6 —-0.621 7.20 X 107° 297 x 107* 3.93x107* 8.48 x 1075 3.66 x 107* 3.91x107*
0.7 —0.492 6.30 X 107> 4.92 x 107* 5.31x 107* 5.33x 107 3.77 x 107* 530 x 107*
0.8 —0.345 2.86 X 107* 4.60 x 107* 6.55x 107* 279 x 1074 2.02x107* 6.55x 107+
0.9 —0.181 3.84x107* 2.64x107* 5.80 x 107* 3.81x107* 1.61x107° 5.80 x 107°
1 0 0 0 0 0 0 0
Table1.2. L, and L, error of the Probleml in Egn. (19)
Errors obtained using modified Legendre Errors obtained using modified Bernoulli
polynomials of degree (n = 3) polynomials degree (n = 3) Reference [18]
Errors GWR Least Square Collocation GWR Least Square Collocation met,\:lzvc\il ?Izb:dl 0)
Lo 3.84x10™* | 219x 1073 6.55x 107* 381x10™* | 4.58x107* 6.55x 107* 5.66 X 107°
L, 4.02 x 1078 8.08 x 1078 1.56 x 1077 3.80x 1078 7.49 x 1078 1.55 x 1077 8.92 x 107
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Figure 1.1.  Absolute errors using modified Legendre polynomial Figure 1.2.  Absolute error using modified Bernoulli polynomial

To find the accuracy of the approximate solution, we compare the result with the exact solution and the absolute error
can be defined by |uEmct (x) — Tappyx (x)|. Then the obtained absolute error using two different polynomials by three
residual methods are shown in Table 1.1, and the comparison of their results are displayed in Figs. 1.1 and 1.2.

From Table 1.1 and Table 1.2 we observe that the solutions converge to the exact solutions monotonically, and good
agreement with the exact solutions even using lower order polynomials as weight functions.

Problem 2: Suppose the non-linear fractional BVP [16]

DYSu(x) = —2(u' (x))? = 8u(x),0<x <1,
u(0) = 0,u’ (1) = —1.
The exact solution of this problem is u(x) = x — x2. The approximate solution i(x),#(x) and Ww(x) of the given
problem using the modified Legendre polynomial of degree (n = 3) as basis functions:
Tigy(x) = x —x? + 1.87875 x 10712x3 — 8.88285 x 10~ 13 x4,
Do (x) = x — x? + 847192 x 107 2x3 — 5.60912 x 10~ 12x*,
Wew (X) = 0.99999x — 0.99999x2 — 1.74997 x 10~ °x3 + 6.65225 x 107 10x%,

Similarly, when we use the modified Bernoulli polynomial of degree (n = 3) as a basis function we get another
approximate solution as given below:

figy (X) = 0.99999x — 0.99999x2 — 1.99878 x 10~ 12x3 + 8.88789 x 10~ 13x*,
B0 () = 0.99999x — 0.99999x2 — 2.87383 x 10~12x3 + 1.86700 x 10~ 12x%,
Wep (x) = 0.99999x — 0.99999x2 — 1.92650 x 10~ 5x3 + 6.46201 x 10~ 16x*,

The obtained absolute errors using two different polynomials by three residual methods are shown in the Table 2.1, and
the comparison are displayed in the Figs. 2.1 and 2.2.

(20)

Table 2.1.  Absolute error for problem in Egn. (20)

Absolute errors obtained using Modified Legendre Absolute errors obtained using Modified Bernoulli
X Exact polynomials (n = 3) polynomials (n = 3)
Solutions - -

GWRM Least Square Collocation GWRM Least Square Collocation

0 0 0 0 0 0 0 0
0.1 0.09 1.70 x 10714 1.30 x 10714 416 x 10717 2.21x 1071 414 %1071 5.55 x 10717
0.2 0.16 1.87 x 1071 420 x 10714 2.77 x 1077 2.58 x 1074 1.45 x 1071* 5.55 x 10717
0.3 0.21 131 x 1071 5.64 x 10714 2.77 x 1077 1.99 x 1074 2.06 x 1071 8.32 x 1077
0.4 0.24 6.13 x 10715 3.89 x 107 2.77 x 10717 111 x 107 1.63 x 10714 8.32 x 1077
0.5 0.25 1.61 x 10715 1.41 x 1071* 2.77 x 1077 3.83x 10715 222 x 10716 5.55 x 10717
0.6 0.24 122 x 10715 9.29 x 10714 0 499 x 10716 249 x 1071 2.77 x 1077
0.7 0.20 452 % 10715 1.74 x 10713 0 138 x 10715 5.16 x 107 2.77 x 1077

0.8 0.15 8.93 x 10715 221x 10713 0 4,60 x 10715 6.80 X 1074 0

0.9 0.08 9.70 x 10715 1.84 x 10713 0 6.20 x 10715 5.77 x 1074 0

1 0 0 0 0 0 0 0
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Table2.2. L, and L, errors of the problem in Egn. (20)

degree (n =3)

Errors obtained using modified Legendre polynomials of

degree (n =3)

Errors obtained using modified Bernoulli polynomials of

Errors Galerkin Least-Square Collocation Galerkin Least-Square Collocation
Lo 1.87 x 10714 2.21x 10713 416 x 1077 2.58 x 10714 6.80 x 10714 8.32x 1077
L, 1.05 x 10728 1.29 x 10726 8.30 x 10734 1.76 x 10728 1.22x107% 1.76 x 10733

Table 2.1 and Table 2.2 reflect that the solutions converge fast to the exact solutions, and a very good agreement with the
exact solutions even using lower degree polynomials as weight functions.
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Figure 2.1. Absolute error using modified Legendre polynomial ~ Figure 2.2. Absolute error using modified Bernoulli polynomial

Example 3: Consider the non-linear fractional BVP [16]:

D%u = u?(x) +90.27x'° — 2 x 27.08x%° — 2 x ?C}i_g —x'

+4x° — 4x8 — 4x7 + 8x° — 4x*,
u(0)=0,4(0)=0,u(l)=1u (1) =1,
witha =35,0<x<1land3 < a <4.

The exact solution of this problem is u(x) = x° — 2x* + 2x2. The approximate solution i(x), #(x) and W(x) of the
given problem using the modified Legendre polynomial of degree (n = 5) as basis functions are as follows:

Tigy (x) = 6.55 x 107 3x + 1.99x% + 1.98 x 107 1x3 — 2x* + x° — 1.96 x 107 1x°,
Ty () = 1.11 X 107%0x + 1.99x2 + 1.88 x 1071 x3 — 2x* + x> — 1.96 x 10714,
Wey () = —4.55 x 107%x + 1.99x% + 3.41 x 107 #x3 — 2x* + x> — 3.81 x 107156,
while using the modified Bernoulli polynomial as basis functions we get the approximations as given below:
figy(x) = —2.38 x 107 x + 1.99x% + 6.19 x 10712x3 — 2x* + x> — 1.95 x 10~ 2x®,
Tron (X) = 6.66 X 10713 x + 1.99x2 4 7.33 x 107 12x3 — 2x* + x° — 1.95 x 1071245,
Wey (0) =338 X 107 %% + 2x2 — 2.15 x 107 %3 — 1.99x* + x° — 1.93 x 107 15x°,

The graphical representation of the two solutions is delineated in the Figs. 3.1 and 3.2, which shows that the approximate
solution is in sensible agreement with the exact solution. The differences in the exact and approximate solutions are
scarcely perceivable.

From Figures 3.1 and 3.2, and Table 3.1 we may notice that the solutions converge fast to the exact solutions, and a very
good agreement with the exact solutions on using polynomials of degree (n = 5) as weight functions.

(1)
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Table 3.1. Absolute errors of problem 3 in Eqgn. (21)

Absolute errors obtained by existing method using Absolute errors obtained by existing method using
Exact modified Legendre polynomials modified Bernoulli polynomials
X Solutions (n=5and a =3.5) (n=5and a = 3.5)
Galerkin Least-Square Collocation Galerkin Least-Square Collocation
0 0 0 0 0 0 0 0
0.1 0.019 426 x 10714 3.71x 10715 5.89 x 10716 1.54 x 10~ 3.78 x 10714 426 x 10716
0.2 0.077 9.27 x 10714 3.95x 10714 1.26 x 10715 416 x 10714 3.81x 1071 9.57 x 10716
0.3 0.166 1.48 x 10713 9.83 x 10714 1.88 x 10715 6.53 x 10714 2.01x 10714 147 x 1071
0.4 0.279 1.80 x 10713 1.44 x 10713 2.55x 10715 8.22 x 1071 5.77 x 1071° 1.88 x 1071°
0.5 0.406 1.67 x 10713 1.48 x 10713 2.88 x 10715 9.19 x 10714 3.34x 10714 2.10 x 10715
0.6 0.538 1.07 x 10713 1.05x 10715 2.88x 1071 9.48 x 10714 5.82x 1071 2.22x 1071
0.7 0.667 2.79 x 1071 3.54 x 107 2.99 x 10715 8.99 x 10714 7.42 x 1071 210 x 10715
0.8 0.788 2.94 x 10714 1.94 x 10714 2.22x 10715 7.46 x 10714 7.46 x 10714 1.66 x 10715
0.9 0.898 3.53x 1071 2.75 x 10714 1.44 x 10715 4.54 x 10714 517 x 1071 8.88 x 1071¢
1 1 0 0 0 0 0 0
Lo, 1.80 x 10713 1.48 x 10713 2.99 x 10715 9.48 x 10714 7.46 x 10714 2.22x 10715
e 10" v T T - v v T T
. o T 10712
12l []
% 10 ﬁ
[as] -13
g 10
: 1073 -
= =
% LRI
s, 1l S
£ 10 I
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Least Square Least Square
Collocation Collocation
10718 : : : - : 10717 y a g . :
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
X — X =

Figure 3.3. Absolute error using modified Legendre polynomial

Figure 3.4. Absolute error using modified Bernoulli polynomial
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Problem 4: Consider the following FDE of the non-linear form [17]:

6 6 1 1
D*u(x)+T (g) x5D5u(x) + %F (g) x6D6su(x) — (Du(x))2 =2+—
x(0) =1,x(1) = 2.
The exact solution of Egn. (22) is: u(x) =1 + x2.

Fractional Order BVPs by Weighted Residual Methods

10

)

(22)

The approximate solutions i(x), 7(x) and Ww(x) of the given problem using the modified Legendre polynomial of

degree (n = 3) as basis functions are:

figy () = 1 —0.00133x + 1.00029x2 — 0.00058x3 + 0.00162x*,
P (x) = 1 — 0.00128x + 1.00023x% — 0.00064x3 + 0.00170x*,
Wen(x) = 1 —0.00133x + 1.00022x2 — 0.00033x3 + 0.00144x*,

Similarly, when we use the modified Bernoulli polynomial of degree (n = 3) as basis functions we get approximate
solutions as given below:

figy (0) = 1 — 0.00133x + 1.00029x2 — 0.00059x3 + 0.00162x*,
Do (X) = 1 — 0.00128x + 1.00022x2 — 0.00064x3 + 0.00170x*,
Wey () = 1 — 0.00139x + 1.00020x2 — 0.00031x3 + 0.00144 x*.

Table 4.1.  Absolute errors of the problem 4 in Egn. (22)

Absolute errors obtained using modified Legendre
polynomials of degree (n = 3)

Absolute errors obtained using modified Bernoulli

polynomials of degree (n = 3) Reference
X Legendre Wavelet
GWRM Least Square Collocation GWRM Least Square Collocation Operation Matrix
Method
0 0 0 0 0 0 0 2.00 x 107°
01| 1.30x107* 1.27 x 10~* 1.31x 107* 1.27 x 107* 1.26 x 107* 1.30 x 10~ 426 x107*
02 | 257x107* 2.51x107* 2.59 x 107* 2.50 x 107* 249 x 1074 2.56 x 1074 7.58 x 107*
03| 3.76x107* 3.69 x 1074 3.78 x 107* 3.66 x 107+ 3.67 x107* 3.75x 107* 9.95x 107*
04 | 482x107* 476 x 1074 484 x107* 469 x 1074 474 x 1074 479 x 107* 1.13 x 107°
0.5 | 5.65x107* 5.61x107* 5.64 x 107+ 5.50 x 107+ 5.58 x 1074 5.60 x 107* 1.18 x 107°
0.6 | 6.10x107* 6.08 x 107+ 6.07 x 107* 5.94 x 107* 6.06 x 1074 6.02x 107* 1.13 x 107°
0.7 | 6.00x107* 6.01x107* 5.94 x 107* 5.84 x 107* 5.99 x 107+ 5.90 x 10~* 9.95x 107+
0.8 | 5.13x107* 516 x 1074 5.05 x 107* 499 x 1074 514 x 1074 5.02 x 107 7.58 x 107*
09 | 3.22x107* 3.25x 1074 3.16 x 107* 3.14 x 107* 3.25x 1074 3.14 x 107* 426 x107*
1 0 0 0 0 0 0 0
L, | 610x107* 6.08 x 1074 6.07 x 107* 5.94 x 107+ 6.06 x 1074 6.02x 1074 9.95 x 107+
103 1073
1 1
2 10 2 ("
o o \
£ €104k b
= £ 1
© o v
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o o 107 v
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Figure 4.1. Absolute error using modified Legendre polynomial

From Table 4.1, and Figures 4.1 and 4.2, we may observe
that the solutions converge monotonically to the exact
solutions, and the accuracy agreement is considerable only
using lower degree polynomials as weight functions. Finally,

X —

Figure 4.2. Absolute error using modified Bernoulli polynomial

we may note that if we increase rapidly the degree of
the polynomials then it may fail the monotonicity of the

convergence, computational costs are high and the results
may not stable.
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5. Conclusions

In this research work, we have exploited the weighted
residual methods, namely, Galerkin method, Least-Square
method and Collocation method to find the approximate
solutions to the fractional order non-linear boundary value
problems rigorously. The computed results show that all the
proposed three methods are effective, reliable and converge
monotonically to the exact solutions. Finally, we conclude
that these methods may be applied to find the approximate
solutions to any kind of fractional order differential equations.
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