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Abstract  This paper presents methods for determining resonant and parametric excitation frequencies in a nonlinear 

two-degree-of-freedom dynamic system. It is clarified that in order to determine the resonant frequencies in the system, it 

must be divided into two subsystems. The results show that in nonlinear dynamic system there are nine groups of resonant 

frequencies, which are defined by energy, force, stiffness connection peculiarities, as well as the total stiffness of the system. 

The results also demonstrate that the system for determining the parametric frequencies must not be divided into subsystems. 

It is clarified that the system generated a very wide spectrum of parametric excitation frequencies, and when they coincide 

with the resonant frequency, the level of system vibrations increases significantly. It has been found that vibrations at high 

amplitude resonant frequency also become generators of parametric vibrations in a nonlinear dynamic system. By setting the 

parameters of the system (stiffness, mass, damping, etc.), we determine its resonant frequencies; however, the magnitude of 

the parametric vibration frequency and their number of a dynamic system depend on the level of nonlinearity of the system. 

Thus, the frequency of parametric vibration is independent of their amplitude. The certainty of the analytical methods 

presented in the paper was verified by numerical calculations. 

Keywords  Methods for determination of resonant and parametric frequencies, Nonlinear two degree of freedom, 
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1. Introduction 

In order to create a nonlinear mechanical dynamic system 

and ensure its sustained and stable operation, safe working 

conditions need to be determined. This can be achieved at the 

design stage by establishing the resonant frequencies of 

nonlinear vibration, and also the proper operating modes of 

the system. Resonance is a known concept in linear system 

analysis and its study is important in many branches of 

engineering. At a particular resonance the frequency of an 

exciting force matches the natural frequency of the system, 

with the result that energy transmission is efficient and the 

amplitude of vibration becomes significant. In this paper, the 

example of two degree of freedom coupled oscillator with 

quadratic, cubic and fourth order nonlinearities stiffness is 

considered. This system is representative of a range of 

applications in structural dynamics, see [1- 12]. For example, 

in [7-8] the method of multiple scales perturbation technique 
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used to analyze the response of this system. Four ordinary 

differential equations are derived to describe the modulation 

of the amplitudes and phases of the two modes of  

vibrations for the principal parametric resonances. The 

steady-state solutions and their stability are determined and 

representative numerical results are included. The theoretical 

resonance cases of this system have been obtained from the 

first approximation differential equations and some of them 

are confirmed by applying well-known numerical techniques. 

The stability of the obtained numerical solution is    

studied using phase–plane method. The effect of different 

parameters on the magnitude of vibration of this system are 

investigated [6]. In this study, the authors provide an 

analytical method for relating the backbone curves, found 

using the second-order normal form technique, to the forced 

responses. This is achieved using an energy-based analysis 

to predict the resonant crossing points between the forced 

responses and the backbone curves. Additionally, a method 

for assessing the accuracy of the prediction of the resonant 

crossing points is then introduced, and these predictions   

are then compared to responses found using numerical 

continuation. 

In paper [12], the vibration of a typical two degree of 

freedom nonlinear system with repeated linearized natural 

frequencies was investigated systematically. The method of 
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multiple scales is used to obtain the amplitude- phase 

portraits by introducing the energy ratios and phase 

differences. It is found that the normal in-unison modal 

motions, elliptic out-of-unison modal motions are analogous 

to the polarization of classical optic theory. Furthermore, 

some kinds of periodic and chaotic motions under 

out-of-unison and in-unison excitations are investigated 

numerically. The result of that study offers a detailed 

discussion of nonlinear modal motions and responses of two 

degree of freedom systems with cubic nonlinear terms. 

In paper [11] the amplitude frequency characteristic 

equation of the system, based on the multi-harmonic method, 

was derived and the corresponding curve of the relationship 

between the amplitude and frequency is given. The  

influence of the current on the curve is researched. Results      

showed a presence of two pseudo-resonant peaks in the 

amplitude–frequency curve: one peak- in the low frequency 

range, the other exists in higher frequency range. 

In [3-4,6-8] approximate methods and numerical research 

have also been applied to investigate nonlinear dynamical 

systems. However, the resonant frequencies of the nonlinear 

two degree of freedom system determined in this way are not 

accurate enough, an analysis of the literature suggests there 

is no exact method for determining the system’s resonant 

frequencies.  

In short, the approximate methods used do not explain  

the physics of vibration of nonlinear dynamical systems. 

Moreover, they do not show the specificity of their behavior 

compared to linear systems.  

The resonant and parametric frequencies in nonlinear one 

degree of freedom dynamic system were analyzed in [5]. 

That paper presents methods for determining resonant    

and parametric excitation frequencies in a nonlinear 

single-degree-of-freedom dynamic system. It was found  

that in nonlinear dynamic system there are four groups of 

resonant frequencies, which are defined by energy, force, 

stiffness connection peculiarities, as well as the total 

stiffness of the system. The results also demonstrate that the 

system generates a very wide spectrum of parametric 

excitation frequencies. However, research has been done on 

a dynamic system with one degree of freedom.  

Thus, the purpose of this research was to study the physics 

of vibration of nonlinear two-degree-of-freedom dynamic 

systems, to explain their features, to provide methods     

for determining the resonant and parametric excitation 

frequencies of the system, to clarify the frequencies of 

internal excitation, generated through the properties of    

the nonlinear dynamic system itself, and to show their 

destructive effects on the vibration level of the system. 

2. Resonant Frequency of the System 

The nonlinear of two degree of freedom dynamical  

system (Figure 1) is described by the following system of 

differential equations: 

 𝑀1𝑥 1 + 𝑐1(𝑥 1 − 𝑥 2)𝑛1 +  𝑘1(𝑥1 − 𝑥2)𝑛1 = 𝐹𝑠𝑖𝑛 𝜔𝑡 ,  

 𝑀2𝑥 2 + 𝑘2 𝑥2
𝑛2 +𝑐2𝑥 2

𝑛2 − 𝑐1(𝑥 1 − 𝑥 2)𝑛1 − 

 𝑘1(𝑥1 − 𝑥2)𝑛1 = 0,                           (1) 

where 𝑀1 ;  𝑀2  are masses of the system; 𝑐1 ; 𝑐2  are 

coefficients of damping; 𝑘1;𝑘2 are coefficients of stiffness; 

𝑛1; 𝑛2  are exponents of 𝑥1;; 𝑥2;  𝑥 1 ;𝑥 2 ; 𝑥 1;  𝑥 2 ; 𝑥 1 ;𝑥 2  are 

velocities and accelerations; F is amplitude of external 

excitement force; ω is angular frequency; t is time.  

 

Figure 1.  Two degree of freedom vibration system for linear motion 

By studying a nonlinear dynamic system with one degree 

of freedom, it was found that its resonant frequencies do not 

depend on the frequency of excitation forces [5]. Therefore, 

for determining the resonant frequencies of the nonlinear two 

degree of freedom dynamic system (1), it can be divided into 

two subsystems: one with mass 𝑀1 , spring 𝑘1,  damping 

coefficient  𝑐1  and external excitation force 𝐹𝑠𝑖𝑛(𝜔𝑡) ,  

and the other - with mass 𝑀2, spring 𝑘2 and the damping 

coefficient 𝑐2 . Thus, the system of equations (1) is 

rearranged as follows:  

 𝑀1𝑧  + 𝑐1𝑧 
𝑛1+ 𝑘1𝑧

𝑛1= 𝐹𝑠𝑖𝑛(𝜔𝑡) - 𝑀1𝑥 2,  

 𝑀2𝑥 2 + 𝑐2𝑥 2
𝑛2+ 𝑘2𝑥2

𝑛2= 0, 

 𝑥1= 𝑥2 + z; 𝑥 1= 𝑥 2 + 𝑧 ; 𝑥 1= 𝑥 2 + 𝑧 .        (2) 

In the system of equations (2) we have two nonlinear 

dynamical systems of the one degree of freedom. Therefore, 

to determine the resonant frequencies in each of them,    

we will apply the method examined in [5], based on the fact 

that when x = 1 (because  1𝑛 = 1), the nonlinear dynamic 

system becomes linear: 

 𝑀1𝑥 1 + 𝑐1𝑧  + 𝑘1z = Fsin(𝜔𝑡) - 𝑀1𝑥 2, 

 𝑀2𝑥 2+𝑐2𝑥 2 +𝑘2𝑥2=0.                     (3) 

when 1-  ≤ 𝑥1  ≤ 1+  and 1-  ≤ 𝑥2  ≤ 1+ , where  

magnitude is small enough. 

Evaluating the existing peculiarities of the force, stiffness 

and energy connection in a nonlinear dynamic system, using 

the method developed in [5], a system of three homogeneous 

equations is formed for the first subsystem: 

  

𝑀1 𝑐1          𝑘1

𝑀1   𝑐1         𝑛1𝑘1

 0    0  (
𝑀1𝜔

2

2
−

𝑘1

𝑛1+1
 )
   

𝑥 1

𝑥 1

𝑥1

  =  

0

0

0

        (4) 

When 1- 𝜀  ≤ 𝑥1  ≤ 1+ 𝜀 , where 𝜀  magnitude is small 

enough. 

The first row of the matrix (4) evaluates the effects of the 

force, the second – the effects of the stiffness and the third - 

of the energy connection peculiarities in a nonlinear dynamic 

system. From the system of homogeneous equations (4) it is 

determined that: 
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𝜔𝑒𝑛𝑔1 =  
2𝑘1

(𝑛1+1)𝑀1
 ; 𝜔𝑓1 =  

𝑘1

𝑀1
 ; 𝜔𝑠𝑡1 =   

𝑛1𝑘1

𝑀1
.  (5) 

It can be seen from the dependences of (5) that in a 

nonlinear dynamic system, when the value of the 𝑛1  
parameter increases, the frequency generated by the energy 

connection peculiarities decreases and the frequency 

generated by the stiffness connection peculiarities increases. 

Meanwhile, the frequency generated by the force connection 

peculiarities does not depend on the value of the 𝑛1  
parameter. 

When  𝑛1 = 1 , then from the resonant frequency 

dependencies (5) of the considered subsystems we get that:  

 𝜔𝑒𝑛𝑔1= 𝜔𝑓1 =  𝜔𝑠𝑡1 =   
𝑘1

𝑀1
.         (6) 

The result of dependence (6) shows that in the present case 

there will be only one resonant frequency in the latter 

subsystem.  

The dynamic system under consideration contains springs, 

defined by the peculiarities of the coupling of energy, force 

and stiffness, which are sequentially connected to each other. 

Therefore, it will also have the whole stiffness of the 

subsystem, the magnitude of which will be assessed as 

follows: 

𝑘𝑠𝑢𝑚 1 =  
𝑘𝑓1𝑘𝑠𝑡1𝑘𝑒𝑛𝑔 1

𝑘𝑠𝑡1𝑘𝑓1+𝑘𝑠𝑡1  𝑘𝑒𝑛𝑔 1+ 𝑘𝑓1𝑘𝑒𝑛𝑔 1
; 𝜔𝑠𝑢𝑚 1 =  

𝑘𝑠𝑢𝑚 1

𝑀1
. (7) 

A common case 𝑘𝑒𝑛𝑔1 , 𝑘𝑠𝑡1  and 𝑘𝑓1  
values are 

calculated according to expressions: 𝑘𝑒𝑛𝑔1= 2𝑘1/(𝑛1 + 1); 

𝑘𝑠𝑡1= 𝑛1𝑘1 and 𝑘𝑓1= 𝑘1. 

A system of linear homogeneous equations for the second 

subsystem is formed analogously: 

   

𝑀2  𝑐2          𝑘2

𝑀2   𝑐2         𝑛2𝑘1

0     0 (
𝑀2𝜔

2

2
−

𝑘2

𝑛2+1
 )
   

𝑥 2

𝑥 2

𝑥2

  =  

0

0

0

 .      (8) 

From the system of homogeneous equations (8) it is 

determined that:  

𝜔𝑒𝑛𝑔2=  
2𝑘2

(𝑛2+1)𝑀2
; 𝜔𝑓2 =   

𝑘2

𝑀2
; 𝜔𝑠𝑡1 =   

𝑛2𝑘2

𝑀2
.   (9) 

Then the total stiffness and angular frequency of the 

second subsystem will be evaluated as follows:  

𝑘𝑠𝑢𝑚 2= 
𝑘𝑠𝑡2𝑘𝑓2𝑘𝑒𝑛𝑔 2

𝑘𝑓2𝑘𝑠𝑡2+ 𝑘𝑠𝑡2𝑘𝑒𝑛𝑔 2+ 𝑘𝑓2𝑘𝑒𝑛𝑔 2
 ; 𝜔𝑠𝑢𝑚 2 =   

𝑘𝑠𝑢𝑚 2

𝑀2
. (10) 

The total stiffness and angular frequency of the whole 

system will be evaluated as follows: 

 𝑘𝑠𝑢𝑚 =  
𝑘𝑠𝑢𝑚 2𝑘𝑠𝑢𝑚 1

𝑘𝑠𝑢𝑚 1+ 𝑘𝑠𝑢𝑚 2
 𝜔𝑠𝑢𝑚 =  

𝑘𝑠𝑢𝑚

𝑀1+𝑀2
      (11) 

Thus, the nonlinear dynamic system under discussion will 

have nine resonant frequencies: 𝜔𝑒𝑛𝑔1; 𝜔𝑓1; 𝜔𝑠𝑡1; 𝜔𝑠𝑢𝑚 1; 

𝜔𝑒𝑛𝑔2; 𝜔𝑓2; 𝜔𝑠𝑡2; 𝜔𝑠𝑢𝑚 2 and 𝜔𝑠𝑢𝑚 . 

If the exponents of 𝑥1  and 𝑥2  are equal (𝑛1 = 𝑛2= n), 

then the number of resonant frequencies in the system (1) 

will not change, but some values will change, because a 

multiplier n is used instead of 𝑛1 and 𝑛2 in equations (4) 

and (8). 

3. Parametric Excitation Frequency of 
the System 

In order to investigate the resonant and parametric 

frequencies of the system and verify the obtained analytical 

results, the Runge – Kutta methods of numerical analysis 

was performed. Systems with quadratic, cubic and    

fourth order nonlinearities were examined. The resonant 

frequencies of the system with the quadratic nonlinearity, 

whose system parameters are: 𝑘1  = 100000 N/m; 𝑘2  = 

40000 N/m; F = 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 kg; 𝑐1 = 

𝑐2  = 0.05, were calculated using formulas (5), (7-11).    

The following results were obtained: 𝜔𝑒𝑛𝑔1= 115.47 𝑠−1 ; 

𝑓𝑒𝑛𝑔1  = 18.39 Hz; 𝜔𝑓1 = 141. 42 𝑠−1;  𝑓𝑓1 = 22.52 Hz; 

𝜔𝑠𝑡1 =  200.00 𝑠−1;  𝑓𝑠𝑡1 =  31.85 Hz;  𝜔𝑠𝑢𝑚 1 =  81.64 

𝑠−1;  𝑓𝑠𝑢𝑚 1 = 12.99 Hz; 𝑘𝑠𝑢𝑚 1 = 33325.12 N/m; 𝜔𝑒𝑛𝑔2 = 

94.28 𝑠−1;  𝑓𝑒𝑛𝑔2 =  15.01 Hz; 𝜔𝑓2 = 115.47 𝑠−1 ; 𝑓𝑓2 = 

18.38 Hz; 𝜔𝑠𝑡2 = 163.30 𝑠−1 ; 𝑓𝑠𝑡2  = 26.00 Hz; 𝑘𝑠𝑢𝑚 2 = 

18749.91 N/m; 𝜔𝑠𝑢𝑚 2 = 79.06 𝑠−1 ; 𝑓𝑠𝑢𝑚 2 = 12.59 Hz; 

𝑘𝑠𝑢𝑚 = 11998.70 N/m; 𝜔𝑠𝑢𝑚 = 38.73 𝑠−1;  𝑓𝑠𝑢𝑚 = 6.17 Hz.  

Analyzing the search graphs shown in Figure 2 and 4, we 

will notice when the system is excited at the frequency   

𝑓𝑎𝑐𝑡 , then the spectral density contains only a part of the 

calculation at the system resonant frequency. The other part 

of the resonant frequencies is covered by vibrations of higher 

intensity of the system. It should be noted that when  𝑛 = 2, 

the system excites sufficiently large vibration amplitudes at a 

frequency of 𝑓𝑠𝑢𝑚 2 = 12.59 Hz (Figure 2), although it is 

exited at frequency 𝑓𝑠𝑡1 =31.85 Hz. The magnitudes of the 

latter vibrations in time are modulated by frequency 

subharmonic 𝑓𝑠𝑢𝑏 = 3.08 Hz of resonant frequency 𝑓𝑠𝑢𝑚 = 

6.0 Hz. And this can be seen very clearly in the graphs 

provided in Figure 2. However, such vibrations in a 

nonlinear dynamic system occur only at the beginning, and 

after a few seconds they mainly vibrate at the excitation 

frequency. It is important to note that the analysis of 

nonlinear dynamic system initial vibrations allows to see the 

frequencies of the system subsystems and subharmonic 

frequencies. When a nonlinear dynamic system is excited   

by 𝑓𝑎𝑐𝑡 = 𝑓𝑠𝑢𝑏 =  3.08 Hz, it generates high amplitude 

vibrations at the resonant frequency 𝑓𝑓1 =  22.52 Hz  

(Figure 4) and it is modulated at a frequency of 𝑓𝑠𝑢𝑚 = 6.17 

Hz, whereas 𝑓𝑠𝑢𝑚  is 4 times repeated the system resonant 

𝑓𝑓1  frequency. The subharmonic frequency 𝑓𝑠𝑢𝑏  is 

approximately 7 times repeated and for the resonant 

frequency 𝑓𝑓1 =  22.52 Hz as well, but the vibration 

intensity of the latter frequency is lower so it is practically 

not seen in the vibration graph of Figure 4.  

Therefore, the choice of operating modes and parameters 

of the system should not allow it to operate under resonant 

conditions. 
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 -- black line - amplitude of vibration first mass; 

 -x blue line – for the second mass. 

 

 Spectral density for the firs mass. 

Figure 2.  Result of solution of vibration and spectral density for the  

quadratic nonlinearity when 𝑘2 = 40000 N/m; 𝑘1  
= 100000 N/m; 

𝜔 =200.00 𝑠−1; 𝑓𝑎𝑐𝑡 =
 
31.85 Hz; F= 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 

kg and c = 0.05 

The spectral density plots in Figure 2-4 contain many 

non-resonant system frequencies. In order to determine their 

nature, it is necessary to examine the frequencies of 

parametric vibration generated by the nonlinear dynamic 

system.  

In the paper [5] examining a nonlinear dynamic system of 

one degree of freedom, it was found that the frequencies of 

parametric vibrations depend on the frequency of excitation 

forces, the magnitude of the nonlinearity parameters of the 

system, but did not depend on mass, spring stiffness, 

vibration amplitude, and other parameters. Therefore, in 

order to determine the parametric vibration frequencies of 

the system, it does not have to be divided into subsystems. In 

this case, the total effect of all forces on the excitation 

frequencies of the parametric vibration must be examined. It 

can be seen from (1) that the first equation of the system 

contains four forces: 

𝑓𝑠𝑡1(𝑡) =𝑘1(𝑥1 − 𝑥2)𝑛1 ; 𝑓𝑑1 𝑡 = 𝑐1(𝑥 1 − 𝑥 2)𝑛1 ; 

 𝑓𝑖1 𝑡 = 𝑀1𝑥 1 and 𝑓𝑎𝑐𝑡  𝑡 = 𝐹𝑠𝑖𝑛(𝜔𝑡).        (12) 

The second equation of the system (1) has five forces: 

𝑓𝑠𝑡21 𝑡 =  𝑘2𝑥2
𝑛2 ;𝑓𝑠𝑡22 𝑡 = 𝑘1(𝑥1 − 𝑥2)𝑛1 ; 𝑓𝑑21(𝑡) = 

𝑐2𝑥 2
𝑛2 ; 𝑓𝑑22 𝑡  = −𝑐1(𝑥 1 − 𝑥 2)𝑛1 ; 𝑓𝑖2(𝑡) =𝑀2𝑥 2. (13) 

 

-- black line - amplitude of vibration first mass;  

-x blue line – for the second mass. 

 

Figure 3.  Result of solution of vibration and spectral density for the  

quadratic nonlinearity when 𝑘2 = 40000 N/m; 𝑘1  
= 100000 N/m; 𝜔  = 

141.42 𝑠−1; 𝑓𝑎𝑐𝑡 =
 
22.52 Hz; F= 200000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 kg 

and c = 0.05 

To determine parametric vibration frequencies, let us 

consider the changes of the velocity and acceleration of 

stiffness, damping and inertia forces of nonlinear dynamic 

system (1) under the influence of the external excitation 

force. Let’s say the aforementioned force 𝐹𝑠𝑖𝑛(𝜔𝑡)     

will excite vibrations 𝑥1 𝑡 =  𝐴1sin(𝜔𝑡)  and 𝑥2 𝑡 =
𝐴2 𝑠𝑖𝑛(𝜔𝑡−) in the nonlinear two degree of freedom system.  

The dynamic system under consideration contains 9 

different types of forces (12) and (13). 

In the first step, we will consider the frequencies of 

parametric vibration in the system (12) generated by stiffness, 

damping, inertia and external excitation forces. When 𝑛1= 2, 

the force 𝑓𝑠𝑡1 will be expressed as follows:  

𝑓𝑠𝑡1 𝑡 = 𝑘1[𝐴1 sin 𝜔𝑡  - 𝐴2 sin 𝜔𝑡 − 𝜑 ]2.    (14) 

Then we will determine the total velocity of the forces 

𝑓𝑠𝑡1(𝑡) and 𝐹𝑠𝑖𝑛(𝜔𝑡) as follows: 

𝑑

𝑑𝑡
 𝑓𝑠𝑡1 𝑡 =

𝑘1{𝐴1
2𝜔 sin 2𝜔𝑡 − 2𝐴1𝐴2𝜔[cos 𝜔𝑡 sin 𝜔𝑡 − 𝜑  + 

sin(𝜔𝑡) cos(𝜔𝑡 −  𝜑)] + 𝐴2
2  𝜔 sin 𝜔𝑡 −  𝜑 }; 

𝐹  𝑡 = 𝐹𝜔 cos 𝜔𝑡 .           (15) 
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By setting the velocity expression (15) to the expression 

𝑓𝑑1(𝑡) (12) we get the expression of damping force: 

𝑓𝑑1 𝑡 = {𝑘1{𝐴1
2𝜔 𝑠𝑖𝑛(2𝜔𝑡) – 2𝐴1𝐴2𝜔 [cos 𝜔𝑡 sin(𝜔𝑡 −

𝜑) + sin 𝜔𝑡 cos(𝜔𝑡 − 𝜑)] + 𝐴2
2𝜔sin(𝜔𝑡 −  𝜑)]}  

+ 𝐹 cos(𝜔𝑡)}              (16) 

By setting the second derivative of the expression (16) to 

the expression 𝑓𝑖1(t) (12) we get the force of inertia, which 

excites the frequencies of parametric vibrations of the 

system: 

 𝑓𝐼1 𝑡 =  𝑀
𝑑2

𝑑𝑡 2 𝑓𝑑1(𝑡)           (17) 

 

 -- black line - amplitude of vibration first mass;  

-x blue line – for the second mass. 

 

Figure 4.  Result of solution of vibration and spectral density for the  

quadratic nonlinearity when 𝑘2  
= 40000 N/m; 𝑘1  

= 100000 N/m; 𝜔  = 

18.84 𝑠−1; 𝑓𝑎𝑐𝑡 = 3.00 Hz; F = 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 kg and 

c = 0.05 

Similarly, velocities and accelerations of other forces at n > 

2 can be found. Because the expressions of the velocities and 

accelerations are complicated, we do not discuss them 

further in this paper.  

Analyzing the expressions of force, velocity and 

acceleration (14-17) we find that when n = 2, the vibrating 

system will generate parametric frequencies: stiffness force – 

ω;2𝜔 …, damping force – ω;2ω;3ω;4ω… 

The frequencies generated by the forces under 

consideration are shown in Table 1 below. 

In this way, when n = 2, the system will generate 

parametric vibration with frequency: ω;2ω;3ω;4ω… or the 

frequencies of parametric vibration generated in the system 

can be described as follows: 𝜔𝑝𝑎𝑟 = 𝑢𝜔, when u = 1;2;3;4…  

By performing analogous steps we will determine the 

frequencies of parametric vibrations generated in the second 

subsystem and when 𝑛1 = 𝑛2  − parametric vibration of the 

same frequencies generated in the second subsystem.  

 

For the second mass 

Figure 5.  Result of solution of the phase – space diagram for the  

quadratic nonlinearity when 𝑘2  
= 40000 N/m; 𝑘1  

= 100000 N/m;       

𝜔 =200.00 s
1 ; 𝑓𝑎𝑐𝑡 =

 
31.85 Hz; F = 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 

kg and c = 0.05 

Another table of velocity and acceleration frequencies for 

the second subsystem can be created in an analogous way. 

But it would only repeat the contents of the Table 1. 

Table 1.  The frequencies of velocity and accelerations of the forces acting 
on the system 

 𝑛 = 2 𝑛 = 3 𝑛 = 4 

𝐹(𝑡) 𝜔 𝜔 𝜔 

𝑓𝑠𝑡1(𝑡) 𝜔, 2𝜔 𝜔, 3𝜔 
𝜔, 2𝜔, 

4𝜔 

𝑓(𝑡)𝑑𝑖  
𝜔, 2𝜔, 

3𝜔, 4𝜔… 

𝜔, 3𝜔, 

5𝜔, 7𝜔… 

𝜔, 2𝜔, 

3𝜔, 4𝜔, 

5𝜔, 6𝜔, 

7𝜔, 8𝜔, 

9𝜔 

𝑓𝑖1(𝑡) 
𝜔, 2𝜔, 

3𝜔, 4𝜔… 

𝜔, 3𝜔, 

5𝜔, 7𝜔… 

𝜔, 2𝜔, 

3𝜔, 4𝜔, 

5𝜔, 6𝜔, 

7𝜔, 8𝜔, 

9𝜔 

Number of different 

frequencies 

u 

 

𝑢 > 4 

 

𝑢 > 7 

 

𝑢 > 11 

When 𝑛 = 3  then we will write the expression of 

stiffness force as follows: 

𝑓𝑠𝑡1 𝑡 =  𝑘1[𝐴1sin(𝜔𝑡) - 𝐴2 sin 𝜔𝑡 − 𝜑 ]3.   (18) 

When 𝑛 = 3  and 𝑛 = 4 , then the expressions of the 

velocities and accelerations of force changes become    

long and uninformative, therefore they expressions are not 

presented in this paper. 
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However, graphs of their regularity of change are shown 

in Figure 6a and b.  

 

 

Figure 6.  Spectral density for the damping force, when ω 𝑠−1 

Examining Table 1 and the results of the above study, it 

was found that when 𝑛1 =  𝑛2 , the exponents of the 

variables of 𝑥1  and 𝑥2  and their combinations determine 

the regularity of the change of the parameter u and its 

dependence can be expressed as follows: 

𝐼𝑓 𝑛1 = 𝑛2 ∩  

𝑛1𝑒𝑣
 ∩  𝑛2𝑒𝑣

 → 𝑢 = 1,2,3,4,5,6,7,8…

𝑛1𝑜𝑑
 ∩  𝑛2𝑜𝑑  → 𝑢 = 1,3,5, 7, 9, 11…

𝑛1𝑒𝑣
 ∩  𝑛2𝑜𝑑  

→ 𝑢 = 1,2,3,4,5,6,7,8… 

  (19) 

where 𝑛1𝑒𝑣  and 𝑛2𝑒𝑣  are even numbers; 𝑛1𝑜𝑑  and 𝑛2𝑜𝑑  - 

odd numbers; ∩ is conjunction; → is implication. 

Then in the general case we will determine the frequencies 

of parametric vibration in a nonlinear system of two degrees 

of freedom as follows: 

 𝜔𝑝𝑎𝑟 = 𝜔 𝑢.                 (20) 

Where the values of the parameter u are determined by the 

dependence (19)  

The equations (14 - 18) show only a fraction of the 

frequencies generated by velocity and acceleration forces in 

a nonlinear dynamic system. All frequencies generated by a 

nonlinear dynamic system are described in a conditionally 

called table (21).  

The analysis of the dependencies (13-18), as well as the 

data in Table 1 and Figure 2-4 shows that: 

To determine the resonant frequencies of a nonlinear 

dynamic system of two degrees of freedom, it is necessary to 

divide it into subsystems and form systems of three 

equations 

P =

 
 
 
 
 
 
 𝑘1𝑓𝑠𝑡1 𝑡 𝑐1𝑘1

𝑑
𝑑𝑡
𝑓
𝑠𝑡1

 𝑡  𝑀1𝑐1𝑘1
𝑑

2

𝑑𝑡2𝑓𝑠𝑡1 𝑡  𝐹 𝑡 

𝑘1
𝑑
𝑑𝑡
𝑓𝑠𝑡1 𝑡 𝑐1𝑘1

𝑑
𝑑𝑡
𝑓𝑑1

 𝑡  𝑀1
𝑑
𝑑𝑡
𝑓𝑖1 𝑡  𝑑

𝑑𝑡
𝐹 𝑡 

 

𝑘1
𝑑

2

𝑑𝑡2𝑓𝑠𝑡1 𝑡  𝑐1𝑘1
𝑑

2

𝑑𝑡2𝑓𝑑1
 𝑡  𝑀1

𝑑
2

𝑑𝑡2𝑓𝑖1 𝑡  
𝑑

2

𝑑𝑡2𝐹(𝑡)
  

 
 
 
 
 
 

(21) 

for each of them, the solutions of which would be the latter 

frequencies; 

To determine the frequencies of parametric vibrations, the 

system must not be divided into subsystems, because the 

total effect of all forces on it must be evaluated; 

  When n >1, a dynamic system generates parametric 

vibrations of additional frequencies and the higher the 

value of the parameter n the more of them will be 

generated;  

  In the dynamical system, as the values of the 

parametric frequencies increase, the amplitudes of the 

vibrations decrease significantly (Figure 6); 

  Results of the study showed that the frequency of 

parametric vibrations is independent of their 

amplitude. Their number and magnitude depend on 

the parameters of the nonlinearity of the dynamic 

system; 

  Generated parametric vibration frequencies in 

nonlinear dynamical subsystems, can be estimated 

(evaluated) by the members of first row of the 

matrix–table P. 

Thus, these study demonstrate that the two degree of 

freedom nonlinear dynamic system (1) has resonant and 

parametric vibration frequencies, and identifies analytical 

ways to determine them. 

4. Numerical Analysis and Discussion 

When the nonlinear dynamic system vibrates, all resonant 

frequencies will get in it, although the magnitude of their 

vibrations will not be the same (Figure 2a and b and Figure 

4a and b). Hence, the level of vibrations will be higher for 

those resonant frequencies where the frequency of external 

excitation force will be repeated. Analyzing the data in 

Figure 2, we will observe that in a nonlinear dynamic  

system, high-amplitude vibrations also generate parametric 

vibrations and their intensity may be higher than vibrations 

exited by external forces. For example, the frequencies of 

parametric vibrations generated by external excitation  

forces vary: 𝑓𝑝𝑎𝑟 1 = 1 ∗ 𝜔; 𝑓𝑝𝑎𝑟 2 =  2 ∗ 𝜔; 𝑓𝑝𝑎𝑟 3 = 3 ∗ 𝜔; 

𝑓𝑝𝑎𝑟 4 =  4*𝜔… And the high-amplitude vibration of the 

frequency also generate parametric vibrations (Figure 1), but 

at different frequencies: 𝑓𝑝𝑎𝑟 1 = 1*𝑓𝑠𝑢𝑚 2; 𝑓𝑝𝑎𝑟 2 =2*𝑓𝑠𝑢𝑚 2; 

𝑓𝑝𝑎𝑟 3 =  3* 𝑓𝑠𝑢𝑚 2 ; 𝑓𝑝𝑎𝑟 4 =  4* 𝑓𝑠𝑢𝑚 2 … However, the 
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resonant frequency 𝑓𝑠𝑢𝑚 2 =12.01 Hz (Figure 1b) generates 

parametric vibrations of significantly higher amplitude as 

compared to the vibrations excited by the external force.  

The results in Figure 3 show that the frequency 𝑓𝑠𝑢𝑚 = 6.17 

Hz significantly modulates the vibration when the nonlinear 

system excites at a frequency 𝑓𝑓2  = 22.7 Hz, which 

corresponds to the frequency excited by the force connection 

peculiarities. Meanwhile, choosing the appropriate 

frequency of excitation force can significantly reduce 

vibration modulation and avoid nonlinear dynamic system 

pulsating vibration, for example, in the case discussed in 

Figure 2. In the example examined earlier, there is still    

an undesirable thing, such as 𝑓𝑒𝑛𝑔1 = 𝑓𝑓2 =18.38 Hz. In 

addition, the system total frequency 𝑓𝑠𝑢𝑚 = 6.17 Hz is 5 

times repeated the external excitation force frequency and 

three times repeated the 𝑓𝑓1 = 22.52 Hz frequency. Thus, by 

properly selecting the dynamic system parameters and the 

external excitation force frequency, the system vibration 

levels could be reduced. In this way, parametric vibration 

frequencies are generated not only by external excitation 

force, but also by high-amplitude vibrations of a nonlinear 

dynamic system. It is therefore necessary to emphasize that 

the vibrations generated by external forces may not always 

be greatest. If high amplitudes of vibration are excited in the 

system by other parametric frequencies, then the vibrations 

of the latter parametric frequencies will predominate in it, 

and the external excitation forces generated by the 

parametric vibration can almost be invisible.  

For the system with cubic nonlinearity whose parameters 

are: 𝑘1 = 100000 N/m; 𝑘2 = 40000 N/m; 𝐹 = 100000 N; 

𝑀1 = 5.0 kg; 𝑀2  = 3.0 kg; 𝑐1  =𝑐2  = 0.05, the resonant 

frequencies of the system were calculated using the formulas 

(5), (7), (9), (10), (11). The following results were obtained: 

𝜔𝑒𝑛𝑔1 = 100.00𝑠−1 ; 𝑓𝑒𝑛𝑔1 = 15.92 Hz; 𝜔𝑓1 = 141.42 𝑠−1 ; 

𝑓𝑓1 = 22.52 Hz; 𝜔𝑠𝑡1  = 244.95 𝑠−1 ; 𝑓𝑠𝑡1 = 39.00 Hz; 

𝑘𝑠𝑢𝑚 1= 18750 N/m; 𝜔𝑠𝑢𝑚 1= 61.24 𝑠−1; 𝑓𝑠𝑢𝑚 1= 9.75 Hz; 

𝜔𝑒𝑛𝑔2 = 81.65 𝑠−1 ; 𝑓𝑒𝑛𝑔2  = 13.00 Hz; 𝜔𝑓2 = 115.47 𝑠−1; 

𝑓𝑓2= 18.39 Hz; 𝜔𝑠𝑡2 = 200.00 𝑠−1; 𝑓𝑠𝑡2= 31.85 Hz; 𝑘𝑠𝑢𝑚 2= 

7500 N/m; 𝜔𝑠𝑢𝑚 2  = 50.00𝑠−1 ; 𝑓𝑓2  = 7.96 Hz; 𝑘𝑠𝑢𝑚  = 

5357.14 N/m; 𝜔𝑠𝑢𝑚  = 25.88 𝑠−1; 𝑓𝑠𝑢𝑚  = 4.12 Hz. 

The spectra of vibrations of masses 𝑀1  and 𝑀2  are 

shown in Figures 7a and b. The results of the study show that 

the frequency of parametric vibrations in the system changes 

according to the analytically determined dependence (20).  

Dynamic system with cubic nonlinearity is more robust 

than quadratic nonlinearity systems and extremely high 

vibration modulation at some frequencies is not observed. 

The spectrum of masses 𝑀1 (Figure 7b) shows a small 

peak at a very low frequency 𝑓𝑠𝑢𝑚 = 4.69 Hz, which is the 

vibration frequency generated by the total stiffness of the 

system.  

The phase – space diagrams of masses 𝑀1 𝑎𝑛𝑑 𝑀2  are 

shown in Figure 8. When n = 2, then the phase – space 

diagrams are very uninformative, therefore they are not 

presented in this paper. 

For the dynamic system with fourth order nonlinearity 

whose parameters are: 𝑘1= 100000 N/m; 𝑘2 = 40000 N/m; 

𝐹 = 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 kg; 𝑐1 =𝑐2 = 0.05, 

a system frequency which evaluate the stiffness connection 

peculiarities in a nonlinear dynamic system was determined: 

𝜔𝑠𝑡1  = 282.84 𝑠−1; 𝑓𝑠𝑡1 = 45.04 Hz. The spectrum of 

the second mass vibrations for the latter frequency is  

shown in Figure 9. It can be seen that the spectral density 

contains all frequencies of parametric vibration as 

determined analytically, and secondly, for even numbers of 

the parameter u the spectral intensity is much lower. An 

analogous vibration spectrum was determined for the first 

mass of the system as well. 

 

For the first mass 

 

For the second mass 

Figure 7.  Result of solution of vibration and spectral density for the  

cubic nonlinearity when 𝑘2 
= 40000 N/m; 𝑘1 

= 100000 N/m;   =244.95 

𝑠−1; 𝑓𝑎𝑐𝑡 =
 
39.00 Hz; F = 100000 N; 𝑀1 = 5.0 kg;  𝑀2 = 3.0 kg and c = 

0.05  

Thus, without determining resonant and parametric 

frequencies in a vibrating nonlinear dynamic system, we will 

not be able to explain the complexity of the process of 

vibrations and we will not be able to determine properly the 

dynamic parameters and operating modes of the system.  

So, the results of the study show that is very important to 

determine the appropriate parameters and operating modes 

of the system at the design process. Notwithstanding [1-16], 

no such results have been reported, and neither has there 

been any analytical determination of nonlinear dynamic 

relationships between resonant and parametric frequencies 

and its external excitation frequency. Moreover, scientific 
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works [1-12] do not reveal: force, stiffness and energy 

relations in the vibrating nonlinear dynamical system and 

their influence on resonant frequencies.  

 

 For the first mass 

 

 For the second mass 

Figure 8.  Result of solution of the phase – space diagram for the  cubic 

nonlinearity when 𝑘2 
= 40000 N/m; 𝑘1 

= 100000 N/m; 𝜔 =244.95 𝑠−1; 

𝑓𝑎𝑐𝑡 =
 
39.00 Hz; F = 100000 N; 𝑀1 = 5.0 kg;  𝑀2 = 3.0 kg and c = 0.05 

 

 For the second mass 

Figure 9.  Spectral density for the fourth order nonlinearity when       

𝑘2 
= 40000 N/m; 𝑘1 

= 100000 N/m;  =282.84 𝑠−1; 𝑓𝑎𝑐𝑡 =
 
45.04 Hz;  

F = 100000 N; 𝑀1 = 5.0 kg; 𝑀2 = 3.0 kg and c = 0.05 

In this way, it was impossible to explain the physics of the 

processes taking place in the vibration nonlinear dynamic 

system, to create a nonlinear mechanical dynamic system 

and to determine its safe working conditions, which ensure 

its lasting and stable operation.  

The numerical investigation showed that the presented 

methods for determining the resonant and parametric 

excitation frequencies are correct and can be used in the 

design process for calculating their values for quadratic, 

cubic and fourth order nonlinearities of the 

two-degree-of-freedom system. 

5. Conclusions 

This paper presents analytical methods for determining  

the resonant and parametric excitation frequencies of the 

systems, which enable choosing reasonable dynamic 

characteristics of the system during the design process    

for quadratic, cubic and fourth order nonlinearities of 

two-degree-of-freedom nonlinear dynamic systems (1) and 

to reduce its vibration level. 

Analytical results  

The analytical results indicate that: 

1.  To determine the resonant frequencies of a nonlinear 

dynamic system of two degrees of freedom, it is 

necessary to divide it into two subsystems. There  

will be four groups of resonant frequencies in each, 

determined by the energy, force and stiffness 

characteristic connections peculiarities and the total 

stiffness of the nonlinear dynamical subsystems.  

2.  To determine the frequencies of the parametric 

vibrations of the system, the system cannot be 

subdivided into subsystems. The frequencies of the 

latter vibration are determined by estimating the total 

effect of all forces on a nonlinear dynamic system of 

two degrees of freedom.  

3.  The nonlinear dynamic system generates a very wide 

spectrum of parametric excitation frequencies and  

the higher the value of the n parameter the more of 

them will be generated. The frequency of parametric 

vibration is independent of their amplitude. Parametric 

excitation frequencies are u times repetitive by the 

frequency of acting forces in the system. 

4.  When the exponent of polynomial increase then the 

frequencies determined by the energy characteristic 

connection peculiarities decrease, while frequencies 

determined by stiffness connections peculiarities 

increase. 

5.  The system's resonant frequencies, which are 

determined by the force connection peculiarities, are 

not dependent on the exponent of polynomial.  

The results of numerical calculations 

The results of numerical calculations allow us to prove 

that: 

1.  It was found that parametric vibration frequencies are 



 American Journal of Computational and Applied Mathematics 2020, 10(2): 39-47 47 

 

 

generated not only by external excitation force, but 

also by high-amplitude oscillations of a nonlinear 

dynamic system. Therefore, the choice of operating 

modes and parameters of the system should not allow 

it to operate under resonant conditions;  

2.  The vibration level of the system significantly 

increases when the parametric excitation frequency 

coincides with the system's resonant frequency. 

3.  In the dynamical system, as the values of the 

parametric frequencies increase, the amplitudes of the 

vibration decrease significantly. 

4.  By setting the system’s parameters (stiffness, mass, 

damping, etc.), we determine its resonant frequencies, 

but the frequency of parametric vibrations and number 

of them of a dynamic system depend on the level of 

nonlinearity of the system. 

5.  The certainty of the analytical methods was verified 

by numerical calculations. 
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