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Abstract  This paper presents methods for determining resonant and parametric excitation frequencies in a nonlinear 

single-degree-of-freedom dynamic system. The results show that in nonlinear dynamic system there are four groups of 

resonant frequencies, which are defined by energy, force, stiffness connection peculiarities, as well as the total stiffness of 

the system. The results also demonstrate that the system generates a very wide spectrum of parametric excitation 

frequencies, such that when they coincide with the resonant frequency the level of system vibrations increases significantly. 

By setting the parameters of the system (stiffness, mass, damping, etc.), we determine its resonant frequencies, however the 

frequency and number of parametric vibrations of a dynamic system depend on the level of nonlinearity of the system. Thus, 

the frequency of parametric vibration is independent of their amplitude. The certainty of the analytical methods presented in 

the article was verified by numerical calculations. 

Keywords  Methods for determination of resonant and parametric frequencies, Nonlinear dynamic system, Quadratic, 

Cubic and fourth order nonlinearities, Vibration 

 

1. Introduction 

In order to create a nonlinear mechanical dynamic system 

and ensure its sustained and stable operation, safe working 

conditions need to be determined. This can be achieved at the 

design stage by establishing the resonant frequencies of 

nonlinear vibration, and also the proper operating modes of 

the system. Resonance is a known concept in linear system 

analysis and its study is important in many branches of 

engineering. At a particular resonance the frequency of an 

exciting force matches the natural frequency of the system, 

with the result that energy transmission is efficient and the 

amplitude of vibration becomes significant. Scientific works 

[1-16] were used as the basis for the investigation of 

vibration of nonlinear mechanical systems and their resonant 

frequencies. In many cases, however, theoretical analysis is 

performed by applying approximate or numerical methods. 

For example, in [1,2,13-16], nonlinear dynamic systems 

were analyzed using analytical and numerical methods. In 

the course of analyzing the vibrations of system using 

numerical methods, their spectral density was determined, 

and it was observed that in some cases vibrations were 

generated by repeated frequencies of external excitement [2].  
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The power spectral density of the system response shows 

multiple peaks at frequencies in the proportion of 1: 3: 5… 

These determined harmonics and subharmonics in the 

response of a nonlinear system. Strong and weak resonances 

in delayed systems were analyzed [11,12,14]. The analytical 

results are compared with those obtained from numerical 

integration. The stability of the periodic responses of the 

system is examined using the frequency response function 

and the phase – plane methods [3,15,16].  

The behavior of nonlinear dynamic mechanical systems 

impacted by different external excitation frequency was 

examined and the parametric vibrations were analyzed 

[5-8,14-15]. Numerical integration was carried out to verify 

the theoretical predictions obtained. For the analysis of 

nonlinear dynamical systems many researchers used 

harmonic balance, modal interactions and other approximate 

methods. In the case of Hegazy U.H. et al. [3] approximate 

solutions were obtained using the multiple scales 

perturbation technique. In [15,16] the stability of the Duffing 

oscillator of fixed points (x = 0, ±1) was analyzed by 

linearizing the equations. Moreover, using the harmonic 

balance method, a frequency response equation was derived 

which describes the amplitude of a steady state response of 

the equation at a given frequency of excitation. Whilst the 

resonant frequencies of the system determined in this way 

are not sufficiently accurate, an analysis of the literature 

suggests there is no exact method for determining the 

system’s resonant frequencies.  

In short, the approximate methods used do not explain the 

physics of vibration of nonlinear dynamical systems. 

http://creativecommons.org/licenses/by/4.0/
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Moreover, they do not show the specificity of their behavior 

compared to linear systems.  

Thus, the purpose of the research was to study the physics 

of vibration of nonlinear single-degree-of-freedom dynamic 

systems, to explain their features, to provide methods for 

determining the resonant and parametric excitation 

frequencies of the system, to clarify the frequencies of 

internal excitation, generated through the properties of the 

nonlinear dynamic system itself, and to show their 

destructive effects on the vibration level of the system. 

2. Resonant Frequency of the System 

The motion of a nonlinear single-degree-of-freedom 

dynamical system is described by the following differential 

equation: 

 M   + c    +     +    
  = F sin(ωt),      (1) 

where M is mass of the system; c is coefficient of damping; 

  ,    are coefficients of stiffness; n is the exponent of    

x, ; ,  is acceleration and velocity; F is amplitude of 

external excitement force; ω is angular frequency; t is time.  

It is known that the kinetic energy of the system of motion 

is equal to its potential energy:  

  =   ; = 
   

 
;   = 

  

 
  + 

  

     
,     (2) 

where    and    are kinetic and potential energies,   is 

velocity. 

With regard to dependence (1), we found that when the 

amplitude of the vibration becomes equal to one (x = 1), the 

differential equation of the motion of a nonlinear system (1) 

becomes linear, because the unit raised in n degrees is equal 

to one (   = 1). Accordingly, the equation (1), where the 

value of x is equal to or very close to one, will be expressed 

as follows:  

M   + c   +   x +   x = F sin(ωt),       (3) 

when 1-   ≤ x ≤ 1+    where   magnitude is small enough. 

Using the method of solving the linear differential 

equations of non-damped systems we obtained: 

      =  
     

 
;     = 

  

 
;     = 

  

 
.     (4) 

The resonant frequency is less than the frequency of the 

non-damped system. The expressions (4) show that there are 

three resonant frequencies (  and ) in the 

system caused by force connection peculiarities. After 

considering the system linearity, we will form an additional 

equation for the description of the motion of that system 

using its stiffness characteristics   : 

M   + c   +   x +   x = F sin(ωt).      (5) 

Stiffness    is determined as follows: 

 and when x =1 then    =    . 

Equation (5) helped to determine the three resonant  

system’s frequencies caused by peculiarities of the stiffness 

connections of the system: 

       = 
      

 
;      = 

  

 
 =    ;     = 

   

 
.  (6) 

When x = 1, the kinetic and potential energy of the system 

(2) will be calculated as follows:    = 
   

 
; = 

  

 
 + 

  

   
. 

Using the kinetic and potential energy equality condition we 

then obtain: 

       = ( 
  

 
  

   

      
             =  

  

 
 =     =     ; 

       
   

      
.           (7) 

Thus, to determine the resonant frequencies of a 

single-degree-of-freedom nonlinear dynamic system, we 

must create and solve a system of linear homogeneous 

equations: 

 

       

        

  
   

 
  

  

   
 

  

 
 

 

  

  

 
 
 
 
 

 
 
 
 
 

=     ,   (8) 

when 1-   ≤ x ≤ 1+  . 

If the dynamic system has energy, force and stiffness 

connection peculiarities, then the total stiffness of the system 

will also be the magnitude, which will be evaluated as 

follows:  

     = 
           

                        
 
 
    =  

    

 
. (9) 

where     ,     and      are coefficient of stiffness, caused 

by energy, force and stiffness connection peculiarities. 

Expression (9) is only valid when n = 2,    = 0, and when 

n = 2 or n > 2 and    
≠ 0,  expression are complex and 

therefore are not included in this article. However, the total 

stiffness of the system shall in all cases be determined in the 

same way as for n = 2 and   = 0. The investigation showed 

that there are four types of resonant frequency groups in the 

systems under consideration, which are caused by energy, 

force, stiffness connections peculiarities and by system total 

stiffness. Thus, there are 8 different frequencies      ;    ; 

   ;       ;     ;        ;      ;      in systems. 

When    
= 0 then only four resonant frequencies: 

;  and  will be in the system. From 

expressions (4), (6-7) and (9) we observe that the 

resonant frequency is considerably lower than other ones 

which are defined by energy, power and stiffness connection 

peculiarities. Let us consider frequencies ratio: 

  =     /      =  
      

 
.       (10) 

The system’s resonant frequencies, which are defined   

by the force connection peculiarities (4), are not dependent 

on the exponent of polynomial degree. An indicator that 

shows the number of the frequency generated by the force 

connection peculiarities is higher than the frequency 

generated by energy connection can be calculated as follows:  
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  =   /      =  
   

 
.         (11) 

In this way, as the exponent of the polynomial increases, 

the frequencies described by the peculiarities of stiffness 

connections also increase, whereas energy frequency 

decreases.  

In this case, when the system will be resonant the 

magnitude of amplitude is calculated using the following 

formula: 

  = 
 

 
 

 

      
         

 ,        (12) 

where  is angular frequency of external excitation force; 
 

   = ( 
  

 
   . 

A common case      
value is calculated according to 

expression     
  = 2    

/ [(n+1)M], or n          . 

3. Parametric Excitation Frequency of 
the System 

To investigate the resonant and parametric frequencies of 

the system, and verify the obtained analytical results, the 

Runge–Kutta methods of numerical analysis was performed. 

Systems with quadratic, cubic and fourth order nonlinearities 

were examined. The resonant frequencies of the system with 

the quadratic nonlinearity, who’s the system parameters are:  

  = 100000 N/m;   = 0.0; F = 100000 N; M = 5.0 kg and 

c = 0.05, were calculated using formulas (4-6), (7,9). The 

following results were obtained:     = 115.47 ;     = 

18.38 Hz;    = 141.42     = 22.52 Hz;     = 200.0    ; 

    = 31.85 Hz; = 38.0 ;     = 6.10 Hz and = 

81,65 ;     = 13.00 Hz. 

Figure 1b shows that the first peak of the highest intensity 

is an external acting force      
 
6.10 Hz. The second peak  

f = 18.39 Hz corresponds to the frequency generated by the 

energy connection peculiarities. In this case, the peak of 

spectral density described with force connections 

peculiarities    = 22.52 Hz is smaller because of intensive 

vibration on the resonant frequencies,      = 31.85 Hz and 

     = 6.10 Hz of the system. The very significant increase in 

the system vibration level at the excitation frequency      = 

6.10 Hz can be explained by the fact that the latter frequency 

almost coincides with the system frequency of total stiffness 

subharmonic frequency     =     /2 = 6.50 Hz. At spectral 

density in Figure 1b has a maximum vibration level at      
= 

6.10 Hz and      =31.85 Hz, so in Figure 1a, only the 

vibration waves of      = 31.85 Hz are visible on the low 

frequency curve     = 6.10 Hz. However, at spectral density 

(Figure 1b) still has lower intensity frequencies at 30;43 and 

other frequencies and they are not peaks of resonant 

frequencies. To clarify the nature of the abovementioned 

frequencies, let us consider the frequencies of parametric 

vibration in nonlinear dynamical system. 

The resonant conditions in the system will only be when 

 (and only then) that (12) dependency will 

be valid. Otherwise, it is not possible so simple to express the 

nonlinear dynamical system vibration dependence on its 

parameters. However, the latter expression shows that as the 

amplitude of the vibration increases (when x > 1), the 

denominator should increase and the amplitude of the 

vibration than should decrease. Thus, to some degree the 

nonlinear dynamic system should dampen its vibrations. 

Moreover, due to its nonlinearity, the vibrating system can 

generate additional frequency which is called parametric 

vibration frequencies. To determine these let us consider 

changes in the velocity and acceleration of stiffness, 

damping, and inertia forces of nonlinear dynamic system 

under the influence of the external excitation force F(t) = F 

sin(t). 

Let us suppose that the aforementioned force will excite 

vibrations x(t) = A sin (t). 

  

 

Figure 1.  Result of solution of vibration and spectral density for quadratic 

nonlinearity when    
= 0;   = 100000 N/m;   = 31.85 ;     = 6.10 

Hz; F = 100000 N; M = 5.0 kg and c= 0.5 

The dynamic system (1) under consideration contains 4 

different types of forces: external excitation, stiffness, 
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damping, and inertia. When n = 1, the forces mentioned 

above will be such expressions:  

F(t)=F sin(t);    (x)=A(   
+   ) sin(t); 

  (t) = cA cos(t) and    (t) = - MA2 sin(t).   (13) 

The first (velocity) and the second (acceleration) 

derivative of forces (13) will be:  

 

  
       = A (       cos(t); 

 

  
      = - c sin(t) 

and 
  

   
      = -MA cos(t); 

  

   
       = - A (       sin(t);  

  

   
       = -c cos(t); 

  

   
     =M sin(t). (14) 

It can be seen from (13) and (14) that in a linear dynamic 

system the velocities and acceleration frequencies of the 

latter forces are the same as those of the external excitation 

force frequency . 

Table 1.  The frequencies of velocity and accelerations of the forces acting on the system 

 F(t)    (t)    (t)   (i) 
Number of different frequencies 

u 

n = 1     1 

n = 2  ,2 ,2ω,3ω,4ω... ,3ω,4ω... u > 4 

n = 3 

 

 

n = 4 

 

 

 

 

,3ω 

 

ω,2ω,4ω 

 

ω,3,5,7... 

 

,2,3,4ω,5ω,6ω, 

7ω,8ω,9ω,10ω,11ω... 

,3,5,7... 

 

,2,3,4ω,5ω,6ω, 

7ω,8ω,9ω,10ω,11ω... 

u > 7 

 

 

u > 11 

 

 

 

Figure 2.  Spectral density for the damping force, when =20
 
with 

frequencies, whose value is determined by (17) 

These are shown in the table of velocity and acceleration 

frequencies (Table 1). Since the nonlinear dynamic system is 

considered, the superposition principle does not apply. 

Therefore, it is necessary to examine the cumulative effects 

of forces on the system. When n = 2 then the forces acting on 

the system will be as follows:  

    (t) =    
      (ωt) +   A sin(ωt);   (t) = c(ω       

sin(2    +              ; and   (t) = M           (15) 

The velocity and accelerations of latter forces will be: 

 

   
       =    sin(2t) +    

A cos(t); 

 
 

  
      = c(2     

   sin(4t) 

+4        
 cos(2t)cos(t) - 2        

 
  

sin(2t)sin(t)   
     sin(2t)); 

 

  
              . (16) 

Similarly, velocities and accelerations of other forces at  

n > 2 can be found. Due to the complex expressions of the 

velocities and accelerations, we do not discuss them further 

in this paper. Analyzing the expressions of force, velocity 

and acceleration (15), (16) we find that when n = 2, the 

vibrating system will generate parametric frequencies: 

stiffness force – ω;2 …, damping force – ω,2ω,3ω,4ω… 

What the frequencies generated by the forces under 

consideration are shown in (Table 1). In this way, when n = 2, 

the system will generate parametric vibration with frequency: 

ω;2ω;3ω;4ω… or the parametric frequencies generated in 

the system can be described as follows:     = nω, when u = 

1;2;3;4…  

When n = 3, using the above method we get that (t) =

+ sin(t). The latter expression shows that 

stiffness force will generate  and 2*  parametric 

frequencies in the dynamic system. Damping force and their 

velocity generous ;3ω;5ω;7ω… parametric frequencies 

(Figure 2a). So when the n = 3 parameter u gets the following 
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values: u = 1;3;5;7... When n = 4, the damping force 

spectrum is shown in Figure 2b. 

In this way, when n is an even number in a nonlinear 

dynamic system will be also generated parametric vibrations. 

Equations (13 - 16) show only a fraction of the frequencies 

generated by velocity and acceleration forces in a nonlinear 

dynamic system. All frequencies generated by a nonlinear 

dynamic system are described in a conditionally called 

matrix - table (18). 

That way, when n >1 and it is an even and odd number, the 

vibration of a nonlinear dynamic system will generate 

parametric vibrations, the frequencies of which will be 

determined as follows: 

      = u* ,             (17) 

where u = 1;2;3;4;5;6;7;8;9... for even n and u = 1;3;5;7... for 

odd n. 

If the exponents of stiffness and damping forces are not 

equal, then the regularity of the change of the u parameter 

will be determined by the product of the latter indices. 

MM= 

 
 
 
 
 

       

 
 

  
      

 
  

   
      

 

  
 

  
            

 
 

  
   

 

  
          

 
  

   
  

 

  
            

 

 
 

  
   

 

  
            

 
  

   
   

 

  
          

  
  

   
   

 

  
           

    

 
 

  
    

 
  

   
    

 
 
 
 
 

, (18) 

where        – is the conditional notation of the cumulative 

effect of the stiffness force on the dynamic system. 

The analysis of (13-16,17) the dependencies, as well as the 

data in Table 1 and Figure 2 shows that: 

when dynamic system n = 1, it does not generate 

additional frequency parametric vibration; 

when dynamic systems n >1, it generates parametric 

vibration of additional frequencies and the higher the value 

of the n parameter the more they will be generated;  

in the dynamical system, as the values of the parametric 

frequencies increase, the amplitudes of the vibration 

decrease significantly (Figure 2); 

the results of the study showed that the frequency of 

parametric vibration is independent of their amplitude;  

their number and magnitude depend on the parameters of 

the nonlinearity of the dynamic system; 

the generated parametric vibration frequencies in a 

nonlinear dynamical system can be estimated (evaluated) by 

members of first row of the matrix–table MM.  

Thus, these studies demonstrate that the nonlinear 

dynamic system has resonant and parametric vibration 

frequencies, and identified analytical ways to determine 

them. 

4. Numerical Analysis and Discussion 

When the nonlinear dynamic system vibrates, all resonant 

frequencies will get in it, although the magnitude of their 

vibrations will not be the same (Figure 1a and b). Hence,  

the level of vibration will be higher for those resonant 

frequencies where the frequency of external excitation force 

will be repeated. If the ratio of system resonant and  

external excitation frequencies is an integer or close to it, 

then on the main vibration wave will be clearly seen  

times higher frequency wave (Figure 1a). The value of the 

 is calculated as follows:  

    =       ,          (19)  

where      is the system's resonant frequency.  

 

 

Figure 3.  Results of research for the quadratic nonlinearity of the system 

when    
= 0;    

 
100000N/m; 200 ;     =    = 31.85Hz; M 

= 5.0kg 

Figure 1b clearly shows that the level of the vibration of 

the resonant frequency     = 31.85 Hz is high enough and sp 

ratio magnitude for that frequency is approximately 

(31.85/6.10 = 5.21) 5 times greater than the external excited 

frequency (    = 6.10 Hz). It follows that the wave of 

resonant vibration (which is defined by stiffness connection 

peculiarities) will be observed on the wave of the external 

excitation vibration. In the considering case also   =      

    = 18.39/6.10 = 3.015. It means that the frequency of the 

     vibration wave on the external excitation vibration wave 



s p

s p
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should repeat approximately 3 times. Yet, the intensity of 

18.39 Hz frequency vibration in the spectral density of 

Figure 1b is significantly lower. When the dynamic system is 

exciting at the highest resonant frequency     =    = 31.85 

Hz we get almost concentric ellipses in the phase – space 

diagram (Figure 3a). It can be seen from the Figure 3b that 

vibrations of small amplitudes at     = 13.00 Hz and lower 

frequencies are excited in the dynamic system. It is important 

to note that the 13.00 Hz vibration frequency corresponds to 

the calculated total frequency of the system. The spectral 

density of the oscillations (Figure 3b) also shows that high 

intensity parametric vibrations are excited at a frequency of 

     = 2*31.85 Hz and lower intensity parametric vibration 

at frequency      = 3*31.85 Hz,      = 4*31.85 Hz, and 

     = 5*31.85 Hz. The research showed that at higher 

excitation forces, the amplitudes of      = 1*    ,      = 

3*     ,      = 5*      of the parametric vibration 

frequencies become larger than when the system vibrates at 

these      = 2*    ,       = 4*     ,      = 6*    ... 

frequencies.  

For the system with cubic nonlinearity whose parameters 

are:   =100000 
 

 
;    = 10000 

 

 
; F =100000 N; M = 5.0 kg 

and c = 0.05, the resonant frequencies of the system were 

calculated using the formulas (4), (6), (7), (9). The following 

results were obtained:        =17.44 Hz;      =15.92 Hz; 

     =7.12 Hz;      =23.62 Hz;     =22.19 Hz;    =7.12 

Hz;       =39.65 Hz;      =39.00 Hz and     = 3.84 Hz. 

The calculation results of spectral density are shown in 

Figure 4a. The phase – space diagram in Figure 4b shows 

that the dynamic system vibrates at a resonant frequency, and 

that there are approximately π / 2 radians between phases of 

the displacement and velocity and behaves like a linear 

system. 

Figure 4a shows the three main frequencies, one of which 

is determined by stiffness connection peculiarities 

(      =39.65 Hz), the less significant the second, and the 

third is determined by the parametric excitation frequencies: 

     = 3*39.65 Hz and      
 
= 5*39.65 Hz. 

The significant amplitude of the system’s vibration is 

caused by the external exciting force which frequency 

coincide with the system resonant frequency      = 39.65 Hz. 

The amplitudes of the lower frequency vibrations are small, 

because they are invisible in their spectral density Figure 4a. 

Therefore, the spectral density graph (Figure 4a) shows 

only the frequencies      = 1*39.65,       
 
3*39.65 and

 
      =5*39.65 Hz of the parametric vibrations. Thus, the 

computational results confirm that when n =2;3 and 4, the 

dynamic system generates the parametric vibration 

frequencies according to the determined regularities (17).  

In the case,    ≠ 0 where the external excitation  

frequency coincides with the system's resonant frequency 

     =     =      , the resonance conditions in the system  

will take place when x = 0. The vibration in the system with 

the cubic nonlinearity at the 44.72 ;     =7.12 

Hz;   = 100000 
 

 
;   = 10000 

 

 
; F = 100000 N; M = 5.0 kg 

and c = 0.05 are shown in Figure 5a and their spectral density 

– in Figure 5b. By calculating  values according the 

expression (19), we find that     /     = 22,19/7,12 = 3,12. 

This means that the frequency defined by the force 

connection peculiarities is approximately 3 times higher than 

the external excitation frequency. Hence, in Figure 5a, three 

higher frequency waves are clearly visible on the low 

frequency vibration wave. In a spectral density (Figure 5b), 

we will observe resonant frequencies: 7.12;23.62;39.0 Hz 

and other parametric frequencies calculated using the 

analytical method. But when the frequency of the external 

force coincides with the system's resonant frequency  

      = 7.12 Hz, then the magnitude of the vibration of that 

frequency significantly increases and covers smaller 

amplitudes of vibrations of other frequencies. Therefore, we 

cannot see vibration of all frequencies of the system in 

Figure 5a and b. 

 

 

Figure 4.  Results of research for the cubic nonlinearity of the system when 

acting force frequency = 249.00 ;     
 
= 39.65 Hz coincides with 

resonant frequency of the system      = 39.65 Hz,    
= 0.   = 100000 

 

 
; 

F = 200000 N, M = 5.0 kg
 

 s
1
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1



12 Mečislovas Mariūnas:  Methods for Determining Resonant and Parametric  

Excitation Frequencies of Nonlinear Dynamic Systems 

 

  

 

Figure 5.  Amplitude of vibration and spectral density when  = 44.72 

   ;     = 7.12 Hz and      = 7.12 Hz;   = 10000 N/m;    = 100000 

N/m; F= 100000 N; M = 5.0 kg 

The last example shows two errors in the parameters of the 

setting system and the frequency of external excitement 

force. First, the external force excitation frequency coincided 

with the system's resonant frequency       = 7.12 Hz    

and second, the system parametric excitation frequency 
        3*7.12 = 21.36 Hz is close to the force connection 

peculiarities determined frequency    =23.62 Hz.
 

The resonant and parametric excitation frequencies were 

studied for other parameters of the system, for example: 

    = 1.0 N; M = 1.0 kg;    = 1.0 
 

 
 and    = 1.0 

 

 
. 

It is important to note that when n = 2;3 and 4 are 

subharmonics at their vibration and velocity spectral 

densities, which the frequencies are twice less the total 

stiffness frequency of the system (6.50 Hz at n = 2 and 1.92 

Hz at n = 3). 

Subharmonic vibrations at f = 6.50 Hz are clearly visible 

in Figure 3b and at 1.92 Hz – in Figure 1b. Further research 

may clarify their origin. For the analyzed dynamic system, 

the results of which are presented in Figure 3, it was enough 

to change only the external excitation frequency ω and we 

obtained a new picture of the system vibration characteristics 

in Figure 6. This is because the excitation frequency,   

    = 17.84 Hz, is close to the system resonant frequency 

    = 18.38 Hz. 

 

 

Figure 6.  Results of research for the quadratic nonlinearity of the system 

when   = 0;   = 100000 N/M; = 112.0 ;     
 
= 17.84 Hz; M = 

5.0 kg and c = 0.05 

In addition, this excitation frequency also excites the 

vibration amplitudes of the stiffness resonant frequency 

    = 31.85 Hz, since it is almost twice the excitation 

frequency and the amplitudes of other frequencies are 

considerably smaller (Figure 6b). Figure 6b also shows that a 

large amplitude of vibration is excited at the system total 

frequency      subharmonic frequency, since its frequency 

is nearly 3 times smaller the external excitation frequency.  

Without determining resonant and parametric frequencies 

in a vibrating nonlinear dynamic system, we will not be able 

to explain the complexity of the phase - space diagrams and 

the complexity of the vibration process. Moreover, we will 

act s
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not be able to properly determine dynamic system 

parameters and operating modes.  

Overall, the results of the studies show that the appropriate 

parameters and operating modes of the system need to be 

determined at the design process. Notwithstanding [1-16],  

no such results have been reported, and neither has there 

been any analytical determination of nonlinear dynamic 

relationships between resonant and parametric frequencies 

and its external excitation frequency. In [15,16] the stability 

of a simplified (linearized) nonlinear dynamic system of 

Duffing at (x = 0, ±1) is examined, and also the magnitude of 

the damping force directly proportional to velocity. However, 

this does not provide analytical expressions for the system 

resonant and parametric frequencies and does not comment 

on it.  

Moreover, [1-16] do not reveal: force, stiffness and energy 

relations in the vibrating nonlinear dynamical system and 

their influence on resonant frequencies. In this way it was 

impossible to explain the physics of the processes taking 

place in the vibration nonlinear dynamic system, to create a 

nonlinear mechanical dynamic system and to determine its 

safe working conditions, which ensure its lasting and stable 

operation.  

The numerical investigation in this research showed that 

the presented methods for determining the resonant and 

parametric excitation frequencies are correct, and can be 

used in the design process for calculating their values for 

quadratic, cubic and fourth order nonlinearities of the 

single-degree-of-freedom system.  

5. Conclusions 

This paper presents analytical methods for determining  

the resonant and parametric excitation frequencies of the 

systems, which enable choosing reasonable dynamic 

characteristics of the system during the design process   

for quadratic, cubic and fourth order nonlinearities of 

single-degree-of-freedom systems and to reduce its 

vibration level. 

Analytical results 

The analytical results indicate that: 

1.  There are four groups of resonant frequencies, 

determined by the energy, force and stiffness 

characteristic connections peculiarities and the total 

stiffness of the nonlinear dynamical system.  

2.  The nonlinear system generates a very wide spectrum 

of parametric excitation frequencies and the higher 

the value of the n parameter the more they will be 

generated. The frequency of parametric vibration is 

independent of their amplitude. Parametric excitation 

frequencies are u times repetitive by the frequency of 

external excitation. 

3  When the exponent of polynomial increase then the 

frequencies determined by the energy characteristic 

connection peculiarities decrease, while frequencies 

determined by stiffness connections peculiarities 

increase. The system's resonant frequencies, which are 

determined by the energy connection peculiarities, are 

smaller than the frequencies determined by stiffness 

connections peculiarities. 

4.  The system's resonant frequencies, which are 

determined by the force connection peculiarities, are 

not dependent on the exponent of polynomial.  

The results of numerical calculations 

The results of numerical calculations allow us to prove 

that: 

1.  The vibration level of the system significantly 

increases when the parametric excitation frequency 

coincides with the system's resonant frequency. 

2.  In the dynamical system, as the values of the 

parametric frequencies increase, the amplitudes of the 

vibration decrease significantly. 

3.  By setting the system’s parameters (stiffness, mass, 

damping, etc.), we determine its resonant frequencies, 

but the frequency and number of parametric vibrations 

of a dynamic system depend on the level of 

nonlinearity of the system. 

4.  The certainty of the analytical methods was verified 

by numerical calculations. 
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