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Abstract  In this paper, an approximate solution of the Sitnikov problem is investigated using both the Euler and 

fourth-order Runge-Kutta methods. The various values of eccentricities were obtained and demonstrated by simulations 

using MATCAD which showed that the range for the search of eccentricities can be narrowed down at different values of 

eccentricities, different sinusoidal frequencies were obtained. 
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1. Introduction 

The Sitnikov problem describes the motion of a particle of 

negligible mass attracted by two equal masses 𝑚1 = 𝑚2 =
1

2
. 

The primaries 𝑚1 𝑎𝑛𝑑 𝑚2  move on the plane  𝑥, 𝑦 , 

following an elliptic motion with eccentricity 𝑒 ∈ [0,1] , 
while the massless body 𝑚3  performs motion along an 

axis perpendicular to the primary orbit plane through the 

barycentre of the primaries. The minimal period of the 

elliptic motion is 2𝜋  if the gravitational constant is 

assumed to be 𝐺 = 1. If 𝑧 denotes the position of the 

particle 𝑚3 in a coordinate system with origin at the centre 

of mass of the primaries, then the equation of motion of the 

Sitnikov problem becomes 

𝑧 +
𝑧

 𝑧2+𝑟(𝑡,𝑒)2 
3

2 
= 0         (1.1) 

where 𝑧 is the distance from the center of the orbit to 𝑚3, 

𝑧  is acceleration, 𝑒  is eccentricity and 𝑟(𝑡, 𝑒)  is the 

distance of the primaries to their center of mass and it is 

given by  

𝑟 𝑡, 𝑒 =
1−𝑒𝑐𝑜𝑠  𝑢(𝑡)

2
           (1.2) 

which is a circular or an elliptic solution of the Kepler 

problem 

𝑟 =
1−𝑒2

16𝑟3 −
1

8𝑟2              (1.3) 

with eccentricity 𝑒 = 0 𝑜𝑟 0 < 𝑒 < 1 , respectively. Here 

𝑢(𝑡) is the eccentricity anomaly which is a function of time 

through Kepler equation 
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𝑢 − 𝑒 𝑠𝑖𝑛𝑢 𝑡 = 𝑡             (1.4) 

without loss of generality, when 0 < 𝑒 < 1, we take the 

origin of time in such a way that at 𝑡 = 0 the primaries are 

at the pericenter of the ellipse. We note that system (1.1) 

depends on one parameter, the eccentricity 𝑒 ∈  [0,1]. 
when the eccentricity 𝑒 is zero (that is, the primaries move 

on the circular orbit 𝑟 𝑡 =
1

2
 of the Kepler problem (1.3)), 

(1.1) becomes the equation of motion 

𝑧 = −
𝑧

 𝑧2+
1

4
 

3
2 
               (1.5) 

for the circular Sitnikov problem. 

More information can be found in [5] and in the more 

recent [1]. The existence of symmetric (even or odd) 

periodic solutions has been discussed in [2-4-6-7]. In [2] 

methods of local analysis were employed, and they got 

results which are valid only for small eccentricity 𝑒. The 

papers [4, 6] considered arbitrary eccentricity from a 

theoretical perspective by using the global continuation 

method due to Leray and Schauder, and [6] found families 

of symmetric periodic solutions bifurcating from the 

equilibrium at the center of mass. These families were 

labelled according to the number of zeros in the same 

fashion as it occurs in the work by Rabinowitz [9] for other 

non-linearities. [7] combines Shooting arguments with 

Sturm comparison theory to prove the existence of odd 

periodic solutions with a prescribed number of zeros.  

While [3] presents a very complete description of the set  

of symmetric periodic solutions based on numerical 

computations. [8] discussed on the circular Sitnikov 

problem as a subsystem of the three-dimensional circular 

restricted three-body problem, where they used elliptic 

functions to give the analytical expressions for the solutions 

of the circular Sitnikov problem and for the period function 

of its family of periodic orbits. They also analyzed the 

qualitative and quantitative behaviour of the period function. 

The purpose of this note is to show that it is also possible to 
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obtain numerical results for all values of the eccentricity 

using only very elementary tool, the fourth-order 

Runge-Kutta method. This paper is divided into sections. 

Section 2 is the definition and theorems which was used  

in the result while section 3 is the derivation of the 

fourth-order Runge-Kutta method, section 4 is the result 

obtained with numerical simulations and section 5 is 

conclusion. 

2. Preliminary 

Theorem 1. Precision of the Runge-Kutta methods 

Assume that 𝑦(𝑡) is the solution of the problem 

𝑦𝑛 = 𝑓 ′(𝑡, 𝑦)               (2.1) 

If 𝑦 𝑡 ∈ 𝐶3,  𝑡0, 𝑏  𝑎𝑛𝑑  𝑡𝑖 , 𝑦𝑖 
𝑚 = 0  is the sequence 

of approximations generated by the Runge-Kutta method of 

order 2, then 

 𝐸𝑖 =  𝑦 𝑡𝑖 − 𝑦𝑖 = 0 ℎ2   

 𝐸𝑖+1 =  𝑦 𝑡𝑖+1 − 𝑦𝑖 − ℎ𝑇𝑁 𝑡, 𝑦𝑖  = 0 ℎ3   

Given the interval  𝑡0, 𝑏 , we satisfy that  

𝐸 𝑦 𝑏 , ℎ =  𝑦 𝑏 , 𝑦𝑚  = 0 ℎ2  

Theorem 2. Assume the existence of such a solution 𝑦 𝑡  

is guaranteed and unique, provided 𝑓 𝑡, 𝑦 , 

(i)  is continuous in the infinite strip 

𝑅 =  𝑥0 ≤ 𝑥 ≤ 𝑇,  𝑦 < ∞  

(ii)  is more specifically Lipchitz continuous in the 

dependent variable 𝑦 over the same region 𝑅, that 

is there exist a positive constant 𝐿 such that for all 
 𝑡, 𝑦 ,  𝑡, 𝑦′ ∈ 𝑅  

 𝑓 𝑡, 𝑦 − 𝑓(𝑡, 𝑦′) < 𝐿 𝑦 − 𝑦′  . 

Theorem 3. Suppose that 𝜎 is a nonempty, closed and 

bounded limit set of a planar flow, then one of the following 

holds: 

  𝜎 is an equilibrium point 

  𝜎 is a periodic solution 

  𝜎 consists of a set of equilibria and connecting orbits 

between these equilibria. 

Proof 

We consider 𝜎 = 𝑤(𝑥) for some 𝑥 ∈ ℝ2. The argument 

in the case of an 𝛼 − 𝑙𝑖𝑚𝑖𝑡 set is similar. 

Let 𝑦 ∈ 𝑤 𝑥  𝑎𝑛𝑑 𝑧 ∈ 𝑤(𝑦). If 𝑧 is not an equilibrium 

point, then 𝑤(𝑦) must be a periodic solution and if 𝑤(𝑦) 

is a periodic solution then 𝑤 𝑥 = 𝑤(𝑦) and thus 𝑤(𝑥) is 

also a periodic solution. 

Now we assume that 𝑧 ∈ 𝑤(𝑦) is an equilibrium point. 

Then 𝑤(𝑦) must consist entirely of equilibria since if there 

is a point 𝑧 ∈ 𝑤(𝑦) that is not an equilibrium, then we 

know that 𝑤(𝑦) is a periodic solution (and in particular 

contains no equilibrium). We note that since 𝑦 ∈ 𝑤 𝑥  it 

follows that  ∅𝑡(𝑦) 𝑡∈ℝ ⊂ 𝑤(𝑥) , where ∅𝑡  denotes the 

time-t flow. Hence ∝ (𝑦) ∈ 𝑤(𝑥) and for the same reasons 

as before ∝ (𝑦) must be an equilibrium, since otherwise 

𝑤 𝑦 (𝑎𝑛𝑑 𝑤(𝑥)) must be a periodic solution. Hence, we 

find that either 𝑦 is an equilibrium point, or that 𝑦 lies in 

the intersection between the stable and unstable manifolds 

of the equilibria 𝑤 𝑦  𝑎𝑛𝑑 ∝ (𝑦) (that is on a connecting 

orbit between equilibria). 

Theorem 4. For each integer 𝑚 ≥ 1 , there exists a 

unique solution 𝑧(𝑡) of (1.1) satisfying the conditions,  

𝑧 𝑡 + 2𝑚𝑡 = 𝑧 𝑡 , 𝑧 −𝑡 = −𝑧 𝑡 , 𝑡 ∈ ℝ    (2.2) 

𝑧 𝑡 > 0, 𝑡 ∈  0, 𝑚𝜋            (2.3) 

The variational equation at the center of mass 𝑧 = 0 will 

play an important role; it is the equation of Hill’s type 

𝜉 +
1

𝑟(𝑡,𝑒)3 𝜉 = 0             (2.4) 

Theorem 3. Assume that 𝑚 ≥ 1 𝑎𝑛𝑑 𝑁 ≥ 0 are given 

integers. Then the following statements are equivalent: 

i)  there exist a solution of (1.1) satisfying the condition 

in (2.2) and having exactly 𝑁 zero in the interval 

 0, 𝑚𝜋  
ii)  the solution 𝜉(𝑡)  of (2.4) with initial conditions 

𝜉 0 = 0, 𝜉  0 = 1  has more than 𝑁  zero in 

 0, 𝑚𝜋  

3. Derivation of Fourth-order 
Runge-Kutta Method 

The simple Euler method comes from using just one term 

from the Taylor series for 𝑦(𝑥) expanded about 𝑥 = 𝑥0 . 

The modified Euler method can also be derived from using 

terms 

𝑦 𝑥0 + ℎ = 𝑦 𝑥0 + 𝑦′ 𝑥0 ∗ ℎ + 𝑦′′  𝑥0 ∗
ℎ2

2
 (3.1) 

If we replace the second derivative with a 

backward-difference approximation, 

𝑦 𝑥0 + ℎ = 𝑦 𝑥0 + 𝑦′ 𝑥0 ∗ ℎ 

+  
(𝑦′ 𝑥0 + ℎ − 𝑦′(𝑥0))

ℎ
 ∗

ℎ2

2
 

 = 𝑦 𝑥0 +
𝑦 ′  𝑥0 +𝑦 ′ (𝑥0+ℎ)

2
ℎ          (3.2) 

We get the formula for the modified method. What if we 

use more terms of the Taylor series? Two German 

mathematicians, Runge and Kutta, developed algorithms 

from using more than two terms of the series. We will 

consider only fourth-order formula. The modified Euler 

method is a second-order Runge-Kutta method. 

Second-order Runge-Kutta methods are obtained by 

using a weighted average of two increments to 

𝑦 𝑥0 , 𝑘1 𝑎𝑛𝑑 𝑘2. For the equation 
𝑑𝑦

𝑑𝑥
 = 𝑓 𝑥, 𝑦  

𝑦𝑛+1 = 𝑦𝑛 + 𝑎𝑘1 + 𝑏𝑘2, 

𝑘1 = ℎ𝑓 𝑥𝑛 , 𝑦𝑛 ,                   (3.3) 

𝑘2 = ℎ𝑓(𝑥𝑛 + 𝛼ℎ, 𝑦𝑛 + 𝛽𝑘1). 

We can think of the values 𝑘1 𝑎𝑛𝑑 𝑘2 as estimates of 

the change in 𝑦 when 𝑥 advances by ℎ, because they are 

the product of the change in 𝑥 and a value for the slope of 
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the curve, 
𝑑𝑦

𝑑𝑥
. 

The Runge-Kutta methods always use the simple Euler 

estimate as the first of ∆𝑦; the other estimate is taken with 

𝑥 𝑎𝑛𝑑 𝑦 stepped up by the fractions 𝛼 𝑎𝑛𝑑 𝛽 𝑜𝑓 ℎ and of 

the earlier estimate of ∆𝑦, 𝑘1. Our problem is to devise a 

scheme of choosing the four parameters, 𝑎, 𝑏, 𝛼, 𝛽. We do 

also by making equation (3.3) agree as well as possible with 

the Taylor-series expansion, in which the 𝑦 − 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 

are written in terms of 𝑓, from 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑥𝑛 , 𝑦𝑛 +
ℎ2

2
𝑓 ′ 𝑥𝑛 , 𝑦𝑛 + ⋯ 

An equivalent form, because 
𝑑𝑓

𝑑𝑥
 = 𝑓𝑥 + 𝑓𝑦

𝑑𝑦
𝑑𝑥

 =

𝑓𝑥 + 𝑓𝑦𝑓, is  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛 + ℎ2  
1

2
𝑓𝑥 +

1

2
𝑓𝑦𝑓 

𝑛
     (3.4) 

[All the derivatives in equation (3.4) are calculated at  

the point  𝑥𝑛 , 𝑦𝑛 .] we now rewrite equation (3.4) by 

substituting the definitions of 𝑘1 𝑎𝑛𝑑 𝑘2. 

𝑦𝑛+1 =
𝑦𝑛 + 𝑎ℎ𝑓 𝑥𝑛 , 𝑦𝑛 + 𝑏ℎ𝑓 𝑥𝑛 + 𝛼ℎ, 𝑦𝑛 + 𝛽ℎ𝑓 𝑥𝑛 , 𝑦𝑛   (3.5) 

To make the last term of equation (3.5) comparable to 

equation (3.4), we expand 𝑓 𝑥, 𝑦  in a Taylor series in 

terms of 𝑥𝑛 , 𝑦𝑛  remembering that 𝑓 is a function of two 

variables, retaining only first derivative terms: 

𝑓 𝑥𝑛 + 𝛼ℎ, 𝑦𝑛 + 𝛽ℎ𝑓(𝑥𝑛 , 𝑦𝑛) ≈  𝑓 + 𝑓𝑥𝛼ℎ + 𝑓𝑦𝛽ℎ𝑓 
𝑛

(3.6) 

On the right side of both equations (3.4) and (3.6), 𝑓 

and its partial derivatives are all to be evaluated at  𝑥𝑛 , 𝑦𝑛 . 

Substituting from equation (3.6) into equation (3.5), we 

have 

𝑦𝑛+1 = 𝑦𝑛 +   𝑎 + 𝑏 ℎ𝑓𝑛 + ℎ2 𝛼𝑏𝑓𝑥 + 𝛽𝑏𝑓𝑦𝑓 
𝑛

  (3.7) 

Equation (3.7) will be identical to equation (3.4) if 

𝑎 + 𝑏 = 1, 𝛼𝑏 =
1

2
, 𝛽𝑏 =

1

2
 . 

Note that only three equations need to be satisfied by the 

four unknowns. We can choose one value arbitrary (with 

minor restrictions); hence, we have a set of second-order 

methods. 

One choice can be 𝑎 = 0, 𝑏 = 1;  𝛼 =
1

2
, 𝛽 =

1

2
 .  this 

gives the midpoint method. 

 

Another choice can be 𝑎 =
1

2
, 𝑏 =

1

2
;  𝛼 = 1, 𝛽 = 1, 

which give the modified Euler. 

Still another possibility is 𝑎 =
1

3
, 𝑏 =

2

3
; 𝛼 =

3

4
, 𝛽 =

3

4
; 

this is said to give a minimum bound to the error. All of 

these are special cases of second-order of Runge-Kutta 

methods. 

Fourth-order Runge-Kutta methods are most widely used 

and are derived in similar fashion. 

Greater complexity results from having to compare terms 

through ℎ4 , and this gives a set of 11 equations in 13 

unknowns. The set of 11 equations can be solved with 2 

unknowns being chosen arbitrarily. The most commonly 

used set of values leads to the procedure; 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4 ,  

𝑘1 = ℎ𝑓 𝑥𝑛 , 𝑦𝑛 ,  

𝑘2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘1),          (3.8) 

𝑘3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
𝑘2), 

𝑘4 = ℎ𝑓 𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3 .  

This Runge-Kutta method will be used to solve equation 

(1.1) in section 4. Numerically, we shall use Euler method 

and fourth-order Runge-Kutta method. 

4. Results 

Considering equation (1.1); 

Let 𝑧 = 𝜑, such that 𝑧 = 𝜑 . 
Therefore; equation (1.1) becomes; 

𝜑 = −
𝑧

 𝑧2 + 𝑟(𝑡, 𝑒)2 
3

2 
 

But from theorem 2, equation (3.5) states; 

𝜑 = −
1

𝑟(𝑡,𝑒)3 𝑦, at 𝜉 = 𝑦, 

which is linear. (Hill’s type of equation at 𝑧 = 0).  

Euler method 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 𝑡, 𝑒 ,  

𝜑 = −
𝑦

𝑟(𝑡,𝑒)3. 

Given 𝑟 𝑡, 𝑒 =
1

2
 1 − 𝑒 cos 𝑢(𝑡) , 𝑙𝑒𝑡 𝑢 𝑡 = 0, 𝑒 ∈

 0,1 , ℎ = 0.02, 𝑦 0 = 0, 𝑓0 = 1. 

Table 1 

𝑒 𝑦𝑛  𝜑 = 𝑓𝑛  

0 0 1 

0.02 0.02 −0.169997 

0.04 0.016600 −0.150101 

0.06 0.013598 −0.130973 

0.08 0.010979 −0.112795 

0.10 0.008723 −0.095726 

0.12 0.006808 −0.079921 

0.14 0.005210 −0.065529 
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0.16 0.003899 −0.052627 

0.18 0.002846 −0.041294 

0.20 0.002020 −0.031563 

0.22 0.001389 −0.023416 

0.24 0.000921 −0.016785 

0.26 0.000585 −0.011549 

0.28 0.000354 −0.007587 

0.30 0.000202 −0.004711 

0.32 0.000108 −0.002748 

0.34 0.000053 −0.001476 

0.36 2.35 × 10−5 −7.18 × 10−4 

0.38 9.16 × 10−6 −3.07 × 10−4 

0.40 3.02 × 10−6 −1.12 × 10−4 

0.42 7.80 × 10−7 −3.20 × 10−5 

0.44 1.40 × 10−7 −6.38 × 10−6 

0.46 1.24 × 10−8 −6.30 × 10−7 

0.48 −2.00 × 10−10 1.14 × 10−8 

0.50 2.8 × 10−11 −1.79 × 10−9 

0.52 −7.8 × 10−12 5.64 × 10−10 

0.54 3.48 × 10−12 −2.86 × 10−10 

0.56 −2.24 × 10−12 2.10 × 10−10 

0.58 1.96 × 10−12 −2.12 × 10−10 

0.60 −2.28 × 10−12 2.85 × 10−10 

0.62 3.42 × 10−12 −4.99 × 10−10 

0.64 −6.56 × 10−12 1.12 × 10−9 

0.66 1.58 × 10−11 −3.22 × 10−9 

0.68 −4.86 × 10−11 1.19 × 10−8 

0.70 1.89 × 10−10 −5.60 × 10−8 

0.72 −9.31 × 10−10 3.39 × 10−7 

0.74 5.85 × 10−9 −2.66 × 10−6 

0.76 −4.74 × 10−8 2.74 × 10−5 

0.78 5.01 × 10−7 −3.76 × 10−4 

0.80 −7.02 × 10−6 7.02 × 10−3 

0.82 1.41 × 10−3 −1.934156 

0.84 −0.037273 72.798828 

0.86 1.418704 −4136.163265 

0.88 −81.304561 376410.0046 

0.90 7446.895531 −59575164.25 

0.92 −1184056.389 1.85 × 1010  

0.94 368815943.6 −1.37 × 1013  

0.96 −2.74 × 1011  3.43 × 1016  

0.98 6.86 × 1014 −6.86 × 1020 

1.00 −1.37 × 1019 … 

 

The table above shows the results. 

Fourth-order Runge-Kutta methods: 

𝑦𝑛+1 = 𝑦𝑛 +
1

6
 𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4 ,  

Using the same parameters, we obtain the results in the 

table below; 
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Table 2 

𝑒 𝑦𝑛  𝑘1 𝑘2 𝑘3 𝑘4 

0 0 0 0 0 0 

0.02 0.002825 0.02 −0.001649 1.4 × 10−4 −2.3 × 10−5 

0.04 0.002371 −4.8 × 10−4 −4.5 × 10−4 −4.6 × 10−4 −4.3 × 10−4 

0.06 0.001920 −4.3 × 10−4 −4.0 × 10−4 −4.1 × 10−4 −6.6 × 10−4 

0.08 0.001573 −3.7 × 10−4 −3.5 × 10−4 −3.5 × 10−4 −3.2 × 10−4 

0.10 0.001272 −3.2 × 10−4 −3.0 × 10−4 −3.0 × 10−4 −2.8 × 10−4 

0.12 0.001014 −2.8 × 10−4 −2.6 × 10−4 −2.6 × 10−4 −2.4 × 10−4 

0.14 7.95 × 10−4 −2.4 × 10−4 −2.2 × 10−4 −2.2 × 10−4 −2.0 × 10−4 

0.16 6.13 × 10−4 −2.0 × 10−4 −1.8 × 10−4 −1.8 × 10−4 −1.7 × 10−4 

0.18 4.64 × 10−4 −1.7 × 10−4 −1.5 × 10−4 −1.5 × 10−4 −1.4 × 10−4 

0.20 3.43 × 10−4 −1.4 × 10−4 −1.2 × 10−4 −1.2 × 10−4 −1.1 × 10−4 

0.22 2.50 × 10−4 −1.1 × 10−4 −9.0 × 10−5 −9.3 × 10−5 −8.4 × 10−5 

0.24 1.76 × 10−4 −8.4 × 10−5 −7.3 × 10−5 −7.5 × 10−5 −6.4 × 10−5 

0.26 1.20 × 10−4 −6.4 × 10−5 −5.5 × 10−5 −5.6 × 10−5 −4.7 × 10−5 

0.28 7.96 × 10−5 −4.7 × 10−5 −4.0 × 10−5 −4.1 × 10−5 −3.4 × 10−5 

0.30 5.09 × 10−5 −3.4 × 10−5 −2.8 × 10−5 −2.9 × 10−5 −2.4 × 10−5 

0.32 3.13 × 10−5 −2.4 × 10−5 −1.9 × 10−5 −2.0 × 10−5 −1.6 × 10−5 

0.34 1.84 × 10−5 −1.6 × 10−5 −1.2 × 10−5 −1.3 × 10−5 −9.9 × 10−6 

0.36 1.03 × 10−5 −1.0 × 10−5 −7.8 × 10−6 −8.5 × 10−6 −6.1 × 10−6 

0.38 5.44 × 10−6 −6.3 × 10−6 −4.6 × 10−6 −5.1 × 10−6 −3.5 × 10−6 

0.40 2.70 × 10−6 −3.7 × 10−6 −2.5 × 10−6 −2.9 × 10−6 −1.9 × 10−6 

0.42 1.24 × 10−6 −2.0 × 10−6 −1.3 × 10−6 −1.6 × 10−6 −9.1 × 10−7 

0.44 5.26 × 10−7 −1.0 × 10−6 −6.3 × 10−7 −7.9 × 10−7 −4.0 × 10−7 

0.46 2.04 × 10−7 −4.8 × 10−7 −2.8 × 10−7 −3.7 × 10−7 −1.6 × 10−7 

0.48 7.20 × 10−8 −2.1 × 10−7 −1.1 × 10−7 −1.6 × 10−7 −4.9 × 10−8 

0.50 2.28 × 10−8 −8.2 × 10−8 −3.7 × 10−8 −6.4 × 10−8 −9.9 × 10−9 

0.52 1.36 × 10−8 −2.9 × 10−8 −1.1 × 10−8 −2.3 × 10−8 4.3 × 10−8 

0.54 3.68 × 10−9 −1.9 × 10−8 −5.8 × 10−9 −1.7 × 10−8 4.8 × 10−9 

0.56 1.03 × 10−9 −6.1 × 10−9 −1.2 × 10−9 −5.4 × 10−9 3.3 × 10−9 

0.58 3.46 × 10−10 −1.9 × 10−9 −1.3 × 10−10 −1.9 × 10−9 1.9 × 10−9 

0.60 1.72 × 10−10 −7.5 × 10−10 6.4 × 10−11 −8.8 × 10−10 1.3 × 10−9 

0.62 1.78 × 10−10 −4.3 × 10−10 1.4 × 10−10 −7.6 × 10−10 1.7 × 10−9 

0.64 3.08 × 10−10 −5.2 × 10−10 2.6 × 10−10 −9.7 × 10−10 2.7 × 10−9 

0.66 1.13 × 10−9 −1.1 × 10−9 8.3 × 10−10 −2.7 × 10−9 9.7 × 10−9 

0.68 9.15 × 10−9 −4.6 × 10−9 5.2 × 10−9 −1.7 × 10−8 7.6 × 10−8 

0.70 1.74 × 10−7 −4.5 × 10−8 7.1 × 10−8 −2.4 × 10−7 1.4 × 10−6 

0.72 8.05 × 10−6 −1.0 × 10−6 2.2 × 10−6 −8.5 × 10−6 6.1 × 10−5 

0.74 9.54 × 10−4 −5.9 × 10−5 1.7 × 10−4 −7.7 × 10−4 6.9 × 10−3 

0.76 0.763069 −8.7 × 10−3 0.034769 −0.188087 1.077431 

0.78 721.703614 −8.831817 48.063684 −326.248829 4890.845379 

0.80 2165610.343 −10844.53214 81210.45169 −714010.5297 14265776.52 

0.82 2.28 × 1010  −43312206.86 454655036.4 −5353389789 1.5 × 1011  

0.84 9.61 × 1014  −6.26 × 1011  9.45 × 1012  −1.55 × 1014  6.1 × 1015  

0.86 1.95 × 1020 −3.8 × 1016  8.4 × 1017 −2.0 × 1019 1.2 × 1021 

0.88 2.19 × 1026 −1.1 × 1022 4.0 × 1023  −1.5 × 1025 1.3 × 1027 

0.90 1.90 × 1033 −2.0 × 1028 1.2 × 1030  −7.2 × 1031 1.2 × 1034 

0.92 1.87 × 1041 −3.0 × 1035 3.3 × 1037  −3.6 × 1039 1.1 × 1042 

0.94 3.88 × 1050 −5.8 × 1043 1.4 × 1046  −3.2 × 1048 2.3 × 1051 

0.96 4.91 × 1061 −2.9 × 1053 1.8 × 1056  −1.2 × 1059 2.9 × 1062 

0.98 3.60 × 1075 −1.2 × 1065 3.6 × 1068  −1.1 × 1072 2.2 × 1076 

1.00 … −7.2 × 1079 2.9 × 1086  −2.3 × 1091 … 
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MATHCAD SIMULATION 

SIMULATION OF  
3 2

22 , ; z z z t e


  
   

        0 0,  0 1,   , 0.5 1 cosz z t e e u t    . 

u(t) := 0    e := 0.5 

Define a function that determines a vector of derivative 

values at any solution point (t,Z): 

 

     

1

0

1.5
22

0

Z

Z
D t,Z  :

Z 0.5 1 e cos u t

 
 

 
         

 

Define additional arguments for the ODE solver: 

t0 := 0 Initial value of independent variable 

t1 := 150 final value of independent variable 

Z0 := 
0

1

 
 
 

 Vector of initial function values 

N := 1500 Number of solution values on [t0, t1] 

Solution matrix:   

 S : Rkadapt Z0, t0, t1,N,D  

0
t : S   Independent variable values 

1
: Sz1   First solution function values 

2
: Sz2   Second solution function values 

 

 

Solution matrix 

 

Trajectory  z t
 
as a function of time 

 

Velocity  z t  as a function of time 

  

 Phase portrait 

u(t) := 0                     e := 0.9 

 

Trajectory  z t
 
as a function of time 
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Velocity  z t
 
as a function of time 

  

Phase portrait 

u(t) := t                       e := 0.5 

 

Trajectory  z t
 
as a function of time 

  

Velocity  z t
 
as a function of time 

  

Phase portrait 

u(t) := t                      e := 0.9 

 

Trajectory  z t
 
as a function of time 

  

Velocity  z t
 
as a function of time 

  

Phase portrait 
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u(t) := t                    e := 0.5 

 

Trajectory  z t
 
as a function of time 

 

Velocity  z t
 
as a function of time 

  

 Phase portrait 

u(t) := t                     e := 0.9 

 

Trajectory  z t  as a function of time 

  

Velocity  z t  as a function of time 

 

Phase portrait 

5. Conclusions 

An approximate solution of the Sitnikov problem has been 

investigated using both the Euler and fourth-order 

Runge-Kutta methods. The fourth-order Runge-Kutta 

method gave us more accurate results than Euler method. 

The various values of eccentricities were obtained and 

demonstrated by simulations using MATCAD. The 

simulations reveal the behaviour of the solutions at any given 

eccentricity, this showed that the range for the search of 

eccentricities can be narrowed down at different values of 

eccentricities, different sinusoidal frequencies were 

obtained. 
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