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Abstract  A new fourth-order iterative method for finding zeros of nonlinear equations is introduced. In terms of 
computational cost the new iterative method requires four evaluations of functions per iteration. It is shown and proved that 
the new method has a convergence of order four. We examine the effectiveness of the new fourth-order method by 
approximating the multiple roots of several nonlinear equations. Numerical examples are given to demonstrate exceptional 
convergence speed of the proposed method.  
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1. Introduction 
In this paper, we present a new fourth-order iterative 

method to find multiple roots of the nonlinear equation
( ) 0,f x = where :f I ⊂ →   for an open interval 

where I is a scalar function. Solving nonlinear equations is 
one of great practical importance in science and engineering 
[1, 3, 4, 11]. Hence, many modifications of the Newton-type 
methods for simple roots have been proposed and analysed 
[3] but little work has been done on multiple roots. In this 
paper, we concentrate in the case that α  is a root of 
multiplicity 1m >  of a nonlinear equation, that is 

( ) 0,kf α =  0,1, 2... 1k m= −  and ( ) 0.mf α ≠  The 
purpose of this study is to develop a new iterative method for 
finding multiple roots of nonlinear equations of a higher 
order than the existing iterative methods [3], and show 
further development of the Thukral third-order method [7]. 
Our aim is to improve the order of convergence of the 
Thukral third-order iterative method [7] and in process we 
shall compare the performance with the established methods 
namely, the classical Schroder second-order method [5], the 
Schroder third-order method [3], the Thukral third-order 
method [7], the Wu et al fourth-order method [12] and the Li 
et al fourth-order methods [2]. In addition, the proposed 
fourth-order method is comparable to the established 
methods. 

The remaining sections of the paper are organized as 
follows. Some basic definitions relevant to the present work  
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are presented in section 2. In section 3, we define a new 
fourth-order iterative method and verify the convergence 
order. In section 4, well-established methods are stated, 
which will demonstrate the effectiveness of the new 
fourth-order iterative method. Finally, in section 5, 
numerical comparisons are made to demonstrate the 
performance of the presented method. 

2. Review of Definitions 
In order to establish the order of convergence of an 

iterative method the following definitions are used [1, 4, 
6-11]. 

Definition 1 Let ( )f x  be a real-valued function with a 

root α  and let { }nx  be a sequence of real numbers that 
converge towards .α  The order of convergence p is given 
by 

( )
1lim 0,n

pn
n

x
x

α ζ
α

+

→∞

−
= ≠

−
          (1) 

where p +∈  and ζ  is the asymptotic error constant  
[1, 4, 6-11]. 

Definition 2 Let k ke x α= −  be the error in the kth 
iteration, then the relation 

( )1
1 ,p p

k k ke e eζ +
+ = + Ο          (2) 

is the error equation. If the error equation exists, then p is the 
order of convergence of the iterative method [1, 4, 6-11].  

Definition 3 Let r be the number of function evaluations 
of the method. The efficiency of the method is measured by 
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the concept of efficiency index and defined as 

( ), ,rEI r p p=              (3) 

where p is the order of convergence of the method [4]. 
Definition 4 Suppose that 1,n nx x−  and 1nx +  are three 

successive iterations closer to the root α  of (1). Then the 
computational order of convergence may be approximated 
by  

1

1 2

ln
COC

ln
n n

n n

δ δ
δ δ

−

− −

÷
≈

÷
,          (4) 

where ( ) ( ) ,i i if x f xδ ′= ÷  [7-10].  

Definition 5 Suppose that 1nx +  is calculated by the 
Schroder second-order method [5] 

( ) ( )
( ) ( ) ( )1 2

n n
n n

n n n

f x f x
x x

f x f x f x+

′
= −

′ ′′−
,     (5) 

and 1nx +  is sufficiently close to the root .α  Then the 
multiplicity m may be approximated by 

( )
( ) ( ) ( )

2

1 2 .n

n n n

f x
m

f x f x f x

′
≈

′ ′′−

         (6) 

Definition 6 Suppose that 1nx +  is calculated by the 
Thukral third-order method [7] 

( ) ( ) ( ) ( )( )2 2
1 2n n n n n nx x f x f x f x f x+

 ′ ′′= − − ÷
 

( ) ( ) ( ) ( ) ( ) ( )( )3 22 3n n n n n nf x f x f x f x f x f x ′ ′ ′′ ′′′− + 
   (7) 

and 1nx +  is sufficiently close to the root α . Then the 
multiplicity m may be approximated by 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

3

2 3 2

2
.

2 3

n n n n

n n n n n n

f x f x f x f x
m

f x f x f x f x f x f x

′ ′ ′′−
≈

′ ′ ′′ ′′′− +
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3. The Method and Analysis of 
Convergence 

To derive the new fourth-order method, we consider the 
Thukral third-order method which is based on unknown 
multiplicity [7] and is given by 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

3

1 3 2
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           (9) 

We improve the above method by introducing parameters, 
thus  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

3
1 2

1 3 2
3 4 5

n n n n
n n

n n n n n n

f x f x f x f x
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      (10) 

The new fourth-order iterative method, given by (10), may 
also be expressed as  

1 1 2 2
1 2

3 1 4 1 2 5 2 3
n n

t tx x
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where 
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To verify our finding we will prove the order of 
convergence of the new fourth-order iterative method. 

Theorem 1  

Let :f I ⊂   be a function for an open interval 

.I ⊂   Let ( )nf x  have a multiple root, x Iα= ∈  

with multiplicity 1m >  and 0x  is the initial guess of the 

multiple root. Assume that ( )nf x is a sufficiently 
differentiable function in I, then iteration defined by the new 
scheme (10) has fourth-order convergence. 

Proof  
Let α  be a root of multiplicity m, that is 

( ) ( ) ( ) ( )1 0,mf f fα α α−′= = =
 and ( ) ( ) 0.mf α ≠  

Since ( )nf x  is a sufficiently differentiable function, 

therefore we expand ( )f α  about x α=  by the Taylor 

series. Also let n ne x α= −  and using the Taylor series 

expansion of ( ) ( ) ( ) ( ), , , ,n n n nf x f x f x f x′ ′′ ′′′  about 
α , we have 

( ) ( ) 2 3
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From (14)-(18), we get 
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Substituting appropriate expressions in (10) and 
simplifying, we have 

( )
3
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1

4
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The expression (23) establishes the asymptotic error 
constant for the fourth-order of convergence for the new 
iterative method defined by (10). This completes the proof.  

The new fourth-order method requires four function 
evaluations and has the order of convergence four. To 
determine the efficiency index of the new method, definition 
3 will be used. Hence, the efficiency index of the new 
fourth-order iterative method given by (10) is 

( ) 44, 4 4 1.4142,EI = ≈        (25) 

and the efficiency index of the Thukral third-order iterative 
method given by (9) is  

( ) 44,3 3 1.3161.EI = ≈        (26) 

This indicates that the new fourth-order method has a 
better efficiency index than the Thukral third-order iterative 
method. 

4. The Established Methods 
For the purpose of comparison, five well-known iterative 

methods are considered namely, the classical Schroder 
second-order method, the Schroder third-order method, the 
Thukral third-order method, the Wu et al fourth-order 
method and the Li et al fourth-order methods. Since these 
methods are well established, we shall state the essential 
formulas used to calculate the approximate solution of the 
given nonlinear equations and thus compare the 
effectiveness of the new fourth-order method. 

In [5], Schroder developed a second-order method for 
finding multiple roots of nonlinear equations, since this 
method is well-established we state the essential expressions 
used in the method, 

( )
( )1 .n

n n
n

f x
x x m

f x+ = −
′

         (27) 

The classical Schroder third-order method [3] is obtained 
and is given as 

( ) ( )
( ) ( ) ( ) ( )1 2

2
.
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In [12], Wu et al. developed a fourth-order method for 
finding multiple roots of nonlinear equations, since this 
method is well-established we state the essential expressions 
used in the method, 

( )
( )

,n
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n
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The first of fourth-order method presented by Li et al. [2] 
is expressed as 

( )
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The second of fourth-order method presented by Li et al. 
[2] is given as 

( )
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5. Application of the New Fourth-Order 
Iterative Method 

The proposed fourth-order iterative method given by (10) 
is employed to solve nonlinear equations with multiple roots. 

The difference between the multiple root α  and the 
approximation nx  for test function with initial guess 0x  is 
displayed in tables. Furthermore, the computational order of 
convergence approximations are displayed in tables and we 
observe that this perfectly coincides with the theoretical 
result. In addition, the difference between the multiplicity m 
and the approximation m  is also displayed in tables. The 
numerical computations listed in the table were performed 
on an algebraic system called Maple and the errors displayed 
are of absolute value. 
Numerical example 1 

We will demonstrate the convergence of the new 
fourth-order iterative method for the following nonlinear 
equation 

( ) ( )
931 1f x x = − −  

,                            (39) 

having multiplicity 9m =  and the exact value of the 
multiple root of (39) is 2.α =  In Table 1 the errors 
obtained by the new method described are based on the 
initial value 0 1.9x = . We observe that the new fourth-order 
iterative method is converging to the expected order.  

Numerical example 2 
We will demonstrate the convergence of the new 

fourth-order iterative method for the following nonlinear 
equation 

( )
6

2xf x e x = + − 
,                              

        (40) 

having multiplicity 6m =  and the exact value of the 
multiple root of (40) is 0.442854 .α =   In Table 2 the 
errors obtained by the new method described are based on 
the initial value 2

0 2x −= . We observe that the new 
fourth-order iterative method is converging to the expected 
order.  
Numerical example 3 

We will demonstrate the convergence of the new 
fourth-order method for the following nonlinear equation 

( ) ( )
992 2sin 1f x x x = − +  

,                         

        (41) 
having multiplicity 99m =  and the exact value of the 

multiple root of (41) is 1.404491 .α =   In Table 3 the 
errors obtained by the new method described are based on 
the initial value 0 1.6x = . We observe that the new 
fourth-order iterative method is converging to the expected 
order.  
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Table 1.  Errors occurring in the estimates of the root of (39) by the methods described 

method 1x α−  2x α−  3x α−  4x α−  ˆ km m−  COC  

(27) 
(28) 
(30) 
(31) 
(35) 
(10) 

0.115e-1 
0.773e-3 
0.131e-3 
0.306e-3 
0.458e-3 
0.377e-4 

0.131e-3 
0.308e-9 
0.292e-15 
0.171e-13 
0.126e-12 
0.673e-18 

0.171e-7 
0.195e-28 
0.729e-62 
0.167e-54 
0.725e-51 
0.682e-73 

0.292e-15 
0.497e-86 
0.283e-248 
0.150e-218 
0.791e-204 
0.722e-293 

- 

1ˆ 0.233e-6m =  
 
- 
- 

2ˆ 0.455e-32m =  

2.0000 
3.0000 
4.0000 
4.0000 
4.0000 
4.0000 

Table 2.  Errors occurring in the estimates of the root of (40) by the methods described 

method 1x α−  2x α−  3x α−  4x α−  ˆ km m−  COC  

(27) 
(28) 
(30) 
(31) 
(35) 
(10) 

0.112e-1 
0.953e-4 
0.379e-4 
0.459e-5 
0.209e-4 
0.101e-4 

0.379e-4 
0.761e-14 
0.585e-19 
0.274e-23 
0.385e-20 
0.863e-22 

0.438e-9 
0.389e-44 
0.331e-78 
0.347e-96 
0.444e-83 
0.456e-90 

0.585e-19 
0.508e-135 
0.339e-315 
0.898e-388 
0.787e-335 
0.355e-363 

0. 

1ˆ 0.950e-9m =  
0. 
0. 
0. 

2ˆ 0.179e-31m =  

2.0000 
2.9960 
4.0000 
4.0000 
4.0000 
4.0000 

Table 3.  Errors occurring in the estimates of the root of (41) by the methods described 

method 1x α−  2x α−  3x α−  4x α−  ˆ km m−  COC  

(27) 
(28) 
(30) 
(31) 
(35) 
(10) 

0.234e-1 
0. 307e-2 
0. 415e-3 
0.106e-2 
0.130e-2 
0.262e-3 

0.415e-3 
0.151e-7 
0.143e-13 
0.188e-11 
0.540e-11 
0.101e-14 

0.135e-6 
0.182e-23 
0.200e-55 
0.187e-46 
0.162e-44 
0.229e-60 

0.143e-13 
0.319e-71 
0.777e-223 
0.180e-186 
0.130e-178 
0.598e-243 

0. 

1ˆ 0.208e-4m =  
0. 
0. 
0. 

2ˆ 0.235e-21m =  

1.9999 
3.0000 
4.0000 
4.0000 
4.0000 
4.0000 

 
6. Conclusions 

A new fourth-order iterative method for solving nonlinear 
equations with multiple roots has been introduced. Simply 
introducing new parameters in the Thukral third-order 
method, we have achieved a fourth-order of convergence. 
The effectiveness of the new fourth-order method is 
examined by showing the accuracy of the multiple roots of 
several nonlinear equations. In practice if multiplicity m is 
unknown then we may use the formula (8) to obtain the 
approximated value and take the integer part as the 
multiplicity m. We have shown numerically and verified that 
the new iterative method has convergence of order four. The 
major advantages are the new fourth-order is based on 
one-point one-step iteration and is simple to compute. 
Finally, we conclude that the new method may be considered 
a very good alternative to the classical methods. 
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