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Abstract  This paper investigates the problem of the fuzzy unknown inputs observer (FUIO) design for a class of 

discrete-time Takagi-Sugeno implicit models (DTSIMs) with unmeasurable premise variables which satisfying Lipschitz 

conditions. The unknown inputs (UIs) affect both state and output of the model. The idea of the proposed result is based on 

the separation between dynamic and static equations in the considered DTSIM. First, the method used to separate dynamic 

equations from static equations is developed. Next, based on the augmented system structure which contains the dynamic 

equations and the unknown inputs, a new observer design in explicit structure to estimate simultaneously the system state and 

the unknown inputs is established. The convergence of the state estimation error of the augmented system is studied by using 

the Lyapunov theory and the gain matrix of the FUIO is obtained by solving only one linear matrix inequality (LMI). At last, 

an illustrative example is given to show the effectiveness of the proposed technique. 
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1. Introduction 

It is well-known that to provide on-line estimation of 

unmeasurable states of various industrial processes, the 

approach consists in combining a priori knowledge about a 

process with experimental data. The algorithm permitting to 

realize a such estimation is called an observer. This last one 

is a dynamical system which combines a nominal model of 

the process with on-line measurements of the input and the 

output of the process to estimate the unmeasurable states. 

The field of the observer design for dynamic systems has 

attracted much attention of the researchers for a long time. 

This is due to its important role in the control and 

fault-tolerant areas. 

Moreover, UIs can result either from uncertainty in the 

model or from the presence of unknown external excitation. 

Thus, due to the increasing demand for reliability and 

maintenability of the automatic control process, FUIO 

design is widely used in the area of fault detection and 

design of fault tolerant control strategy. This is one of the 

most attractive research areas in both theoretical and 

practical fields during these last two decades. Indeed, many  
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works using different approaches can be found in the 

literature [1-3]. In this perspective, based on the 

Takagi-Sugeno (T-S) fuzzy approach, we study here the 

problem of observer design for a class of discrete-time 

nonlinear implicit models subject to UIs. 

Currently, it is well-known that ordinary T-S fuzzy 

approach [4, 5] have been widely and successfully used in 

the nonlinear processes modelling to describe the behaviour 

of many chemical and physical processes. The idea of this 

approach is to apprehend the global behaviour of a process 

by a set of local models. The success of such approach 

relies on the fact that once the T-S fuzzy models are 

obtained, some analysis and design tools developed in the 

linear case can be used, which facilitates observer or/and 

controller synthesis for complex nonlinear systems, see for 

example [6, 7] and the references therein. 

On the other hand, in reality, many industrial processes 

are naturally modelled as systems of differential and 

algebraic equations also called descriptor models or 

singular models or implicit models, see [8-10] for some real 

applications of implicit models. The numerical simulation 

of such models usually combines an ODE numerical 

method together with an optimization algorithm.  

Moreover, notice that the ordinary T-S fuzzy model is a 

special case of the fuzzy implicit model. Indeed, in [11, 12], 

a fuzzy implicit model is defined by extending the T-S 

fuzzy model [4]. 
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The FUIO design problem for T-S explicit or implicit 

models has received considerable attention and is still an 

active area of research in both continuous-time and 

discrete-time cases during the two last decades. Indeed, 

concerning the case of continuous-time T-S explicit or 

implicit models subject to UIs, various developments on 

fuzzy observer and its application to fault detection exist in 

the literature. We may cite [13-17] for explicit models and 

[11, 12, 18-23] for implicit models. Likewise, in 

discrete-time T-S models case, several works exist for 

explicit or implicit structures see e.g. [24-28]. It should be 

noted that, generally an interesting way to solve the various 

FUIO raised previously is to write the convergence 

conditions on the LMI form [29]. 

The main contribution of this paper consists to propose a 

new result of FUIO design for a class of DTSIMs satisfying 

the Lipschitz conditions allowing the simultaneous 

estimation of the unknown states and unknown inputs. The 

procedure is based on the separation between dynamic and 

static equations in the DTSIM in order to use the augmented 

system structure which contain the dynamic equations and 

the UIs. The global exponential stability of the state 

estimation error of the augmented system is studied by 

using the Lyapunov theory and the stability condition is 

given in term of only one LMI. Besides, the proposed result 

is given without the use of an optimization algorithm. 

The rest of the paper is structured as follows. The 

considered class of DTSIMs subject to UIs is presented in 

Section 2. The main contribution about FUIO design 

permitting to estimate unknown states and UIs is stated in 

Section 3. Finally, a numerical example to show the good 

performance of the proposed technique is given in Section 

4. 

Throughout the paper, the following notations are 

adopted. Matrix 0X   (or 0X  ) means that X  is 

symmetric and positive definite (or negative definite). 
TX

denotes the transpose of X . The symbol I  (or 0) 

represents the identity matrix (or zero matrix) with 

appropriate dimension. 
nR

 
and 

n mR 

 
denote the spaces 

of n-dimensional real vectors and n m
 
real matrices, 

respectively. 

2. System Description and Preliminaries 

In this paper, the following class of DTSIMs subject to 

UIs is adopted: 
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where 
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with 11 n
kX R is the vector of difference variables, 

22 n
kX R  is the vector of algebraic variables with 

1 2n n n  , 
m
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where 22iA
 

are supposed invertible. q  is the number of 

sub-models and ( )i kh x  are the weighting functions that 

verify the so-called convex sum properties: 

1
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They ensure the transition between the contribution of 

each sub model: 
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Before giving the main result, let us make the following 

assumption [8, 19]: 

Assumption 1: Suppose that: 

  ( , )iE A  is regular, i.e. det( ) 0   izE A z     

  All sub-models (5) are impulse observable and 

detectable. 

In what follows, as mentioned above, we proceed to the 

separation of the dynamic equations from static equations of 

the model (1). Indeed, from (2)-(3), sub-model (5) can be 

rewritten as follows: 
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From (6) and using the fact that 22iA  is invertible, the 

algebraic equations can be solved directly to obtain: 

2 1  
k ki i ik kX KX J u L d             (7) 

where 
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Thus, substituting (7) in (6) we obtain: 
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where 
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The weighting functions ( ),  1, ,i kh x i q   can be 

rewritten as: 

1 2 1( ) ( , ) ( )i k i k k i k i k i k i kh x h X X J X K u L d h      (11) 

with 
1T T T T

k k k kX d u     . 

So, by aggregation of the resulting sub-models (9), the 

following global fuzzy model is obtained: 
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Assumption 2: Suppose that kd  is considered as a 

constant unknown control input per time interval i.e.: 

 1 1 2 1 2    ,    ,k kd d k T T T T R
         (13) 

In order to take the main contribution, we rewrite the 

system (12) under the equivalent augmented state 

representation given by: 
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which is equivalent to the following state representation: 
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3. Synthesis of the Observer 

Based on the transformation of the DTSIM (1) into the 

equivalent form (16), the proposed FUIO for (1) is taken in 

the following form: 
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where 
1 2ˆ ˆ( ,  )k k  , ˆ

ky
 

and ˆ
k  

represent the estimate of  

1 2( ,  )k k  , ky  and k respectively. Matrix G  is to be 

determined such that 
1 2ˆ ˆ( ,  )k k  converges toward 

1 2( ,  )k k   

exponentially. 

To give the condition for the exponential convergence of 

the observer (18), we define the state estimation error: 
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From (16) and (18), the dynamic of the estimation error 

can be described by: 
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where 
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So, to prove the convergence of k toward zero, it 

suffices to prove that 
1
k  converges toward zero. 

Assumption 3: Assume that the following conditions 

hold: 
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where i , i  are positive scalars Lipschitz constants and 
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with ( ) iM denotes the maximum singular value of the 

matrix iM . 

The following Theorem provides the main result of this 

paper. 

Theorem 1: Under above Assumption 3, the DTSIM (20) 

is globally exponentially stable if given 0   there exist 

matrices 0P  , 0 Q  and U verifying the following 

LMI: 
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The gain stabilizing the estimation error is given by: 
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Lemma 1: For any matrices X  and Y
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appropriate dimensions, the following property holds for any 

invertible matrix Z : 
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Taking into account (24), (33) becomes: 
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Thus, estimation error convergence is exponentially 

ensured if the following condition is guaranteed (see [30] as 
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from (21) into (36), we can establish 

the LMI condition (26) of Theorem 1 by using the Schur 

complement [29] and the following change of variable: 
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Thus, from the Lypunov stability theory, if the LMI 

condition (26) is satisfied, the system (20) is globally 

exponentially stable. This ends the proof of Theorem 1. 

4. Illustrative Example 

In this section, to illustrate the effectiveness of the 

proposed design method, let us consider the one-link flexible 

joint robot described by the dynamical model given in [22]. 

The discrete-time system (1) was obtained by using the 

Euler discretisation of a step size Te = 0.01 which lead to the 

following DTSIM with unmeasurable premise variable and 

subject to UI: 
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where 
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output vector, respectively. The matrices numerical values 

are: 

1

B

1 0 0.01 0 0 0

0 1 0 0.01 0 0

0 0 1 0 0.01 0
, 

0 0 0 1 0 0.01

0.49 0.49 0.12 0 0.01 0

0.19 0.12 0 0 0 0.01

0

0

0
 =

0

0.22

0

A

 
 
 
 

  
 
   
    

 
 
 
 
 
 
 
  
 

 

2

D

1 0 0.01 0 0 0

0 1 0 0.01 0 0

0 0 1 0 0.01 0
,  

0 0 0 1 0 0.01

0.49 0.49 0.12 0 0.01 0

0.19 0.54 0 0 0 0.01

0.01

0

0.01
=

0

0

0

A

 
 
 
 

  
 
   
    

 
 
 
 
 
 
 
  
 

 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
,    

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

E

C

 
 
 
 

  
 
 
  
 

 
  
 

 

The weighting functions are: 

2
1

2

2
2

2

sin( )
( ) 1  

sin( )
( )

k
k

k

k
k

k

x
h x

x

x
h x

x


 



 


 

Therefore to apply the proposed FUIO (18) for the model 

(38), as stated in Theorem 1, it suffices to rewrite the model 

(38) into its equivalent form (16) as mentioned in Section 2. 

Thus, by Theorem 1 with 0.95 
 
the following 

observer gain G
 
is obtained: 

0.73 0.01

0.03 0.96

0.24 1.16

2.27 6.22

8.33 0.11

G

 
 
 
  
 
 
 
 

 

Simulation results with initial conditions: 

1

2

,0.00 0.31 0.00 0.00 4.00  

15.28 16.69

k

k

T

T





  

  



 
 

1

2

ˆ ,

ˆ

0.00 0.47 0.00 0.01 0.00  

22.93 24.71

k

k

T

T





  

  



 
 

are given in Figures 1, 2 and 3 where the input sin( )ku k
 

and the expression of unknown input signal kd is defined as 

in Figure 3. These simulation results show the performances 

of the proposed FUIO (18) with the gain G
 
where the 

dashed lines denote the state variables and unknown input 

estimated by the FUIO. They show that the FUIO gives a 

good estimation of unknown states and unknown input of the 

considered DTSIM. 
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Figure 1.  State variables 1kx , 2kx , 3kx  and their estimates 

 

 

 

 

 

Figure 2.  State variables 4kx , 5kx , 6kx  and their estimates 
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Figure 3.  Unknown input kd  and its estimate 

5. Conclusions 

In this paper, we have presented a novel method of FUIO 

design for a class of DTSIMs with unmeasurable premise 

variables which satisfying Lipschitz conditions. The UIs 

affect both state and output of the model. The approach is 

based on the separation between dynamic and static 

equations in the considered fuzzy implicit model and on the 

use of an augmented system description formed by the 

dynamic equations and the UIs. Besides, the proposed result 

permitting to estimate simultaneously the system state and 

the UIs is given without the use of an optimization algorithm. 

The exponential convergence of the state estimation error is 

studied using the Lyapunov theory and the existence of the 

condition ensuring this convergence is expressed in term of 

only one LMI. In order to validate the proposed approach a 

numerical example is given. The proposed example shows 

the good performance of the proposed FUIO design, since 

both state and UIs are well estimated. 
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