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Abstract  The common issues of high-dimensional gene expression data are that many of genes may not be relevant to 
their diseases. Genes have naturally pathway structure, where the pathway contains several genes sharing a biological 
function. Gene selection has been proved to be an effective way to improve the result of many classification methods. It is of 
great interest to incorporate pathway knowledge into gene selection. In this paper, a weighted sparse support vector is 
proposed, with the aim of identification genes and pathways, by combining the support vector machine with the weighted 
L1-norm. Experimental results based on three publicly gene expression datasets show that the proposed method significantly 
outperforms three competitor methods in terms of classification accuracy, G-mean, and area under the curve. In addition, the 
results demonstrate that the top identified genes and pathways are biologically related to the cancer type. Thus, the proposed 
method can be useful for cancer classification using DNA gene expression data in the real clinical practice. 
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1. Introduction 
One of the major advancement made in the field of 

biology and genetics research is the emergence of DNA 
microarray technology. This technology facilitates the 
determination of the expression values of thousands of genes 
simultaneously [1, 2]. The gene expression data is used for 
various analyses to understand the biological significance of 
the tissue from which the genes were extracted for the 
experiment [3, 4]. These gene expression datasets are applied 
to numerous areas of application, such as cancer 
classification and tumor detection [5, 6]. In cancer 
classification, the taxonomy of normal and abnormal 
patterns of the cells is one of the most important and 
significant processes during the cancer diagnosis and drug 
discovery [7, 8]. It can help to improve the health care of 
patients, and, therefore, the high prediction of cancer has 
great value in the treatment or the therapy [9, 10].  

Recently, there is a direction to incorporate pathway 
knowledge to support DNA microarray computational 
analysis and modeling applications and, therefore, 
improving the biological interpretation of the analysis results 
[11-13]. Incorporating pathway knowledge can take 
advantage of the fact that some genes in a functional group 
naturally work cooperatively to  justify biological functions  
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with groups of genes defined by pathways [14]. The existing 
of Kyoto encyclopedia of genes and genomes (KEGG) as a 
bioinformatics databases can provide a valuable information 
regarding the pathway database [13, 15]. The KEGG has a 
main strength because it is manually drawn and the 
assignment of a KEGG code to a gene implies experimental 
evidence support [16]. 

Gene expression dataset often contains a large number of 
genes, d , with only a few samples, n , making the gene 
expression dataset matrix has rows less than columns, 
d n>  [17-20]. Over the last two decades, gene selection 
has received increasing attention, motivated by the desire to 
understand structure in the high-dimensional gene 
expression datasets. With these types of datasets, typically 
many genes are irrelevant and redundant which could 
potentially vitiate the classification performance. 
Accordingly, it is preferred to reduce the dimensionality of 
these datasets. Reduction of the dimensions is often achieved 
by gene selection, which is maintaining a direct relationship 
between a gene and a classification performance [21-43]. 

According to the mechanism of selection, gene selection 
methods, in general, can be classified into three categories: 
filter methods, wrapper methods, and embedded methods 
[44-46]. Filter methods are one of the most popular gene 
selection methods, which are based on a specific criterion by 
gaining information of the each gene. These methods are 
work separately and they are not dependent on the 
classification method. For the wrapper methods, on the other 
hand, the gene selection process is based on the performance 
of a classification algorithm to optimize the classification 
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performance. In embedded methods, gene selection process 
is incorporated into the classification methods, which can 
perform gene selection and classification simultaneously 
[47]. These methods provide higher computational 
efficiency comparing with the wrapper methods [46].  

Support vector machine is a widely-used classification 
method in different classification areas, especially in gene 
expression data classification [48-51]. As the number of the 
genes increases, the training time of applying support vector 
machine increases and also its computational complexity 
increases [52, 53]. Unfortunately, support vector machine 
cannot automatically handle gene selection although it has 
been proven advantageous in handling gene expression data 
classification [51, 54-59].  

Sparse methods are very effective embedded gene 
selection methods, which connected with many popular 
classification methods including support vector machine 
logistic regression, and linear discriminate analysis [60-62]. 
In recent years, sparse support vector machine as among all 
the classification methods, those based on sparseness, 
received much attention. It combines the standard support 
vector machine with a penalty to perform gene selection and 
classification simultaneously. With deferent penalties, 
several sparse support vector machine can be applied, among 
which are, L1-norm, which is called the least absolute 
shrinkage and selection operator (lasso) [63], smoothly 
clipped absolute deviation (SCAD) [64], elastic net [65],  
and adaptive L1-norm [66]. Unquestionably, L1-norm is 
considered to be one of the most popular procedures in the 
class of sparse methods. Nonetheless, L1-norm applies the 
same amount of the sparseness to all genes, resulting in 
inconsistent gene selection [1, 5, 66].  

To increase the power of informative gene selection 
association with incorporating pathway knowledge, in the 
present study, an efficient gene selection and pathway 
identification, which is based on the idea of sparse support 
vector machine combined with Wilcoxon rank sum test, is 
proposed. More specifically, Wilcoxon rank sum test is 
employed to weight each gene inside its pathway. On the 
other hand, a sparse support vector machine with weighted 
L1-norm is utilized, where each significant gene will be 
assigned a weight depending on the Wilcoxon rank sum test 
value inside its pathway that it is belonging to. This weight 
will reflect the importance amount of each gene. 
Experimentally, comprehensive comparisons between our 
proposed gene selection method and other competitor 
methods are performed depending on several well-known 
gene expression datasets. The experimental results prove that 
the proposed method is very effective for selecting the most 
relevant genes and pathway with high classification 
accuracy.  

The rest of this paper is organized as follows. Section 2 
explains the preliminaries of sparse support vector machine. 
The proposed method with its related procedures is described 
in Section 3. Section 4 introduces the information of the 
experimental study. The experimental results on several 
benchmark gene expression datasets are presented in Section 

5. Finally, Section 6 draws general conclusions.  

2. Sparse Support Vector Machine 
The support vector machine (SVM), which originally 

proposed by Vapnik [67], is a well-known and a powerful 
classification method in the literature because of its strong 
mathematical background and excellent generalization 
performance. The binary classification using SVM has often 
been adopted in the cancer classification research because of 
its capability of handling nonlinear classification and 
high-dimensional data [7]. However, SVM itself cannot 
eliminate the noisy and irrelevant genes [50, 51, 54, 56-59].  

Gene selection is an important tool for modeling the 
high-dimensional classification data. In this situation, sparse 
support vector machine (SSVM), which is considered as one 
of the embedded methods, is of more interest for researchers 
than the SVM because it can perform gene selection and 
classification simultaneously. An important SSVM is with 
L1-norm (lasso) [59]. SSVM with different penalties have 
been extensively studied in cancer classification for 
high-dimensional gene expression data recently [11, 50, 51, 
54]. 

Microarray gene expression datasets can be described 
mathematically as a matrix ( )ij n dX x ×= , where each 
column represents a gene and each row represents a sample 
(tissue) for tumor diagnosis. The numerical value of ijx  

denotes the expression level of a specific gene 
( 1,..., )j j d=  in a specific sample ( 1,..., )i i n= . 

Given a training dataset 1{( , )}n
i i iy =x , where 

i,1 i,2 i,d( , ,..., )i x x x=x  represents a vector of the thi  

gene expression values, and { 1, 1}iy ∈ − +  for 

1,...,i n= , where 1iy = +  indicates the thi  sample is 

in class 1 (e.g., has cancer) and 1iy = −  indicates the thi  
sample is in class 2 (e.g., dose not have cancer). Generally, 
the objective is to classify the new sample and identify the 
relevant genes with high classification accuracy.  

The classical SVM solves the optimization problem by 
minimizing  

[ ] 2
2

1

1 1 ( ( )) || || ,
n

i i
i

y b h
n

λ+
=

− + +∑ z x z     (1) 

where [ ]1 ( ( ))i iy b h
+

− + z x  is the convex hinge loss, 

the scalar b  is denoted as the bias, 2
2|| ||z  is the L2-norm, 

and 0λ >  is the tuning parameter controlling the trade-off 
between minimizing the hyper-plane coefficients and the 
classification error. Equation (2) is a convex optimization 
problem and can be solved by the method of Lagrange 
multipliers [54]. The optimization solution can provide a 
unique solution for hyperplane parameters z and b . 
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Although SVM is a widely-used classification method in 
different classification areas, it cannot perform variable 
selection because of using L2-norm. This can be a downside 
when there are many irrelevant variables [51, 54, 56, 59, 68]. 
To overcome this limitation, those methods for simultaneous 
variable selection and classification are more preferable to 
achieve better classification accuracy with less important 
variables [56]. 

For the purpose of variable selection, several variants of 
penalties are adopting with SVM. Bradley and Mangasarian 
[69] and Zhu, et al. [59] proposed using L1-norm instead of 
L2-norm of Eq. (1) to perform variable selection and binary 
classification. Ikeda and Murata [70], Liu, et al. [56], and  
Liu, et al. [57] proposed Lq-norm with 1q < . Furthermore, 
Zhang, et al. [51] proposed the smoothly clipped absolute 
deviation (SCAD) penalty of Fan and Li [64] with SVM. In 
addition, Wang, et al. [50] proposed a hybrid huberized SVM 
by using the elastic net penalty. Becker, et al. [54] proposed a 
combination of ridge and SCAD with SVM.  

Because of the singularity of the L1-norm, SVM with 
L1-norm can automatically select variables by shrinking the 
hyper-plane coefficients to zero [50, 54]. In addition, SCAD 
has the same behavior as L1-norm [54]. The SSVM with 
L1-norm (SSVM-lasso) and the SSVM with SCAD 
(SSVM-SCAD) are, respectively, defined as 

[ ]
1

1 1 ( ( )) ,
n

i i
i

y b h
n

λ
+

=
− + +∑ z x z      (2) 

[ ]
1

1 1 ( ( )) ( ),
n

i i
i

y b h pen
n +

=
− + +∑ z x z   (3) 

where  

2 2

2

,

2
( ) ,

2( 1)
( 1) ,

2

j j

j j
j

j

z if z

z a z
pen if z a

a
a if z a

λ λ

λ λ
λ λ

λ λ

 ≤


− += − < ≤ −
 +

>


z  (4) 

where , 1,2,...,jz j p=  are the hyper-plane coefficients, 

3.7a =  as suggested by Fan and Li [64], and 0λ >  is the 
tuning parameter. 

3. The Proposed Method 
In the context of gene expression classification problems, 

the goal of gene selection is to improve classification 
performance, to provide faster and more cost-effective genes, 
and to achieve a better knowledge of the underlying 
classification problem. High dimensionality can negatively 
influence the classification performance of a classifier by 
increasing the risk of overfitting and lengthening the 
computational time. In addition, it makes various 
classification methods not applicable for analyzing 

microarray gene expression data directly. Therefore, 
removing irrelevant and noisy genes from the original 
microarray gene expression data is essential for applying 
classification methods to analyze the microarray gene 
expression data. 

It is worthwhile to highlight that our contribution of this 
paper comes from the following issues. First, although 
SSVM with L1-norm can be applied directly to the high 
dimensional gene expression data, this method may select 
irrelevant genes because L1-norm has the inconsistent 
property in gene selection. In other words, the estimates of 
the SSVM with L1-norm can be biased for large hyper-plane 
coefficients because larger coefficients will take larger 
penalties. Compared with L1-norm, SSVM with SCAD 
generally suffer from non-convexity although SSVM with 
SCAD proved its consistency in gene selection. Second, 
most of the gene selection methods in the literature do not 
take into account the information of a pathway that the gene 
belongs to. In other words, in cancer classification, each gene 
has the same contribution in constructing the classifier rather 
than to contribute differently according to its pathway 
information. 

Consequently, efficient gene selection and pathway 
identification is proposed. It is based on the idea of SSVM 
with L1-norm combined with Wilcoxon rank sum test. More 
specifically, Wilcoxon rank sum test is employed to weight 
each gene inside its pathway. On the other hand, the SSVM 
with weighted L1-norm is utilized, where each significant 
gene will be assigned a weight depending on the Wilcoxon 
rank sum test value inside its pathway that it is belonging to. 
This weight will reflect the importance amount of each gene. 

In practice, for such high dimensional gene expression 
data, these data contain irrelevant or noisy genes leading to 
low performance with less classification accuracy. As a 
consequence, analyzing genes in terms of their importance 
has become a necessary task. To determine the weight for 
each gene according to its pathway, the Wilcoxon rank sum 
test [71] is utilized as 

1 2

( ) ( )( ) (( ) 0), 1,2,..., ,j j
i k

i N k N
s j I j p

∈ ∈
= − ≤ =∑ ∑ x x  (5) 

where ( )I ⋅  is the discrimination function and it is defined 
as 

1
( )

0
if I is true

I
if I is not true


⋅ = 


        (6) 

( )j
ix  is the expression value of the sample i  in the gene 

j , and 1N  and 2N  are the index sets of different  

classes of samples. Equation (5), ( )s j , represents the 
measurement of the difference between the two classes. The 
gene j  can be considered important when Eq. (5) is close 

to 0 or when it is close to the max value of 1 2n n , where 

1 1| |n N=  and 2 2| |n N= .  
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Liao, et al. [71] quantify the gene significance by the 
following gene ranking criterion  

1 2( ) max{ ( ), ( )}.q j s j n n s j= −        (7) 

Depending on Eq. (7), an important gene, with ( )s j  

closed to 0 or to 1 2n n , will receive large value of ( )q j , 

while an irrelevant gene will receive a small value of ( )q j .  
To enforce discriminative penalty on each gene according 

to importance degree in classification, Park, et al. [72] 
proposed the following weight 

1

( )1 / [ * ], 1,2,..., .
( )

j p

j

q jw p j p
q j

=

= =

∑     (8) 

According to Eq. (8), the important gene will receive 
small amount of weight, while the irrelevant genes will 
receive relatively large amount of weight. By this weighting 
procedure, the L1-norm can reduce the inconsistent property 
in gene selection.  

To incorporate the pathway knowledge in gene selection, 
Chan, et al. [11] proposed the absolute value of the 
two-sample t-test as a weighting procedure. Compared to the 
Wilcoxon rank sum test, the two-sample t-test can be 
affected by outliers. As a result, Wilcoxon rank sum test will 
be resistant to outliers. In our paper, we proposed to 
incorporate the pathway knowledge in gene selection by 
using Eq. (8). Mathematically, the proposed weight can be 
expressed as 
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( ) ( )

1
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( )1 / [ * ],

( )

1,2,..., .
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path path

j p

j
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q jw p

q j

j p

=

=

=

∑    (9) 

After assigning each gene with its related weight, the 
SSVM with weighted L1-norm is utilized to select the 
informative genes with high classification accuracy. The 
detailed of the weighted SSVM (WSSVM) computation is 
described in Algorithm 1. The WSSVM equation has a 
convex form, which ensures the existence of global 
maximum point and can be efficiently solved. 

 
Algorithm 1: The computation of WSSVM 

Step 1: Find ( ) ( ), 1,2,..., .path path
jw j p=  

Step 2: Define ( )path
i ijw=x x  

Step 3: Solve the WSSVM, 

[ ]
1

1 1 ( ( )) ,.
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i i
i
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n
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− + +∑ z x z  

4. Experimental Study 
4.1. Datasets Description 

The datasets that have been exploited to test the 
effectiveness of our proposed method was composed of 
microarray gene expression data. These datasets are related 
to four public-domain high dimensional gene expression 
data, which they have been used before by numerous 
researchers: leukemia [73], prostate cancer [74], and 
Michigan lung cancer [75]. In these datasets, the response 
variable is a two-class category. Information related to the 
biological pathways was obtained from the KEGG [15]. A 
summary of these datasets are listed in Table 1. 

Table 1.  Summary of the four gene expression datasets 

Dataset No. of 
samples 

No. of 
genes Class 

Leukemia 72 7129 47 ALL / 25 AML 

Prostate 102 12600 52 tumor / 50 normal 
Michigan lung 86 7129 24 tumor / 62 normal 

4.2. Performance Evaluation 

In order to evaluate the predictive performance of the 
proposed method, three performance metrics are 
implemented, specifically: (1) classification accuracy (CA), 
(2) geometric mean of sensitivity and specificity (G-mean), 
and (3) area under the curve (AUC). The CA stands for the 
proportion of correctly classified tumor class and normal 
class, which measures the classification power of the 
classifier. The CA can define as: 

TP+TN= 100%,
TP+FP+FN

A
+TN

C ×       (10) 

where TP  is the number of true positive, FP  is the 
number of false positive, TN is the number of true negative, 
and FN is the number of false negative.  

A typical classification method should maximize the 
accuracy on the both of tumor and normal classes. As a 
consequence, the G-mean has been proposed as a metric to 
highlight the joint performance of sensitivity and specificity. 
It is defined as: 

G-mean= Sensitivity Specificity,×      (11) 

where sensitivity is the fraction of tumor samples that were 
successfully classified, and specificity is the fraction of 
normal samples that were properly classified. The AUC was 
used to quantitatively evaluate the overall classification 
performance of the proposed method. Its value can vary from 
0 to 1, the closer value to 1, the better overall classification 
performance is.  

4.3. Experimental Setting 

To demonstrate the usefulness of the proposed method, 
comprehensive comparative experiments with the 
SSVM-lasso, SSVM-SCAD, and the wgSVM-SCAD of 
Chan, et al. [11] are conducted. To do so, each gene 
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expression dataset is randomly partitioned into the training 
dataset and the test dataset, where 70% of the samples are 
selected for training dataset and the rest 30% are selected for 
testing dataset. For a fair comparison and for alleviating the 
effect of the data partition, all the used classification methods 
are evaluated, for their classification performance metrics 
using 10 folds cross validation, averaged over 100 
partitioned times. 

Depending on the training dataset, the tuning parameter 
value, λ , for each used classification method was fixed as 
0 100λ≤ ≤ . For the SCAD penalty, the constant a  was 
set to equal 3.7 as it suggested by Fan and Li [64]. The 
implementations of these used methods are provided in the 
R-package: penalized SVM.  

5. Experimental Results 
Table 2 summarizes, on average, the classification 

accuracy and the G-mean for the training dataset of applying 
the WSSVM, wgSVM-SCAD, SSVM-SCAD, and the 
SSVM-lasso for all three datasets used in this study. In 
addition, it summarizes the classification accuracy for the 
testing dataset. The number in parenthesis is the 
corresponding standard deviation. 

Beginning with the leukemia dataset regarding 
classification accuracy and based on the training dataset, the 
proposed method, WSSVM, achieves 95.27%, defeating 
wgSVM-SCAD, SSVM-SCAD, and the SSVM-lasso by 
3.56%, 5.83%, and 11.08%, respectively. The G-mean of the 
WSSVM yields 0.945, which indicates that the WSSVM has 
a separation capability between tumor and normal classes. In 
addition, wgSVM-SCAD secondly comes with 91.71% and 
better than SSVM-SCAD and SSVM-lasso. This is not 
surprising because the wgSVM-SCAD has the effectiveness 
of imposing the pathway knowledge as weight and 
performing filtering. Depending on the testing dataset, the 
WSSVM is better than the others in terms of classification 
accuracy because it achieved 93.45%, which is 2.58%, 
6.10%, and 10.48% better than wgSVM-SCAD, 
SSVM-SCAD, and the SSVM-lasso, respectively.  

In the prostate dataset, based on the training dataset, the 
WSSVM provides enhancement over the SSVM-SCAD and 
the SSVM-lasso by 6.52% and 8.30%, respectively. On the 
other hand, the G-mean of the proposed method signals that 
it has a significant balance of classification performance 
between tumor and normal classes comparing with 
SSVM-SCAD and SSVM-lasso. Comparing with 
wgSVM-SCAD, the proposed method achieved slightly 
lower classification accuracy and G-mean with difference 
0.35% and 0.006, respectively. However, there would be an 
advantage of the proposed method in correctly classifying 
the testing dataset, where it was able, on average, to perform 
classification accuracy of 93.54% compared with 92.33% by 
wgSVM-SCAD. Once again, based on the testing dataset, 
the proposed method beats both SSVM-SCAD and 
SSVM-lasso in terms of classification accuracy.  

Looking at the Michigan lung dataset, the classification 
performance of the proposed method is comparable with 
wgSVM-SCAD, SSVM-SCAD, and SSVM-lasso 
performing best among them. In terms of classification 
accuracy, the CA obtained from the proposed method was 
90.12% for the training dataset and 89.57% for the testing 
dataset. This indicates the superiority of the proposed 
method as compared to wgSVM-SCAD, SSVM-SCAD, and 
SSVM-lasso. On the other hand, the proposed method 
provides the highest G-mean. The estimate of G-mean was 
0.907 which was the highest among the other used   
methods by approximately 4.60%, 12.60%, and 16.80%      
of wgSVM-SCAD, SSVM-SCAD, and SSVM-lasso, 
respectively.  

Table 2.  Classification performance of the WSSVM, wgSVM-SCAD, 
SSVM-SCAD, and SSVM-lasso of top five pathways 

Methods Training 
dataset  Testing 

dataset 

 CA G-mean CA 

Leukemia    

WSSVM 
95.27 
(0.09) 

0.945 
(0.003) 

93.45 
(0.003) 

wgSVM-SCAD 91.71 
(0.011) 

0.904 
(0.005) 

90.87 
(0.007) 

SSVM-SCAD 89.44 
(0.011) 

0.881 
(0.004) 

87.35 
(0.007) 

SSVM-lasso 84.19 
(0.013) 

0.852 
(0.006) 

82.97 
(0.007) 

Prostate    

WSSVM 94.11 
(0.008) 

0.933 
(0.005) 

93.54 
(0.007) 

wgSVM-SCAD 94.46 
(0.008) 

0.939 
(0.007) 

92.33 
(0.008) 

SSVM-SCAD 87.59 
(0.008) 

0.857 
(0.008) 

85.18 
(0.008) 

SSVM-lasso 85.81 
(0.011) 

0.842 
(0.008) 

81.38 
(0.009) 

Michigan lung    

WSSVM 90.12 
(0.008) 

0.907 
(0.005) 

89.57 
(0.005) 

wgSVM-SCAD 81.05 
(0.011) 

0.861 
(0.007) 

80.39 
(0.007) 

SSVM-SCAD 77.48 
(0.011) 

0.781 
(0.008) 

75.32 
(0.007) 

SSVM-lasso 74.11 
(0.013) 

0.739 
(0.008) 

72.84 
(0.008) 

Table 2 reports the paired two-tailed t-test results at 
significance level 0.05α = . As shown in Table 3, the AUC 
of the proposed method is statistically significant better than 
those of wgSVM-SCAD, SSVM-SCAD, and SSVM-lasso in 
leukemia and Michigan lung datasets. In the prostate dataset, 
the proposed method has statistically significant AUC higher 
than those of SSVM-SCAD, and SSVM-lasso, while it has 
no statistically significant difference with wgSVM-SCAD.  



92 Mohammed Abdulrazaq Kahya et al.:  Gene Selection inside Pathways using Weighted L1-norm Support Vector Machine  
 

 

Table 3.  P-values for the paired t-test of our proposed method results with 
three competitor methods across three datasets. (*) means that the two 
methods have significant differences 

Dataset WSSVM vs 
wgSVM-SCAD 

WSSVM vs 
SSVM-SCAD 

WSSVM vs 
SSVM-lasso 

Leukemia 0.0034(*) 0.0017(*) 0.0028(*) 
Prostate 0.0671 0.0022(*) 0.0060(*) 

Michigan Lung 0.0055(*) 0.0039(*) 0.0075(*) 

6. Conclusions 
This paper presents a weighted sparse support vector 

machine by combining the support vector machine with the 
weighted L1-norm to identify the relevant genes with their 
pathways. Our proposed method was experimentally tested 
and compared with other existing methods based on three 
well-known gene expression datasets. The superior 
classification performance of the proposed method was 
shown through three aspects: high classification accuracy, 
G-mean, and AUC. Meeting these four metrics 
simultaneously nominates the proposed method as a 
promising gene selection method with incorporating the 
pathways knowledge which is useful for cancer classification. 
Overall, the proposed method clearly illustrates its 
applicability and usefulness in other types of 
high-dimensional classification data related to the biological 
field. 
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