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Abstract  In Susceptible-Infected-Susceptible (SIS) compartmental models, an infected population recovers with no 
immunity, and then, it moves immediately to the susceptible compartment once people heal from infection. Such phenomena 
are observed in the case of the common cold and influenza since these infections do not give immunization upon recovery, 
and individuals become susceptible again. In this paper, we devise a multi-regions SIS discrete-time model which describes 
infection dynamics due to the presence of an influenza pandemic in regions that are connected with their neighbors by any 
kind of anthropological movement. The main goal from this kind of modeling, is to exhibit the importance of mobility of 
individuals, in the spread of infection regardless the mean of transport utilized, and also to show the role of travel restrictions 
in influenza pandemic prevention, by introducing controls variables which reduce the incidence for which an infection could 
occur once susceptible populations have contacts with infected individuals coming from the neighboring regions of one 
region targeted by our optimization approach called here; the travel-blocking vicinity optimal control strategy. In the 
numerical simulations part, we consider a gridded surface of colored cells to illustrate the whole domain affected by the 
epidemic while each cell represents a sub-domain or region, and then, we give an example of the application of the optimal 
control approach to a cell with 8 neighbors, with the hypothesis that the infection starts from only one cell located in one of 
the corners of the surface. 

Keywords  Multi-regions model, SIS epidemic model, Influenza pandemic, Discrete-time model, Optimal control, 
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1. Introduction 
Susceptible-Infected-Susceptible (SIS) epidemic models 

have been applied to situations in which it is supposed that 
an infected population could move immediately to the 
susceptible compartment after being recovered from an 
infection due to the lack of immunization. This kind of 
compartmental models is also useful to model the evolution 
of many phenomena in different situations, see as examples, 
subjects treated in [1-3]. 

In their papers [4-7], Zakary et al. have devised new 
mathematical models which are based on multi-regions 
discrete-time and continuous-time SIR models, aiming to 
describe the spatial-temporal evolution of epidemics which 
emerge in different geographical regions, and also, in order 
to show the influence of one region on an other one via 
infection travel. In [4, 5], the mentioned authors have 
proposed  an optimization  approach  for  proving  its  
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effectiveness when applied to epidemics and pandemics in 
general, and they treated particular infectious diseases such 
as HIV/AIDS and Ebola in [6] and [7] respectively. In other 
papers, the authors have also suggested multi-regions 
discrete-time systems which describe infection dynamics of 
an epidemic based on SIRS and SEIRS cellular 
compartmental models [8, 9]. In this research article, we 
aim to control a region that is affected by an influenza 
pandemic due to movements of infected people which enter 
only from its neighboring regions, with the hypothesis that 
in all regions, there are no removed individuals due to the 
lack of the immunity. 

Grais el al. have discussed in their papers in [10, 11], 
concrete examples which show the impact of mobility of 
individuals via air travel, on the global spread of the 
influenza epidemic. In the same context, Mateus et al. 
reported different types of travel restrictions in roads, rails, 
air and borders, which have been followed in different 
regions and showed their effectiveness in the case of a 
human influenza [12], see also work of Epstein et al. in [13] 
and where the authors revealed the importance of 
mathematical models in exhibiting the effectiveness of such 
travel-restrictions control strategies in case of the pandemic 



38 Imane Abouelkheir et al.:  A Multi-regions SIS Discrete Influenza Pandemic Model  
with a Travel-blocking Vicinity Optimal Control Approach on Cells 

 

flu. 
For all these reasons, we suggest first here, a new 

modeling approach which is based on a multi-regions SIS 
discrete-time model describing the spatial-temporal spread 
of an influenza pandemic which emerges in a global domain 
of interest represented by a gridded surface of colored cells 
which are uniform in size. These cells are supposed to be 
connected by movements of their populations, and they 
represent sub-domains or regions, and noting that only one 
of these cells, that is targeted by our control strategy. 

In [4], a region was represented by a sub-domain 
(Ωj)j=1,..,p which belongs to a domain Ω, while here, a 
region is denoted by a cell (Cpq)p,q=1,..,M. For this, we 
assume that the pandemic can be transmitted and 
propagated by movements of people, from one spatial cell 
Cpq, to its neighbors or cells belonging to its vicinity. In a 
geographical scale relatively small, some infectious 
diseases such as African Swine Fever [14], Bovine Viral 
Diarrhoea virus [15, 16] and Foot-and-Mouth Disease [17], 
follow that pattern of spread, and Cpq can represent a farm, 
while in a large geographical scale such as in the case of 
SARS [18], HIV/AIDS [6, 19, 20], Ebola Virus [7], and 
ZIKA Virus [21], a cell Cpq can represent a city, a country 
or larger domain. Thus, by following a control strategy 
which is based on the travel-blocking vicinity optimal 
control approach suggested in [8, 9], movements of infected 
people who are intending to enter other cells, could be 
effectively restricted, and then, the incidence rate for which 
an infection could occur, becomes less important. In fact, 
the optimization criteria are also chosen here in a way to 
restrict the movement of people coming from one or more 
cells and entering other cells. Explicitly, we seek to 
minimize an objective function associated to Cpq and 
subject to its associated discrete-time system, with optimal 
control functions introduced as minimizers of infection 
incidence in order to show the effectiveness of the 
travel-blocking operations followed between Cpq and its 
neighbors. Vpq represents the vicinity set which is composed 
by all neighboring cells of Cpq and which are denoted by 
(Crs)r=p+k,s=q+k′ with (k, k′) ∈ {−1, 0, 1}2 except when k = 
k′ = 0. Note also as we have mentioned before, these cells 
are attached just in the grid, but in reality, they are not 
necessarily joined together. Thus, the travel-blocking 
vicinity optimal control approach will show the impact of 
the optimal blocker controls on reducing contacts between 
susceptible people of the targeted cell Cpq and infected 
people coming from one cell Crs or more cells from Vpq. The 
paper is organized as follows: Section 2. presents the 
discrete-time multi-cells SIRS influenza pandemic system 
based on a colored cellular modeling approach. In Section 3, 

we announce a theorem of necessary conditions and 
characterization of the sought optimal controls functions 
related to the travel-blocking vicinity optimal control 
approach. Finally, in section 4, we provide simulations of 
the numerical results for an example of 100 cells when an 
infection starts from one cell of them and which has 5 
neighboring cells, while aiming to control only one cell 
with 8 neighboring cells. 

2. The Mathematical SIS Model 
We consider a multi-regions discrete-time epidemic 

model which describes SIS dynamics within a domain Ω 
which is divided into M2 regions or cells, uniform in size. In 

other words, 
, 1

M

pq
p q

C
=

Ω =


 with Cpq denoting a spatial 

location or region. 
We note that (Cpq)p,q=1,...,M could represent a country, a 

city or town, or a small domain such as neighborhoods, 
which belong respectively to a domain Ω that could 
represent a part of continent or even a whole continent, a 
part of country or a whole country, etc. 

We represent the S-I populations associated to a cell Cpq 

by the states pqC
iS  and pqC

iI  and we note that the 
transition between them, is probabilistic, with probabilities 
being determined by the observed characteristics of specific 
diseases. In addition to the death, there are population 
movements among these three epidemiological 
compartments, from time unit i to time i + 1. We assume that 
the susceptible individuals not yet infected but can be 
infected only through contacts with infected people from Vpq 
(Vicinity set or Neighborhood of a cell Cpq), thus, the 
infection transmission is assumed to occur between 
individuals present in a given cell Cpq, and is given by 

pqrs

rs pq

CC
rs i i

C V
I Sβ

∈
∑   

where rsβ  is the constant proportion of adequate contacts 
between a susceptible from a cell Cpq and an infective 
coming from its neighbor cell rs pqC V∈  with 

( ) { }{ }2/ , , , 1,0,1 \pq rs pqV C r p k s q k k k C′ ′= ∈Ω = + = + ∈ − . 

SIS dynamics associated to a cell Cpq are described based 
on the following multi-regions discrete model.  

For p,q = 1, ..., M, we have 

 

1
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( )1
pq pq pq pq pq pqrs

rs pq

C C C C C CC
pq rsi i i i i ii

C V
I I I S I S d Iβ β α θ+

∈
= + + − + +∑               (2) 

i = 0, ..., N − 1 

with 0 0pqCS ≥  and 0 0pqCI ≥  are the given initial conditions. 
d > 0 is the natural death rate while α > 0 is the death rate due to the infection, and θ > 0 denotes the recovery rate. By 

assuming that is all regions are occupied by homogeneous populations, α, d and θ are considered to be the same for all cells of 
Ω. 

3. The Travel-Blocking Vicinity Optimal Control Approach 
The main goal of the travel-blocking vicinity optimal control approach is to restrict movements of infected people coming 

from the set Vpq and aiming to reach the cell Cpq. For this, we introduce controls variables upqCrs which limits contacts between 
susceptible of the targeted cell Cpq and infected individuals from cells Crs which belong to Vpq. Then, for a given cell Cpq in Ω, 
the discrete-time system (1)-(2) becomes 

1
pq pq pq pq pq pq pqrs rs

rs pq

C C C C C C CpqC C
rs pqi i i i i i i ii

C V
S S u I S I S dS Iβ β θ+

∈
= − − − +∑           (3) 

( )1
pq pq pq pq pq pqrs rs
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C C C C C CpqC C
rs pqi i i i i i ii

C V
I I u I S I S d Iβ β α θ+

∈
= + + − + +∑           (4) 

i = 0, ..., N − 1  
Since our goal concerns the minimization of the number of the infected people and the cost of the vicinity optimal control 

approach, we consider an optimization criterion associated to cell Cpq and we define it by the following objective function 

( ) ( )
1 2

1 1
0 2

pq pq rsrs

rs pq

NC C pqCpqC rs
pq i iN
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−

= ∈

 
 = + +
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where A1 > 0 and Ars > 0 are the constant severity weights associated to the number of infected individuals and controls 
respectively. The controls functions are defined in the control set Upq associated to the cell Cpq, by 

{ / ,

1 0, 0, , 1, }

rsrs pqCpqC min max
pq i

max min
rs pq

U u measurable u u u

u u i N C V

= ≤ ≤

             <    

 

>  = − ∈

                    (6) 

Then, we seek optimal controls *rspqCu  such that 
*( ) { ( ) / }rs rs rspqC pqC pqC

pq pq pqJ u min J u u U= ∈  

The sufficient conditions for the existence of optimal controls in the case of discrete-time epidemic models have been 
announced in [4] [5], [22], and [23]. 

As regards to the necessary conditions and the characterization of our discrete optimal control, we use a discrete version of 
Pontryagin's maximum principle [4], [5], [24]. 

For this, we define an Hamiltonian   associated to a cell pqC  by  

2
1

pq

1, 1
pq

( )
2V

V
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C pqCrs
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pqV
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with , , 1, 2pqC
k i kζ  = , the adjoint variables associated to pqC

iS  and pqC
iI  respectively, and which are defined based 

on formulations of the following theorem. 

Theorem 1. (Necessary Conditions \& Characterization) Given optimal controls *rspqCu  and solutions 
*
pqCS  and

*
pqCI , there exists , , 0... , 1, 2pqC

k i i N kζ = = , the adjoint variables satisfying the following equations  
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with 11, 2,0,pq pqC C
N N Aζ ζ= = , are the transversality conditions. 

In addition 
**
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Proof. Using a discrete version of Pontryagin's Maximum Principle in [4], [5], [24], and setting *pq pqC CS S= , 
*pq pqC CI I=  and *rs rspqC pqCu u=  we obtain the following adjoint equations 
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with 11, 2,0,pq pqC C
N N Aζ ζ= =  are the transversality conditions. 

In order to obtain the optimality condition, we calculate the derivative of H  with respect to rspqC
iu , and we set it 

equal to zero 
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By the bounds in pqU , we finally obtain the characterization of the optimal controls 
*
rspqC
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4. Numerical Results and Discussions 
4.1. Brief Presentation 

In this section, we provide numerical simulations to 
demonstrate our theoretical results in the case when the 
studied domain Ω , represent the assembly of 2M  
regions or cells (countries, cities, towns, ...). A code is 
written and compiled in MATLAB using data cited in Table 
1. The optimality systems are solved using an iterative 

method where at instant i , the states pqC
iS  and pqC

iI  

with an initial guess, are obtained based on a progressive 

scheme in time, and their adjoint variables ,
pqC

l iζ , 1, 2l =  

are obtained based on a regressive scheme in time because 
of the transversality conditions. Afterwards, we update the 
optimal controls values (10) using the values of state and 
costate variables obtained in the previous steps. Finally, we 
execute the previous steps till a tolerance criterion is 
reached. In order to show the importance of our work, and 
without loss of generality, we consider here that 10M =  
and then we present our numerical simulations in a 10 10×  
grid and which represents the global domain of interest Ω . 

At the initial instant, susceptible people are 
homogeneously distributed with 50 individuals in each cell 
except at the lower-left corner cell 101C , where we 
introduce 10 infected individuals and 40 susceptible ones. 

In all of the figures below, the redder part of the 
color-bars contains larger numbers of individuals while the 
blue part contains the smaller numbers. 

In the following, we discuss with more details, the 
cellular obtained simulations, in the case when there are yet 
no controls. 

Table 1.  Parameters values of α , β , d  and θ  associated to a 

cell , 1,...,,pqC p q M=  , and which are utilized for the resolution 

of all multi-regions discrete-time systems (1)-(2) and (3)-(4), and then 
leading to simulations obtained from Figure 1 to Figure 4, with the initial 

conditions 
0

pqCS  and 
0

pqCI  associated to any cell pqC  of Ω  

0
pqCS  0

pqCI  α  β  d  θ  

50 0 0.002 0.0001 0.0001 0.003 

 

 

 

Figure 1.  pqCS  behavior in the absence of controls 
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Figure 2.  pqCI  behavior in the absence of controls 

4.2. Cellular Simulations without Controls 
In this section, Figures 1. and 2. depict dynamics of the 

susceptible population in the case when there is yet no 
control strategy, followed for the prevention of the 
epidemic, and we note that in all these figures presented 
here, simulations give us an idea about the spread of the 
disease in the case when the epidemic starts in a cell pqC  

with 10, 1p q=   =  (located in the lower-left corner of 

Ω ). It represents the case when the vicinity set pqV  

associated to the source cell of infection, contains 3 cells). 
For instance, in Figure 1, if we suppose there are 40 

susceptible people in cell 101C  located at the lower-left 
corner of Ω , and 50 in each other cell, we can see that at 

instant 150i = , the number 101CS  becomes less 
important and takes values close/or equal to 35, 40 and 45, 

while pqCS  in cells of 101V  take values close/or equal 

to 30, and as we move away from 101 102 91 92{ , , }V C C C= , 

pqCS  remains important. At instant 300i = , we can 

observe that in most of cells, pqCS  becomes less 
important, taking values between 0 and 10 near the source 
of infection, while in other cells, it takes values between 20 

and 40 except 110CS  which conserves its value in 50 since 
it is located far away from the source of infection. At instant 

450i = , pqCS  becomes zero except at the opposite 
corners and the borders of Ω  because these cells have 
vicinity sets smaller than other cells. Finally at last instants, 

pqCS  converge to zero in all cells. 
Figure 2. illustrates the rapid propagation of the infection 

in Ω , and we can observe that at instant 150i = , the 

number 101CI  increases to a bigger value which is 

close/or equals to 25, while pqCI  in cells of 101V  take 
values close/or equal to 15, and as we move away from 

101V , pqCI  remains less important. At instant 300i = , 

we can see that in most cells, pqCI  becomes more 
important, taking values that are bigger than 30 in cells 
which have/or are close to cells with 8 neighboring cells, 
while in few other cells, it takes values that are close to 15. 
From these numerical results, we can deduce that once the 
infection arrives to the center or to the cells with 8 cells in 
their vicinity sets, the infection becomes more important 
compared to the case of the previous instant. At instant 

450i = , pqCI  takes values which equal/or are close to 
28 or more in cells from where the epidemic has started, 
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and 25 in 101V  and near to it, and as we move away 
towards the center and further regions, infection is 
important with the presence of 32 infected individuals in the 
3 opposite corners and which becomes 25 at instant 

600i = . In fact, at the center of Ω , the number of 
infected people which has increased to 35 at the previous 
instant ( 450)i = , has been reduced, because once a cell 
becomes highly infected, it loses an important number of 
individuals which die, recover naturally after or become 
susceptible again, and this can be more deduced at further 
instants. 

4.3. Cellular Simulations with Controls 
Figures 3. and 4. depict dynamics of the S-I populations 

when the travel-blocking vicinity optimal control strategy is 
followed. 

In order to show the importance of our optimal control 
approach, we take the example of a cell which has 8 
neighboring cells, and as done in the previous part, we 
investigate also here, the results obtained when the disease 
starts from cell 101C  located in the lower-left border of Ω . 
As an example, we suppose that the cell aiming to control is 

55C . 

In Figure 3., as supposed also above, there are 40 
susceptible people in cell 101C , and 50 in each other cell. 

We can see that at instant 150i = , the numbers 101CS  and 
pqCS  are at most the same as in the case when there was no 

control strategy. However, the controlled cell 55C  contains 
45 susceptible people at instant 300i = , which is not 
exactly the same as in the case when there was yet no control 

strategy since in Figure 1., pqCS  has decreased more 
significantly. Thus, we can deduce that the travel-blocking 
vicinity optimal control strategy has proved its effectiveness 
earlier in time. At instants 450, 600i =  and 900i = , 

pqCS  is also the same as done before but fortunately again, 

we reach our goal in keeping the number 55CS  close to its 
initial value despite some small decrease. Thus, this 
demonstrates that most of movements of infected people 

coming from the vicinity set 55CV , have been restricted in 
final times. 

 

 

 

Figure 3.  pqCS  behavior in the presence of optimal controls (10) 



44 Imane Abouelkheir et al.:  A Multi-regions SIS Discrete Influenza Pandemic Model  
with a Travel-blocking Vicinity Optimal Control Approach on Cells 

 

 

Figure 4.  pqCI  behavior in the presence of optimal controls (10) 

In Figure 4., we deduce that at instant 150i = , the 

numbers 101CI  and pqCI  are at most the same as in 
Figure 2. At instant 300i = , we can see that in most cells, 

pqCI  is also similar to the case in Figure 3. but the 
controlled cell 55C  is still not really infected and contains 
only about one infected individual, and the number remains 
always not important at further instants. 
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