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Abstract  The author presented a new approach for solving unconstrained optimization problems having univariate 
quadratic surfaces. An illustrative example using this technique shows that an optimizer could be reached in just one move 
which compares favorably with other known ones, say, Fibonacci Search technique. 
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1. Introduction 
In this paper, an alternative technique for solving 

unconstrained optimization problems with univariate 
quadratic surfaces is proposed. In real life, only very few 
problems exist where managers are concerned with taking 
decisions involving only one decision variable and without 
constraints. However, the justification for the study of such 
problems stem from the fact that it forms the basis of simple 
extensions and plays a key role to the development of a 
general multivariate algorithms as stated in [1] and [2]. 

According to [3], there are many iterative techniques for 
solving first unconstrained nonlinear problems and these 
techniques usually require many iterations of very tedious 
computations. Fibonacci Search and Golden Section Search 
techniques are some of the direct search techniques in this 
group that are used for finding the optimum of an arbitrary 
unimodal unconstrained univariate response function. The 
idea here is to identify the interval of uncertainty containing 
this optimum and the computational efforts involved in the 
two techniques which seek to minimize the size of the 
interval are enormous. In the case of Fibonacci search 
technique, the search procedures depend on a numerical 
sequence known as Fibonacci numbers. This method 
successfully reduces the interval in which the optimum of an 
arbitrary nonlinear function must lie (See [1]). On the other 
hand, according to [4] and [5], Golden Section Search 
technique is another traditional method used for finding   
the optimum of an arbitrary  unimodal univariate objective  
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function. The superiority of this technique over Fibonacci is 
that there is need for apriori specification of the resolution 
factor as well as the number of iterations before the 
Fibonacci technique is used. These are not necessary in 
Golden section technique as apriori specification of these 
might not be possible in practice, [6]. However, [7] had 
shown that Fibonacci Search technique is the best traditional 
technique for finding the optimal point for a single valued 
function. See also [8]. 

In order to circumvent these pitfalls, an alternative method 
for obtaining the required optimizer is of interest in this work 
which will later be generalized to accommodate response 
functions involving multi variables. The operation of the 
new algorithm makes use of the principles of optimal designs 
of experiment as can be seen in [9]. To design an experiment 
optimally, we select N support points within the 
experimental region such that optimal solution to the 
unconstrained optimization problems with univariate 
response surfaces could be realized. As by [10], a 
well-defined method to handle interactive effects in the case 
of quadratic surfaces has been provided. Since this new 
technique is a line search algorithm, it relies on a 
well-defined method of determining the direction of search 
as given by [11] which was a modification of [12]. See also 
[13]. This method seeks to determine the exact optimum of 
the unimodal unconstrained univariate response function 
rather than locating and reducing the interval where it lies 
which is the objective of the traditional methods. The 
algorithmic procedure which is given in the next section 
requires that the optimal support points that form the initial 
design matrix obtained from the entire experimental region 
be partitioned into r groups, r = 2, 3, … , n. However, [14] 
have shown that with r = 2, optimal solutions are obtained.  

mailto:idorenyinetukudo@aksu.edu.ng


34 Idorenyin A. Etukudo:  Optimal Designs Technique for Solving Unconstrained  
Optimization Problems with Univariate Quadratic Surfaces 

 

2. Optimal Designs Technique 
The sequential steps involved in this new method are 

given below. 
Initialization: Let the response function, f(x) be defined as 
          f(x) = a0 + a1x + bx2 
         Select N support points such that 
         3r ≤ N ≤ 4r or 6 ≤ N ≤ 8 

where r = 2 is the number of partitioned groups and by 
choosing N arbitrarily, make an initial design matrix  

X = 

⎣
⎢
⎢
⎢
⎡
1 x1
1 x2
⋮ ⋮
1 xN

 ⎦
⎥
⎥
⎥
⎤
 

Step 1: Compute the optimal starting point,  
x1
∗ =  ∑ um

∗ xm
TN

m=1 , 

where um
∗ > 0 , ∑ um

∗ = 1N
m=1 , um

∗ =  am
−1

∑ am
−1 , m = 1,      

2, …, N, am = xmxm
T , m = 1, 2, …, N.  

Step 2: Partition X into r = 2 groups and obtain 
i.  Xi, i = 1, 2.  
ii.  Mi = Xi

TXi 
iii.  Mi

−1, i = 1, 2. 
Step 3: Calculate the following: 
(i) The matrices of the interaction effect of the x variable 

for the groups as 

X1I =  

⎣
⎢
⎢
⎡x11

2

x12
2

⋮
x1k

2 ⎦
⎥
⎥
⎤
 and  X2I =  

⎣
⎢
⎢
⎢
⎡x2(k+1)

2

x2(k+2)
2

⋮
x2N

2 ⎦
⎥
⎥
⎥
⎤
 

where k = N
2
. 

(ii) Interaction vector of the response parameter, g = [b] 
(iii) Interaction vectors, Ii = Mi

−1Xi
TXiI g 

(iv) Matrices of mean square error,   

M� i = Mi
−1 + IiIi

T  = �v�i11 v�i21
v�i12 v�i22

� 

(v) Hessian matrices,  

Hi = diag � v�i11
Σv�i11

, v�i22
Σv�i22

� = diag {hi1, hi2} 

(vi) Normalized Hi as Hi
∗ = diag { hi1

�Σhi1
2

, hi2

�Σhi2
2

} 

(vii) The average information matrix, 

M(ξN) = ΣHi
∗MiHi

∗T  = �m�11 m�12
m� 21 m� 22

� 

Step 4: Obtain 

i. The response vector, z = �
z0
z1
� where  

          z0 = f(m� 21) and z1 = f(m� 22) 

ii. The direction vector, d = �
d0

d1
� = M−1(ξN)𝐳𝐳 

which gives d* = d1  
Step 5: Make a move to the point 

x2
∗ =  x1

∗ −  ρ1𝐝𝐝∗ 
for a minimization problem or 

x2
∗ =  x1

∗ + ρ1𝐝𝐝∗ 
for a maximization problem where ρ1 is the step length 
obtained from 

df (x2
∗ )

dρ1
 = 0 

Step 6: Termination criteria. Is |f(𝐱𝐱𝟐𝟐∗) −  f(𝐱𝐱𝟏𝟏∗)| < ε where 
ε = 0.0001? 

i. Yes. Stop and set 𝐱𝐱𝟐𝟐∗  = xmin or xmax. as the case may be. 
ii. No. Replace 𝐱𝐱𝟏𝟏∗  by 𝐱𝐱𝟐𝟐∗  and return to step 5. If 

ρ2 ≅ 0, then implement step 6(i). 

3. Numerical Illustration 
In this section, we give a numerical illustration of the 

optimal designs technique for solving unconstrained 
optimization problems with univariate quadratic surfaces. 
The example below gives such an illustration. 

3.1. Example 

min f(x) = x2 
Solution 

Initialization: Given the response function, f(x) = x2 select 
N support points such that 3r ≤ N ≤ 4r or 6 ≤ N ≤ 8 where    
r = 2 is the number of partitioned groups and by choosing N 
arbitrarily, make an initial design matrix  

X = 

⎣
⎢
⎢
⎢
⎢
⎡
1 −1
1 −0.5
1 0
1   0.5
1   1
1   1.5⎦

⎥
⎥
⎥
⎥
⎤

 

Step 1: Compute the optimal starting point,  

x1
∗ =  ∑ um

∗ xm
T6

m=1 , um
∗ > 0, ∑ um

∗ = 16
m=1 , um

∗ =  am
−1

∑ am
−1, 

m = 1, 2, …, 6, am = xmxm
T , m = 1, 2, …, 6 

a1 = [1 −1] � 1
−1� = 2, 𝑎𝑎1

−1 = 0.5,  

a2 = [1 −0.5] � 1
−0.5� = 1.25, 𝑎𝑎2

−1 = 0.8, 

a3 = [1 0] �10� = 1, 𝑎𝑎3
−1 = 1,  

a4 = [1 0.5] � 1
0.5� = 1.25, 𝑎𝑎4

−1 = 0.8, 

a5 = [1 1] �11� = 2, 𝑎𝑎5
−1 = 0.5,  

a6 = [1 1.5] � 1
1.5� = 3.25, 𝑎𝑎6

−1 = 0.3077 and  

∑ am
−1 = 3.9077. 

u1
∗ =  0.5

3.9077
 = 0.1280, u2

∗ =  0.8
3.9077

 = 0.2047, 
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u3
∗ =  1

3.9077
 = 0.2559, u4

∗ =  0.8
3.9077

 = 0.2047 

u5
∗ =  0.5

3.9077
 = 0.1280, u6

∗ =  0.3077
3.9077

 = 0.0787. 

Hence, the optimal starting point is 

x1
∗ =  ∑ um

∗ xm
T6

m=1 = 0.1280� 1
−1� + 0.2047� 1

−0.5�  

     + 0.2559�10� + 0.2047� 1
0.5� + 0.1280�11�  

    + 0.0787� 1
1.5� = � 1

0.1181
� 

Step 2: By partitioning X into 2 groups, we have the 
design matrices,  

X1 = �
1 −1
1 −0.5
1 0

�   and   X2 = �
1 0.5
1 1
1 1.5

� 

The information matrices are 

M1 = X1
TX1 = � 1 1 1

−1 −0.5 0� �
1 −1
1 −0.5
1 0

�  

= � 3 −1.5
−1.5 1.25�  

and 

M2 = X2
TX2 = � 1 1 1

0.5 1 1.5� �
1 0.5
1 1
1 1.5

� = �3 3
3 3.5� 

and their inverses are 

M1
−1 = 0.6667�1.25 1.5

1.5 3 � = �0.8334 1.0001
1.0001 2.0001� and 

M2
−1 = 0.6667�3.5 −3

−3 3 � = �   2.3335 −2.0001
−2.0001    2.0001�  

Step 3 Calculate the following: 
(i) The matrices of the interaction effect of the univariate 

for the groups as 

X1I = �
1

0.25
0
�   and   X2I =  �

0.25
1

2.25
� 

(ii) Interaction vector of the response parameter, 
g = [1] 

(iii) Interaction vectors for the groups to be 
 
I1 = M1

−1X1
TX1Ig  

  = �0.8334 1.0001
1.0001 2.0001� �

1 1 1
−1 −0.5 0� �

1
0.25

0
�[1] 

   = �−0.1667 0.3334 0.8334
−1 0 1.0001� �

1
0.25

0
�  

   = �−0.0834
    0.0001� 

 
I2 = M2

−1X2
TX2Ig  

= �   2.3335 −2.0001
−2.0001    2.0001� �

1 1 1
0.5 1 1.5� �

0.25
1

2.25
�[1] 

= � 1.3334 0.3334 −0.6667
−1.0001 0 1.0001 � �

0.25
1

2.25
�  

= �−0.8333
   2.0002� 

(iv) Matrices of mean square error for the groups are    

M�1 = M1
−1 + I1I1

T  = �0.8334 1.0001
1.0001 2.0001�  

+ �−0.0834
    0.0001�

[−0.0834 0.0001] 

     = �0.8334 1.0001
1.0001 2.0001� + �0.0070 0

0 0�  

   = �0.8404 1.0001
1.0001 2.0001� 

M�2 = M2
−1 + I2I2

T  = �   2.3335 −2.0001
−2.0001    2.0001�  

     + �−0.8333
   2.0002�

[−0.8333 2.0002] 

     =�   2.3335 −2.0001
−2.0001    2.0001� + � 0.6944 −1.6667

−1.6667 4.0008 � 

= � 3.0279 −3.6668
−3.6668    6.0009� 

(v) Matrices of coefficient of convex combinations of the 
matrices of mean square error are 

H1 = diag � 0.8404
0.8404+3.0279

, 2.0001
2.0001+6.0009

� 

  = diag {0.2173, 0.2500} 
H2 = I – H1 = diag {0.7827, 0.7500}  

and by normalizing Hi such that  
ΣHi

∗Hi
∗T = I, we have 

H1
∗ = diag {

0.2173
√0.21732  +  0.78272

,
0.2500

√0.25002 +  0.75002
} 

   = diag{0.2675, 0.3162} 

H2
∗ = diag {

0.7827
√0.21732  + 0.78272

,
0.7500

√0.25002 + 0.75002
} 

= diag{0.9636, 0.9487} 

(vi) The average information matrix is 
M(ξN ) = H1

∗M1H1
∗T +  H2

∗M2H2
∗T  

= �0.2675 0
0 0.3162� �

3 −1.5
−1.5 1.25� �

0.2675 0
0 0.3162� 

+ �0.9636 0
0 0.9487� �

3 3
3 3.5� �

0.9636 0
0 0.9487� 

= � 0.2147 −0.1269
−0.1269    0.1250� + �2.7856 2.7425

2.7425 3.1502�  

= �3.0003 2.6156
2.6156 3.2752� 

Step 4 Obtain the response vector 

z = �
z0
z1
� 

That is, 
z0 = f(2.6156) = 2.61562 = 6.8414 
z1 = f(3.2752) = 3.27522 = 10.7269 
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and hence, the direction vector 

d = �
d0

d1
� = M−1(ξN)𝐳𝐳  

  = �3.0003 2.6156
2.6156 3.2752�

−1
� 6.8414
10.7269�  

  = �−1.8925
   4.7872

� 

which gives d* = d1 = 4.7872 
Step 5 Make a move to the point 
x2
∗ =  x1

∗ −  ρ1d1 
 = 0.1181 – 4.7872ρ1  

That is, 
f(x2

∗) = (0.1181 – 4.7872ρ1)2 
     = 0.0139 – 1.1307ρ1 + 22.9173ρ1

2 
and by derivative with respect to ρ1, we have 

df (x2
∗ )

dρ1
 = – 1.1307 + 45.8386ρ1 = 0 

which gives the step length as ρ1 = 0.0247 and 
x2
∗ =  x1

∗ −  ρ1d1 
= 0.1181 – 4.7872(0.0247)  

   = – 0.0001. 
Since |f(𝐱𝐱𝟐𝟐∗) −  f(𝐱𝐱𝟏𝟏∗)| = |0 − 0.0139| = 0.0139 ≠ ε,  
We make a second move to the point  
x3
∗ =  x2

∗ −  ρ2d1 
     = – 0.0001 – 4.7872ρ2  

That is,  
f(x3

∗) = (– 0.0001 – 4.7872ρ2
2  

    = 0 – 0.0010ρ2 + 22.9173ρ2
2 

and by derivative with respect to ρ2, we have 
df (x3

∗ )
dρ2

 = 0.0010 + 45.8386ρ2 = 0 

which gives the step length as ρ2 = – 0.00002 ≅ 0. This 
means that the optimal solution was obtained at the first 
move and and hence, 

x2
∗ = = –  0.0001 ≅  0 and f(𝐱𝐱𝟐𝟐∗) = 0 

This result is more efficient than that obtained by 
Fibonacci search technique which gave xmin = (0.0472, − 0. 
0184) and f(xmin) = (0.0022, 0.0003). 

4. Conclusions 
We have successfully achieved the primary objective of 

this work by presenting an efficient alternative technique 
for solving unconstrained optimization problems having 
univariate quadratic surfaces. This was done by using the 
principles of optimal designs of experiment to show that the 
optimum could be obtained in just one move. A numerical 
illustration by this method which gave x2

∗ = –  0.0001 ≅  0 
and f(𝐱𝐱𝟐𝟐∗) = 0 as the exact solution is more efficient than 

x2
∗  = (0.0472, − 0. 0184) and f(x2

∗) = (0.0022, 0.0003) 
obtained from Fibonacci Search technique with several 
iterations. 
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