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Abstract  The Variational Iterational Method has been successfully applied to solve many nonlinear differential equations. 
Recently this method has been used to solve quantum mechanical problems. To fulfill this goal we have tried to use this 
method for solving a coupled Schrödinger-Klein-Gordon equation. We have considered a system of coupled 
Schrödinger-Klein-Gordon equation with appropriate initial condition then we have applied the Variational Iterational 
Method for finding analytical solutions of these equations. The numerical solutions of coupled Schrödinger- Klein-Gordon 
equation have been represented graphically. These results are significant which shows the efficiency of the proposed 
algorithm. It is now apparent that Variational Iterational Method is more efficient and easier to handle as compare with other 
method like as the Modified Decomposition Method. 
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1. Introduction 
In non-relativistic case the motion of a particle in a force 

field can be described in terms of a differential equation 
which is called Schrödinger wave equation. It is a highly 
non-linear differential equation. The equation consists of a 
kinetic energy term and a potential energy terms. So its 
solution depends on the potential energy of the particle taken 
into consideration. The prototype equation in relativistic case 
is called Klein-Gordon equation which is even more 
complicated than the Schrödinger wave equation. Here the 
relativistic effect is included. This means that the spin of the 
particle are included. However, after various analysis it is 
found that this Klein-Gordon equation describes only the 
motion of the spin zero particle. That is like π -meson and 
so on. For spin half particle such as electron, proton and etc. 
another wave equation is developed by Dirac which is called 
Dirac equation. All of these equations are highly non-linear 
and so is extremely difficult to get an exact solution. 
Researchers have been trying to solve these equation 
considering various types of potentials and assumptions. 

In this article we tried to solve Schrödinger- Klein-Gordon 
Equation numerically. Recently J.H. He developed a 
numerical method called variational iterational method 
(VIM) which is more effective and applicable in variety 
types of non-linear equations. We have applied this method  
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in solving different types of non-linear differential equations. 
Many others also used this method to study the linear wave 
equation, non-linear wave equations and wave-like equation 
in bounded and unbounded domains. 

The variational iterational method (VIM) developed in 
1999 by J. H. He in [1-3] which he used to study the linear 
wave equation, nonlinear wave equation and wave-like 
equation in bounded and unbounded domains. The method 
has been proved by many authors to be reliable and efficient 
for a wide variety of scientific applications, linear and 
nonlinear as well.  

The Schrödinger– Klein-Gordon (SKG) equation is a kind 
of nonlinear evolution equation. We know the particles can 
be identified in dual way. That means it is either particle like 
or wave like. So if we can find the behavior of a wave 
phenomena it will lead us to identify with the particle. That is 
why any kind of solution of SKG equation will play an 
important role in quantum field theory. The Schrödinger– 
Klein-Gordon (SKG) equation is 

0=++ uvxxvtiv  

022 =++− vuxxucttu         (1) 

Where i= 1−  
We will solve this equation using VIM.  
In this method, general Lagrange multipliers are 

introduced to construct correction functional for the 
problems. The multipliers can be identified optimally via the 
variational theory. There is no need of linearization or 
discretization and large computational work and round-off 
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errors is avoided. It has been used to solve effectively, easily 
and accurately a large class of nonlinear problems with 
approximation [6-13].  

The main goal of the present study is to find the analytic 
solutions of the coupled Schrödinger– Klein-Gordon [4, 5] 
by the variational iteration method and compare with the 
Modified Decomposition Method and finally to see the 
behaviour of the solution by three dimensional and 
corresponding two dimensional figure for real and imaginary 
parts of that solutions.  

2. Description of Variational Iteration 
Method (VIM) 

The variational iteration method (VIM) can be explained 
briefly in the following way. Let us consider the following 
general nonlinear partial differential equation: 

)(tgAu =                 (2) 

Where A is a differential operator with nonlinear terms 
and g(t) is a known function. We can separate A into linear 
and nonlinear parts. That is let us rewrite equation (2) in the 
following way:  

)( tgNuLu =+  

where L  is a linear operator, N  is a nonlinear term and 
)( tg  is a known function. To solve this type of nonlinear 

differential equation J.H. He proposed the variational 
iteration method whose brief description is the following, He 
said to solve equation (2) let us consider the following 
iteration formula 

∫ τ−τ+τ+=+
t

0
)]dτg()(nuN)(nλ(τ)[Lu(t)nu(t)1nu ~  (3) 

which is also called correction functional for equation (2), 
where λ  is a general Lagrange multiplier which can be 
identified optimally via variational theory, nu~  is considered 

as restricted variations i.e. 0~ =nuδ . It is required first to 
determine the Lagrangian multiplier λ  that will be 
identified optimally via integration by parts. The successive 
approximation 0),(1 ≥+ ntnu  of the solution )(tu  will be 

readily obtained upon using the Lagrangian multiplier 
obtained and by using any selective function 0u . The initial 

values )0(u and )0(tu  are usually used for the selective 

zeroth approximation of 0u . Having λ  determined then 

several approximation 0),( ≥jtju  can be determined. 

Consequently, the solution is given by 

.................
lim

+++=
∞→

= 3u2u1unu
n

u . (4) 

It is worth mentioning here that different types of linear or 
nonlinear equations will give rise to different values for the 
Lagrange multiplier λ . This method is used in the next 
section to solve equation (1). 

3. Numerical Solution of Schrödinger– 
Klein-Gordon Equation 

In this section, we first consider the coupled Schrödinger– 
Klein-Gordon (SKG) equation with the initial conditions   
[4, 5] then tried to solve the solutions of these coupled 
equations by using the VIM. The coupled system of SKG is 

0uvxxvtiv =++  

02vuxxu2cttu =++−        (5) 

And the initial conditions are  

(px)2tanh26p214pu(x,0) −−= , 

ikx(px))e26ptanh
2

7p
(v(x,0) +−=       (6) 

where p and k are arbitrary constants and also considering 

2p

12p24k2c
−

=  for the coupled SKG equations (5) with 

initial conditions (6). 
In order to obtain VIM solution of the equation (5) with 

initial conditions (6) we construct a correction functional 
which reads 

∫ ++
∂

∂
−

∂

∂
+=+ 









t

0
dτt)(x,n2vt)(x,nu2x

t)(x,nu2
2c2τ

τ)(x,nu2

1λt)(x,nut)(x,1nu ~~
~

         (7) 

∫ +
∂

∂
+

∂

∂
+=+ 









t

0
dτt)(x,nvt)(x,nu2x

t)(x,nv2

τ

τ)(x,nv
2λt)(x,nvt)(x,1nv ~~

~
              (8) 

where 1λ and 2λ  are the general Lagrange multipliers and ),(~ txnu , ),(~ txnv  denote restricted variations, i.e. 

0~~ == nvnu δδ .  
Its stationary conditions can be obtained as follows 
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011 ==
′− tτλ , 0)(1 =τλ , 01 =

″λ                              (9) 

021 ==+ tτλ , 0)(2 =
′ τλ                               (10) 

The Lagrange multipliers can therefore be identified as t−= τλ1  and 12 −=λ  and the variational iteration formula is 
obtained in the form of: 

∫ ++
∂

∂
−

∂

∂
−+=+ 









t

0
dτt)(x,2

nvt)(x,nu2x

t)(x,nu2
2c2τ

τ)(x,nu2
t)(τt)(x,nut)(x,1nu      (11) 

 ∫ +
∂

∂
+

∂

∂
−=+ 









t

0
dτt)(x,nt)v(x,nu2x

t)(x,nv2

τ

τ)(x,nv
t)(x,nvt)(x,1nv              (12) 

Using the initial conditions we can solve equations (11) and (12) to get the solutions u(x,t) and v(x,t) which are : 

 x)(p4 tanh2 t2p k x 2ie 18-

 x)(p2 x)tanh(p2sech 2 t4p 2c 12 x)(p2 tanh2 t2p k x i 2e 21 x)(p2tanh 2 t2p 3

 x)(p2 tanh2p 6- x)(p4sech 2 t4p 2c 6-2 t2p k x 2ie 
8

49
-2 t2p 72p 14- t)u(x,

+++

+=

         (13) 

 x))(p2 tanh2p 6-2p (-14  x))(p2 tanhp 6
2

p 7
(- k x ie

 x))(p2 tanhp 6
2

p 7
(- loge 2k k x ie - x)(p2tanh x)(p2sech 3p k x ie 24-

 x) tanh(p x)(p2sech loge 2pk  k x iei 12 x) tanh(p x)(p2sech 2pk  k x ie i 12

 x)(p4sech 3p k x ie  (12t - x))(p2 tanhp 6
2

p 7
(- k x ie txv
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+

++

+=),(

             (14) 

 
In the same manner using the iteration formulas (11) and 

(12) we can obtain the higher order approximations of 
equation (5).  

4. Numerical Results and Discussions 
In the present numerical computation we have assumed 

2p

12p2k42c
−

= , 050p .=  and 050k .=  For numerical 

result equations (13) and (14) have been used to draw the 
graphs as shown in figures 1(a), 2(a), 3(a), 4(a) and so on and 
corresponding two dimensional graphs as 1(b), 1(c), 2(b), 
2(c), 3(b), 3(c), 4(b), 4(c) and so on respectively. The 
approximated solution of absolute value of u(x,t) is plotted in 
figures 1(a) for 50,50)(x −∈  and (0,10)t ∈  and 
corresponding two dimensional graphs are drawn in figures 
1(b) and 1(c) for )50,50(−∈x  and a fixed value t. Real 
value of u(x,t) are plotted in figures 2(a) and 3(a) for 
different ranges of variables x and t and corresponding two 
dimensional behaviours are shown in figures 2(b), 2(c) and 
3(b), 3(c) for different fixed value of t. Also imaginary u(x,t) 

is plotted in figure 4(a) and in figures 4(b) and 4(c) are 
presented for corresponding 2D for a fixed value of t. In the 
same way the approximated solution of absolute, real and 
imaginary v(x,t) are plotted in Figs. 5(a), 6(a) and 7(a) for 
different ranges of variables x and t respectively. In Figs. 
5(b), 5(c), 6(b), 6(c) and 7(b), 7(c) are shown their 
corresponding two dimensional graphs. Here we see that the 
behaviour of the solutions are unchanged for the fixed value 
of t. 

 

Figure 1(a).  Solution for Abs u(x,t) for 50,50)(x −∈  and (0,10)t ∈  
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Figure 1(b).  Corresponding two dimensional graph for a fixed value 
10t =  

 

Figure 1(c).  Corresponding two dimensional graph for a fixed value 
0t =  

 
Figure 2(a).  Solution for Re u(x,t) for 40,40)(x −∈  and )5,.0(∈t  

 

Figure 2(b).  Corresponding two dimensional graph for a fixed value 
0t =  

 

Figure 2(c).  Corresponding two dimensional graph for a fixed value 
5t .=  

 

Figure 3(a).  Solution for Re u(x,t) for )60,60(−∈x  and 

)10,10(−∈t  

 

Figure 3(b).  Corresponding two dimensional graph for a fixed value 
10−=t  

 

Figure 3(c).  Corresponding two dimensional graph for a fixed value 
10=t  
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Figure 4(a).  Solution for Im u(x,t) for )60,60(−∈x  and 

)10,10(−∈t  

 

Figure 4(b).  Corresponding two dimensional graph for a fixed value 
10−=t  

 

Figure 4(c).  Corresponding two dimensional graph for a fixed value 
10=t  

 

Figure 5(a).  Solution for Abs v(x,t) for )50,50(−∈x  and 

)10,0(∈t  

 

Figure 5(b).  Corresponding two dimensional graph for a fixed value 
0=t  

 

Figure 5(c).  Corresponding two dimensional graph for a fixed value 
10=t  

 

Figure 6(a).  Solution for Re v(x,t) for 60,60)(x −∈  and 

)10,0(∈t  

 

Figure 6(b).  Corresponding two dimensional graph for a fixed value 
0=t  
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Figure 6(c).  Corresponding two dimensional graph for a fixed value 
10=t  

 

Figure 7(a).  Solution for Im v(x,t) for )60,60(−∈x  and 

)10,0(∈t  

 

Figure 7(b).  Corresponding two dimensional graph for a fixed value 
0=t  

 

Figure 7(c).  Corresponding two dimensional graph for a fixed value 
10=t  

5. Conclusions 
In this work, variational iteration method has been 

successfully applied for finding the approximate solution of 
the coupled Schrödinger Klein-Gordon equation. The 
numerical results obtained by VIM were observed to be in an 
excellent agreement with the results obtained by modified 
decomposition method. This indicates that the method is 
very efficient, reliable and experiences high accuracy. 
Moreover, unlike the traditional perturbation methods, VIM 
does not require any small parameter. In VIM we do not need 
discretization of time or space which reduces the 
computational errors and computer memory usage. The 
method is able to solve this nonlinear problem effectively 
and more easily as compared to other numerical techniques 
like adomain decomposition method. Due to its simplicity, 
flexibility and accuracy, VIM has been used to solve a wide 
range of linear and non-linear problems in science and 
engineering. Therefore, it provides more realistic series 
solutions that generally converge very rapidly in real 
physical problems. 
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