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Abstract  In this study, numerical solutions of Rosenau-RLW equation which is one of Rosenau type equations have been 
obtained by using Galerkin cubic B-spline finite element method. The fourth order Runge-Kutta technique has been used to 
solve the resulting ordinary differential equation system occured by the application of the method. The accuracy and 
efficiency of the present method have been tested by calculating the error norms 2L  and L∞ . Moreover, the computed 
results have been compared with exact and numerical ones existing in the literature. 
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1. Introduction 
Nonlinear evolution equations play an important role for 

the studies appeared in nonlinear sciences. These equations 
can be seen in many studies on nonlinear evolutions such as 
plasma physics, solid state physics, fluid mechanics, water 
wave mechanics, meteorology and nonlinear optics. Two 
important equations belonging to the class of nonlinear 
evolution equations are  

= 0t x xxxu uu uµ+ +                  (1) 

= 0t x x xxtu u uu uε µ+ + −              (2) 

namely KdV and RLW equations, respectively. While KdV 
equation (1) is a nonlinear model to study the change forms 
long waves advancing in a rectangular channel, RLW 
equation (2) is used to simulate wave motion in media with 
nonlinear wave steeping and dispersion, such as shallow 
water waves and ion acoustic plasma waves. From the 
studies on KdV equation, it is well known that the KdV 
equation has a number of shortcomings. Firstly, it describes 
an unidirectional propagation of waves. Thus wave-wave 
and wave-wall interactions can not be treated by the KdV 
equation. Secondly, both shape and the behavior of 
high-amplitude waves can not be well predicted by the KdV 
equation since it was derived under the assumption of weak 
an harmonicity. In order to overcome these shortcomings of 
KdV equation, Rosenau [1, 2] has introduced an equation in 
the form  
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 = 0.t xxxxt x xu u u u u+ + +           (3) 

which is called Rosenau equation. The existence and 
uniquness of Rosenau equation (3) was proved by Park [3]. 
Later on, to make more advanced studies on nonlinear waves 
and to understand other nonlinear behaviours of the waves, 
the term xxtu−  was added to Rosenau equation (3) and the 
following form has been obtained  

( ) = 0p
t x xxt xxxt x

u u u u uκ σ α β+ − + +    (4) 

where κ , σ , α , β  are real constants and 2p ≥  is an 
integer. This equation is called as generalized Rosenau-RLW 
equation [4]. There are miscellaneous studies about 
Rosenau-RLW equation. For example; Zuo et. al [5] have 
proposed a new conservative difference scheme and also 
proved the corresponding convergence of the scheme. Pan  
et. al [6] have studied the initial-boundary problem of the 
usual Rosenau-RLW equation by finite difference method 
designing a conservative numerical scheme preserving the 
original conservative properties for the equation. In Ref. [7], 
Mittal and Jain have applied B-spline collocation method to 
the generalized Rosenau-RLW equation to obtain the 
numerical solutions with the aid of quintic B-spline base 
functions. Pan et al. [8] have considered the numerical 
solutions of the Rosenau-RLW equation using 
Crank-Nicolson type finite difference method and derived 
the existence of numerical solutions by Brouwer fixed point 
theorem. Hu and Wang [9] have studied the initial-boundary 
value problem for Rosenau-RLW equation by proposing a 
three-level linear finite difference scheme and also obtained 
the existence, uniqueness of difference solution, and a priori 
estimates in infinite norm. In Ref. [10], Wongsaijai and 
Poochinapan have proposed a mathematical model to obtain 
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the solution of the nonlinear wave by coupling the 
Rosenau-KdV and the Rosenau-RLW equation. Wang et al. 
[11] have designed new conservative nonlinear fourth-order 
compact finite difference scheme for Rosenau-RLW 
equation given together with initial and boundary conditions. 
Cai et al [4] have considered Rosenau type equations, 
namely Rosenau-KdV and Rosenau-RLW equations and 
constructed the variational discretization for solving the 
evolutions of solitary solutions of this class of equations. In 
the present study, the Rosenau-RLW equation (4) for = 2p  
is going to be considered with the following initial and 
boundary conditions 

( ) ( ),0 =u x f x              (5) 

( ) ( )
( ) ( ) [ ], = , = 0

, .
, = , = 0x x

u a t u b t
x a b

u b t u b t
∈       (6) 

where ( )f x  is sufficiently differentiable function, x    
denotes the partial derivative with respect to space. The rest 
of the study can be summarized briefly as follows: In the 
second section, Galerkin finite element method has been 
applied to Rosenau-RLW equation. For both the element 
shape functions and weight functions are taken as cubic 
B-spline base functions. The system of equations obtained in 
terms of element parameters has been solved using the 
fourth-order Runge-Kutta technique. In the third section, two 
numerical problems, namely movement of solitary wave and 
the interaction of two solitary waves, are studied for the 
problem with initial and boundary conditions. The obtained 
numerical results are presented both in tabular and graphical 
format. Moreover, the computed results are also compared 
with some of those available in the literature.  

2. Galerkin Finite Element Model for 
Rosenau-RLW Equation 

Finite element method is one of the numerical methods 
used to obtain approximate solutions of ordinary and partial 
differential equations. In this study, Rosenau-RLW equation 
(4) for = 2p  is considered with the initial and boundary 
conditions (5) and (6), respectively. We will to obtain the 
numerical solutions of the problem with the aid of Galerkin 
finite element method. For this purpose, first of all, the 
solution domain of the problem [ ],a b  is divided into N  

finite elements with the nodal points denoted by { } =0
N

m mx  

as 

0 1 1= < < < < =N Na x x x x b−  

When each term in Rosenau-RLW equation (4) is 
multiplied by the weight function ( )iW x  and integrated by 
parts over the region, we obtain the weak form of 
Rosenau-RLW equation is obtained as 

( )

[ ]

2  

= .

b

t x x xt xx xxt x
a

b
xt xxxt x xxt a

Wu Wu W u W u Wu u dx

Wu Wu W u

κ σ α β

σ α α

+ + + +

− +

∫  

Therefore, the weak form for a typical element on 
[ ]1,m mx x +  is given as  

( )

[ ]

1

1

2  

= .

xm

t x x xt xx xxt x
xm

xm
xt xxxt x xxt xm

Wu Wu W u W u Wu u dx

Wu Wu W u

κ σ α β

σ α α

+

+

+ + + +

− +

∫
(7) 

In order to construct the approximate solution ( ),NU x t  

corresponding to the exact solution ( ),u x t  of the problem 
and to derive element equations the element shape functions 
are determined. The following cubic B-spline base functions 
have been choosen as element shape functions [12] 

( )

( ) [ ]
( ) ( ) ( ) [ ]
( ) ( ) ( ) [ ]

( ) [ ]

3
3 2 1

2 33 2
1 1 1 1

2 33 2
1 1 1 1

3
2 1 2

, ,

3 3 3 , ,
= 3 3 3 , ,

, ,
0,

m m m

m m m m m

m m m m m

m m m

x x x x

h h x x h x x x x x x
x h h x x h x x x x x x

x x x x
otherwise

− − −

− − − −

+ + + +

+ + +

 −

 + − + − − −
Φ  + − + − − −

 −



 

The approximate solution ( ),NU x t  in terms of cubic 

B-spline bases jΦ  and time-dependent element parameters 

jδ  on the whole region can be defined as  

( ) ( ) ( )
1

= 1
, = .

N

N j j
j

U x t t xδ
+

−
Φ∑  

In order to define cubic B-spline base functions for a 
typical element on [ ]1,m mx x + , the local transformation 

= mx xξ −  for 0 hξ≤ ≤  is applied, and the following 
base expressions are obtained  

 

( )
( ) ( ) ( )( )

( )

3 3
1

2 33 2 3

3 2 2 3 3
1

3 3
2

= / ,

= 3 3 3 / ,

= 3 3 3 / ,

= / .

m

m

m

m

h h

h h h h h h h

h h h h

h

ξ

ξ ξ ξ

ξ ξ ξ

ξ

−

+

+

Φ −

Φ + − + − − −

Φ + + −

Φ

(8) 

The approximate solution on a typical element 
[ ]1,m mx x +  can be written in terms of local coordinate 
system as  

( ) ( ) ( )
2

= 1
, = .

m

N j j
j m

U t tξ δ ξ
+

−
Φ∑          (9) 
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As it is known, in Galerkin finite element method, the weight functions ( )iW x  are taken as the same base functions jΦ  
used in approximate solution. If we use the weight functions and the approximate solution (9) in the weak form (7), we obtain 
the element equation for a typical element on [ ]1,m mx x +  as 

( ) ( ) ( ){ }

2 2

= 1 = 10 0 0 0 0

2

0= 1

2

=

+ +

− −

+

−

                    Φ Φ + Φ Φ + Φ Φ + Φ Φ + Φ Φ Φ                     

Φ Φ − Φ Φ + Φ Φ

∑ ∑∫ ∫ ∫ ∫ ∫

∑

  

  

h h h h hm m
e ' e ' ' e '' '' e ' e e

i j j i j j i j j i j j i j k j k
j m k m

m
' e ''' e ' '' e

i j j i j j i j j
j m

d d d d dξ δ κ ξ δ σ ξ δ α ξ δ β ξ δ δ

σ δ α δ α δ .
h

 

In the last equation, the integrals are represented by the following notations  

( ) ( )

( ) ( )

0 0

0 0

0
0

0 0

= , = ,

= , = ,

= , = ,

= , = .

h h
e e '
ij i j ij i j

h h
e ' ' e '' ''
ij i j ij i j

h he ' e '
ijk i j k ij i j

h he ''' e ' ''
ij i j ij i j

A d B d

C d C d

D d E

F F

ξ ξ

ξ ξ

δ ξ

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ Φ

Φ Φ Φ Φ

∫ ∫

∫ ∫

∫





 

From here, after some calculations, the following element matrices are obtained  

3

20 129 60 1 10 9 18 1
129 1188 933 60 71 150 183 381= , = ,
60 933 1188 129 38 183 150 71140 20
1 60 129 20 1 18 9 10

2 3 0 1 18 21 36 3
3 6 3 0 21 102 87 366 1= , =

0 3 6 3 3610
1 0 3 2

e e
ij ij

e e
ij ij

hA B

C C
hh

− −   
   − −   
   − −
   − −   

− − − 
 − − − − 
 − − − −
 − 



3

3

,
87 102 21

3 36 21 18

1 0 1 0 1 3 3 1
4 1 4 1 3 9 9 33 6= , = ,
1 4 1 4 3 9 9 3
0 1 0 1 1 3 3 1

1 2 1 0
0 1 2 118=
1 2 1 0

0 1 2 1

e e
ij ij

e
ij

E F
h h

F
h

 
 
 
 
 − − 

− − −   
   − − − −   
   − − − −
   − − −   

− 
 − − 
 − −
 − 



 

and 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1=
840

e
ijk

D D D D
D D D D

D
D D D D
D D D D

δ δ δ δ
δ δ δ δ

δ
δ δ δ δ
δ δ δ δ

 
 
 
 
 
  
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where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

11 12

13 14

21 22

23 24

= 280, 1605, 630, 5 , = 150, 1305, 792, 21 ,

= 420,2781,1314,21 , = 10,129,108,5 ,

= 1605, 10830, 5349, 108 , = 1305, 17640, 17541, 1314 ,

= 2781,25002,17541,792 , = 129,3468,5349

D D

D D

D D

D D

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ

− − − − − − − −

− − − − − − − −

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

31 32

33 43

41 42

43 44

,630 ,

= 630, 5349, 3468, 129 , = 792, 17541, 25002, 2781 ,

= 1314,17541,17640,1305 , = 108,5349,10830,1605 ,

= 5, 108, 129, 10 , = 21, 1314, 2781, 420 ,

= 21,792,1305,150 , = 5,63

D D

D D

D D

D D

δ

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ δ δ

− − − − − − − −

− − − − − − − −

( )0,1605,280 .δ  

Thus, for a typical element on [ ]1,m mx x + , the element equation in the matrix form is obtained as  

( ) ( )( ) ( )( )2 = 0e e e e e e e e e eA C E C F F B Dσ α δ κ β δ δ+ − + + − + +   

where ( ) ( ) ( ) ( ) ( )( )1 1 2= , , , Te
m m m mt t t t tδ δ δ δ δ− + +  are element parameters and eA , eB , eC , eC , eE , eF , eF , 

( )eD δ  element matrices. In order to represent the whole system, if all of the elements on the whole domain are combined 
then the following system of algebraic equations is obtained  

( ) ( )( ) ( )( )1
= 2A C E C F F B Dδ σ α κ β δ δ

−
− + − + + − +                  (10) 

where ( ) ( ) ( ) ( )( )1 0 1= , , , T
Nt t t tδ δ δ δ− +

 and , , , , , ,A B C C E F F   ve ( )D δ  are defined for the whole region. The 
generalized m − th rows of the matrices can be stated as follows 

( )

( )

( )

( )

( )

( )

( )

3

3

3

: 1,120,1191,2416,1191,120,1 ,
140
1: 1, 56, 245,0,245,56,1 ,
20
1: 3, 72, 34,240, 34, 72,3 ,

10
6: 1,0, 9,16, 9,0,1 ,

3: 0,0,0,0,0,0,0 ,

18: 0,0,0,0,0,0,0 ,

6: 1,0,9, 16,9,0, 1 ,

hA

B

C
h

C
h

E
h

F
h

F
h

− − −

− − − − −

− −

− − −




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( ) ( ) ( )

( ) ( )
( )

1
: ( 5, 108, 129, 10, 0, 0, 0 , 21, 1944, 8130, 3888, 129, 0, 0 ,

840
21, 0, 17841, 35682,8130, 108, 0 , 5,1944,17841, 0, 17841, 1944, 5 ,

0,108,8130,35682,17841, 0, 21 , 0, 0,129,3468,8230,19

− − − − − − − − −

           − − − − − −

           −

D δ δ δ

δ δ

δ ( )
( )

44, 441 ,

0, 0, 0,10,129,108,5 )           

δ

δ

 

 
The system of algebraic equations (10) is composed of 

( )3N + unknowns and ( )3N + equations. Before starting 
the solution of the system, the application of the boundary 
conditions which is one of the important steps of the method 
is applied. For this process, the boundary conditions 

( ) ( ), = , = 0u a t u b t  and the values of ( ),NU x t  at 

nodal points mx  for = 0m  and =m N  are used  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1

1 1

, = 4 ,

, = 4 .
o

N N N N

u x t t t t

u x t t t t

δ δ δ

δ δ δ
−

− +

+ +

+ +
 

Using these equations, the parameters ( )1 tδ−  and 

( )1N tδ +  are eliminated from the system (10) with a simple 
algebraic manipulation. Thus, the system (10) is now 
reduced into a system of ( ) ( )1 1N N+ × + . In the obtained 

algebraic system, the parameters 1nδ +  are iteratively 

calculated using the parameters nδ  with the help of 
fourth-order Runge-Kutta technique. We need initial values 
of parameters to be able to start the Runge-Kutta technique. 
These initial values are taken from the initial condition of the 
problem ( ) ( ),0 =u x f x and approximate solutions 

( ) ( ) ( )
1

0

= 1
,0 =

N

N m j j m
j

U x t xδ
+

−
Φ∑  at = 0t . The system can 

be written explicitly in the form  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0 0

0 1 2 1 1

2 1 1 1

1 1

4 = ( ) = ,0
4 = ( ) = ,0

4 = ( ) = ,0
4 = ( ) = ,0

N N N N N

N N N N N

t t t f x u x
t t t f x u x

t t t f x u x
t t t f x u x

δ δ δ
δ δ δ

δ δ δ
δ δ δ

−

− − − −

− +

+ +
+ +

+ +
+ +



 (11) 

The system (11) is made up of ( )1N +  equations and 

( )3N +  unknowns. For this system to be solvable, two 
auxiliary equations are added to the system. These auxiliary 
equations are obtained using the boundary conditions 
including derivatives given by (6) at = 0t  as  

( ) ( )

( ) ( )

0 1 1

1 1

3,0 = ,

3,0 =

'

'
N N N

u x
h

u x
h

δ δ

δ δ

−

+ −

−

−

 

 Now, the system (11) is of type ( ) ( )3 3N N+ × +  and 
can be stated in matrix form as  

1 0

0 0

1

3 30 0 0 0

1 4 1 0 0 0
=

0 0 0 1 4 1
3 30

'

N N
'N N

uh h
u

u

u
h h

δ
δ

δ
δ

−

+

 −     
    
    
    
    
    
          −

 





 

  (12) 

So, the solution of  (12) results in initial parameters 0
jδ .  

3. Numerical Examples and Results 
In the previous section, Galerkin finite element method 

has been constructed for the Rosenau-RLW equation with 
the initial and boundary conditions. In this section, two 
numerical examples, namely the movement of solitary wave 
and interaction of two solitary waves have been taken into 
considered. In order to show the accuracy and efficiency of 
the method and make a comparison with other studies in the 
literature, the error norms defined by  

( )

( )

2
2 2

=0

0

= = ,

= = max

N

N j N j
j

N j N jj N

L u U h u U

L u U u U∞ ∞ ≤ ≤

− −

− −

∑  

have been calculated. 

3.1. Movement of Solitary Wave 
 Travelling of single solitary wave problem introduced by 

Rosenau-RLW equation has been solved for the parameters 
= = =κ σ α β =1 and = 2p  to be able to compare the 

results in Refs. [4-8] and Ref. [10, 11] 
In this study, the solution domain of the problem is taken 

as [ ]30,120x ∈ − . Since the exact solution of the problem is 
[4] 

( ) 415 13 169, = sec
38 26 133

u x t h x t
  −  

  
 

the initial condition for the problem is taken as  

( ) 415 13,0 = sec .
38 26

u x h x
 
 
 

 

In this problem, after obtaining the numerical solutions of 
Rosenau-RLW equation, the error norms 2L  and L∞  are 
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calculated at various space and time steps. A comparison of 
the obtained error norms with some of those available in the 
literature has been given in tables. First of all, a comparison 
of the error norms on the solution domain [ ]30,120x ∈ −  

for values of =t h∆  and = 60t  has been presented in 
Table 1. Then, by taking [ ]40,60x ∈ −  the numerical 
solutions at times = 20t  and 10  have been presented in 

Tables 2 and 3, respectively. Finally, in Table 4, the 
numerical results at various times for [ ]30,30x ∈ − , 

= = 0.1t h∆  are presented. From these tables, it is seen that 
when compared to other studies, the approximate solutions 
obtained using Galerkin finite element method are more 
accurate than those given in Refs. [5, 6, 8, 10, 11]. 

Table 1.  A comparison of numerical results for [ ]30,120x ∈ − , =t h∆  and = 60t  

 [11]  [5]  Galerkin Method 

h  L∞   2L  L∞   2L  L∞  

0.4  33.5235 10−×   25.476327 10−×  21.958718 10−×   31.813394 10−×  46.632689 10−×  

0.2  48.0413 10−×   21.385256 10−×  34.983761 10−×   44.902714 10−×  41.820522 10−×  

0.1 41.9123 10−×   33.474318 10−×  31.252185 10−×   41.253742 10−×  51.075338 10−×  

0.05  54.6595 10−×   48.691419 10   −×  43.134571 10−×   53.049414 10−×  54.663787 10−×  

Table 2.  A comparison of numerical results for [ ]40, 60x ∈ −  and = 20t  

   = = 0.4t h∆   = = 0.2t h∆  

   2L  L∞   2L  L∞  

[10] = 1/ 3φ −   34.25934 10−×  31.60697 10−×   31.05710 10−×  43.98895 10−×  

 = 1/ 3φ   21.50201 10−×  35.04081 10−×   33.80043 10−×  31.27673 10−×  

        

[8] (4)scheme I   22.85546 10−×  21.09079 10−×   37.27247 10−×  32.78947 10−×  

 (4)scheme II   22.43622 10−×  39.45747 10−×   36.17910 10−×  32.40611 10−×  

        

Galerkin Method   48.57655 10−×  42.63682 10−×   42.14410 10−×  56.8829 10−×  

        

   = = 0.1t h∆   = = 0.05t h∆  

   2L  L∞   2L  L∞  

[10] = 1/ 3φ −   42.64073 10−×  59.96138 10−×   56.60383 10−×  52.49119 10−×  

 = 1/ 3φ   49.54178 10−×  43.20501 10−×   42.38950 10−×  58.02614 10−×  

        

[8] (4)scheme I   31.82699 10−×  47.01120 10−×   44.57348 10−×  41.75565 10−×  

 (4)scheme II   31.55040 10−×  46.04189 10−×   43.87952 10−×  41.51212 10−×  

        

Galerkin Method   55.38484 10−×  51.74849 10−×   51.38401 10−×  64.50414 10−×  
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Table 3.  A comparison of numerical results for [ ]40, 60x ∈ −  and = 10t  

    [8]  Galerkin Method 

h   t∆   2L  L∞   2L  L∞  

0.2   0.2   31.80681 10−×  47.64807 10−×   41.37810 10−×  54.84333 10−×  

0.1  0.1  44.52783 10−×  41.91923 10−×   53.44437 10−×  51.21308 10−×  

0.05   0.05   41.13263 10−×  54.80103 10−×   68.71785 10−×  63.21281 10−×  

         

0.2   0.1  31.16352 10−×  44.89167 10−×   53.43488 10−×  51.21006 10−×  

0.1  0.05   42.91139 10−×  41.22530 10−×   68.65780 10−×  63.11988 10−×  

0.05   0.025   57.28008 10−×  53.06387 10−×   62.42022 10−×  79.45924 10−×  

Table 4.  A comparison of numerical results for [ ]30,30x ∈ − , = = 0.1t h∆  and = 10t  

  [6] ( = 1)φ   Galerkin Method 

t   L∞   2L  L∞  

2   51.72817 10−×   62.84877 10−×  68.37641 10−×  

4   53.36707 10−×   66.25230 10−×  51.66207 10−×  

6   54.80667 10−×   52.54970 10−×  52.83032 10−×  

8   41.03546 10−×   41.03546 10−×  57.26301 10−×  

10   44.17005 10−×   44.17005 10−×  42.70283 10−×  

 

 

Figure 1.  The motion of a single solitary wave 

Numerical simulations of the motion of solitary wave 
values [ ]30,120x ∈ − , = 0.5h , = 0.5t∆  and = 60t  
are illustrated in Fig. 1. The initial amplitude of the wave at 

0 = 0x  is = 0.394737A , and the wave moves by almost 
conserving its shape and amplitude. From the numerical 
results, it can be seen that the solitary wave moves leaving 
negligible secondary waves behind it (see Fig.2). 

3.2. The Interaction of Two Solitary Waves 
In this numerical example, the interaction of two colliding 

solitary waves is studied for Rosenau-RLW equation. In 
order to investigate the relationship between Rosenau-RLW 
and RLW [13-16] equations in this problem by the effect of 

α  the parameters = 0κ , 3= 1.613 10σ −× , = 1β  and 
= 2p  are chosen and the following initial condition is 
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taken as 

( ) ( ) ( )2 2
1 1 1 2 2 2,0 = 3 sec 3 secu x c h k x d c h k x d+ + +  

where 
1/2

1
1

1=
2

ck
m

 
 
 

, 
1/2

2
2

1=
2

ck
m

 
 
 

, 1 2= = 5d d − , 

1 = 0.3c , 2 = 0.1c  and 4= 4.84 10m −× . The solution 

domain of the problem is [ ]2 4 / 3,2 4 / 3x ∈ − + + , space 

step size is = 4 / 301h  and time step size is = 0.01t∆  
and various values for α  are used to investigate the 

interaction problem [4, 13]. The results for 5 6= 10 ,10α − −  

and 910−  are obtained and numerical simulations are 
illustrated at times = 0,0.2t  and 4  in Figs. 3,4 and 5, 
respectively. 

 

 

Figure 2.  Secondary waves  

 

  

Figure 3.  The interaction of two solitary waves for 
5= 10α −

 at = 0,0.2,4t  

 

 

Figure 4.  The interaction of two solitary waves for 
6= 10α −

 at = 0,0.2,4t  
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Figure 5.  The interaction of two solitary waves for 
9= 10α −

 at = 0,0.2,4t  

 

 

(a) 1α = . 

 

(b) 5α = . 

 

(c) 8α = . 

Figure 6.  The interaction of two solitary waves for [ ]1,4x ∈ − , = 0.01h , = 0.01t∆  and = 1,5,8α  at = 50t  
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As it can be seen from the figure, at time = 0t , there are 
two interacting waves for three values of α . At time 

= 0.2t , the interaction is still available and an antisoliton 
wave starts to appear. For small values of α , the amplitude 

of the antisoliton wave is smaller and for 9= 10α −  
antisoliton is not observed. At time = 4,t  the two waves 

complete their interaction. Except for 9= 10α − , there 
appears an antisoliton and several small solitons. With 
decreasing values of α , the amplitude of antisoliton wave 
decreases and the interaction problem of Rosenau-RLW 
equation resembles to that of RLW equation. Aditionally, 
similar to RLW equation, the interaction for Rosenau-RLW 
equation is inelastic. Secondly, to investigate the interaction 
for bigger values of α , we have taken = 1,5α  and 8 . 
The three dimensional graphics of the obtained results are 
illustrated in Fig. 6.  

From the figures, it is seen that solitary waves do not 
interact, a slope is observed on the right hand side of the 
wave with respect to x  axis. It is also observed that this 
slope decreases by increasing values of α  and solitary 
waves become steeper. It can be seen that the computed 
numerical results are also in good agreement with those in 
Ref. [4].  

4. Conclusions 
In this paper, Galerkin finite element method is 

successfully applied to Rosenau-RLW equation using cubic 
B-spline base functions. The consistency between the 
numerical and approximate solutions is tested by calculating 
the error norms 2L  and L∞ . By comparing the calculated 
error norms with those available in the literature, it is seen 
that Galerkin finite element method is an useful and effective 
tool. It is concluded that the Galerkin finite element method 
can also be applied to the Rosenau type equations with other 
types of boundary and initial conditions to obtain their 
numerical solutions. 
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