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Abstract

In the present paper, we couple double Laplace transform with Iterative method to solve nonlinear

Klein-Gordon equation subject to initial and boundary conditions. By this method noise terms disappear in the iteration
process and single iteration gives the exact solution. Further we give illustrative examples to demonstrate the efficiency of the

method.
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1. Introduction

The Klein-Gordon equation is a relativistic version of the
Schrodinger equation describing free particles, which was
proposed by Oskar Klein and Walter Gordon in 1926. It has
many applications in Physics and Engineering such as
quantum field theory, relativistic physics, dispersive
wave-phenomena, plasma physics and nonlinear optics.

Various methods are developed to get approximate and
numerical solutions of linear Klein-Gordon (LKG) and
nonlinear Klein-Gordon (NLKG) equations as given below:

Deeba and Khuri [1]; El-Sayed [2]; Kaya and El-Sayed [3];
Wazwaz [4] used Adomian decomposition method (ADM)
developed by Adomian in [5] for solving LKG and NLKG
equations. Elcin Yusufoglu [6]; Batiha [7] used variational
iteration method developed by J. H. He [8] to obtain an
approximate solution of the NLKG equation. Yasir Khan [9]
modified Laplace decomposition method proposed by Khuri
in [10] to solve Klein-Gordon equations. Rabie [11] used
Laplace decomposition method, Adomian decomposition
method and modified Laplace decomposition method to
solve NLKG equations and shown these three methods yield
exactly the same result.

Y. Keskin and his associates [12] applied reduced
differential transform method to calculate approximate
analytical solution of the Klein-Gordon equations. Odibat
and Momani [13] developed an algorithm of the Homotopy
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perturbation method to find the approximate solutions of the
NLKG equations. D. Kumar and his associates in [14]
developed an algorithm based on Homotopy analysis
transform method to solve LKG and NLKG equations with
initial conditions.

Dehghan and Shokri [15] applied radial basis functions to
solve NLKG equations. Dehghan and Ghesmati in [16]
applied the dual reciprocity boundary integral equation
technique to obtain approximate analytical solution of the
NLKG equations. H. M. Baskonus and H. Bulut [17] used
the generalised Kudryashov method to obtain some new
analytical solutions of the (1+1)-dimensional nonlinear
dispersive modified Benjamin-Bona-Mahony equation and
the (2+1)-dimensional cubic Klein-Gordon equation.
Daftardar-Gejji and Jafari in [18] have introduced a new
iterative method and used it to solve nonlinear functional
equations.

The purpose of this paper is to apply double Laplace
transform and iterative method developed in [18] to find the
exact solution of nonlinear Klein-Gordon equation subject to
initial and boundary conditions.

2. A Brief Introduction of Double
Laplace Transforms

Let f(x,t) be a function of two variables x and t defined
in the positive quadrant of the xt-plane. The double Laplace

transform of the function f(x,t) as given by Ian N.
Sneddon [19] is defined by

LL{f(x, 0} = f(p,s) = [ e [["e™" f(x,t)dtdx,
2.1
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whenever that integral exist. Here p and s are complex L,L {6 flx, f)} p2f(p,s) — pf(0,s) — £.(0,5), (2.3)
numbers. ' ’ *
From this definition we deduce L.L, {%g't)} =5s2f(p,s) —sf(p,0) — f;(p,0). (2.4)

LeLf(0)g ()] = f(p)g(s) = LfILlg®] 22) The inverse double Laplace transform Lx_lLt_l{f(p, s)}
Further the double Laplace transform of second order = f(x,t) is defined as in [20, 21] by the complex double

partial derivatives as in [20, 21] are given by integral formula
— - +ioo 1 pd+ico =
L, 9)) = flx, ) = ﬁ e dp— et f(p,s)ds, (2.5)

where f(p,s) must be an analytic function for all p and s in the region defined by the inequalities Re p > c and Re s = d,
where c and d are real constants to be chosen suitably.

3. Double Laplace Transform Coupled with Iterative Method

Consider the second order nonlinear Klein-Gordon equation

U (0, 1) — Uy (x,8) + aulx, t) + Nu(x, t) = h(x, t),x,t =0, (3.1
with initial conditions
u(x, 0) = f1(x), u (x,0) = fo(x), (32
and boundary conditions
u(0,t) = g1(8),ux (0,t) = g, (t), (3.3)

where a is a real number, Nu(x,t) is a non-linear term and h(x,t) is the source function.

We decompose the source function h(x,t) into hi(x,t) and h,(x,t). The part hy(x,t) with the linear terms in (3.1)
always leads to the simple algebraic expression while applying the inverse double Laplace transform. The portion h,(x, t) is
combined with the nonlinear term to avoid noise terms in the iteration process. In Section 4, while considering illustrative
examples we see how to determine hq(x,t) and h,(x,t).

Applying the double Laplace transform on both sides of (3.1), we get

s2u(p,s) — stu(p, 0) — i (p, 0) — p2u(p, s) + pii(0,s) + U (0,5)

+ati(p,s) + Ly L [Nu(x, )] = hy (9, 5) + Ly L, [ha (x, £)]. G4
Further, applying single Laplace transform to initial (3.2) and boundary conditions (3.3), we get
u(p,0) = i), @[, 0) = (), a(0,5) = 77 (), % (0,5) = Ga(s). (3.5)

By substituting (3.5) in (3.4) and simplifying, we obtain

= _ [M@s)+sfi(p)+f®)-pgi(s)—g2(s) 1
u(p, 5) = [ (s2—p2+a) ] (s2— 2+a)

Applying inverse double Laplace transform to (3.6), we obtain

Li[hy(x,t) — Nu(x, t)]. (3.6)

=1y =1 [M@s)+sfi)+f2(0)-pgi(s)—g2(s) -1; -1 1
u(x‘ t) — Lx Lt [ 1 1 (SZ—;Z+a) 1 2 ] + LX Lt |:(Z_p—z+a) [hz(x t) Nu(x, t)]]- (3~7)
Now we apply the Iterative method as in [22],
u(x, t) = XZou(x, o). (3.8)

Substitute (3.8) in (3.7), we get
N L L1 [M@s) + sH®) + ) — pgils) — Fals)
Zui(x't)_l‘x Lt [ (52_p2+a)

i=0

;
(s2— 2+at)

+Lx‘1L;1[ Li[hy(x, t) — N(T2 oui(x,t))]]. (3.9)

The nonlinear term N is decomposed as
N(EiZou; (x, 6)) = N(uo (x, ) + EZy{N (Zh=o wi (x, ) = N(Ziizh i (x, )} (3.10)
Substitute (3.10) in (3.9), we get
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sy 21 [m®@.9) + i) + () — pGi(s) — Ga(s)
Zui(x,t)=Lx 1Lt1[1p5 811252—;2p+a)pgls 925]

i=0

197

+1,7,t [(sz—p—z+a) LyLe[hy(x, £) = N(uo(x, t))]]
i —1Lt-1[ L L[S N (S ) ~ V(S e t))}] Gl
Then we define the recurrence relations as
_ g =1y -1 [r(@s)+sfi)+f2(p)-pgi(s)—g2(s)
wp(x,6) = L, 'Lt | i , (3.12)

(s2-p2+a)

u(x,t) =L, L7t [

L Li[hy(x, £) — N(ug(x, t))]] (3.13)

U1 (6 8) = =L, 1L, [(1—) LN (oo e (6, 0) = N(EP w (x, t))]],mz 1 (3.14)

Therefore, the solution of (3.1) in series form is given by

ulx,t) = ug(x,t) +uy(x,t) +u(x,t) + -+ u, (X, t) + - (3.15)

4. Illustrative Examples

In this section, we illustrate above method by giving some examples.
Example 4.1: Consider the following nonlinear Klein-Gordon equation similar to [23]

U (2, 1) — Uy, (, 8) + u?(x, t) = 2x% — 2t% + x*t4,
with initial conditions
u(x,0) = 0,u,(x,0) =0
and boundary conditions
u(0,t) = 0,u,(0,t) = 0.
Applying the double Laplace transform on both sides of (4.1), we get
s*u(p,s) — siu(p,0) — & (p,0) — pzﬁ(p, s) +pu(0,5) + % (0,s)
+L, L [u?(x, t)] = 2——2 =+ L, L [x*t*].
Further, applying single Laplace transform to initial (4.2) and boundary conditions (4.3), we get
u(p,0) = 0,u;(p,0) = 0,u(0,s) =0,u,(0,s) = 0.
By substituting (4.5) in (4.4) and simplifying, we obtain
i(p,s) = p3s3 + ﬁLth[x‘*t4 —u?(x, )]
Applying inverse double Laplace transform to (4.6), we get
u(x, t) = x2t2 + 1,71, [ L L [x*t* — u?(x, t)]]

Now, applying the Iterative method.

Substituting (3.8) into (4.7) and applying (3.12), (3.13), (3.14), we obtain the components of the solution as follows:

uy(x, t) = x%t?,

_ _ 1
w (x,t) =L, 'L, l[m

LeLe[x*t* — (uo)z]] =0,

2

Upia (o) = =L, 'L, [ﬁ

From (4.8), (4.9) and (4.10) it is clear that for m = 1,

4.1)

(4.2)

4.3)

(4.4)

(4.5)

(4.6)

“4.7)

(4.8)

(4.9)

L [ ue (x, )% — (Tisg e (x, t))z]] m=1 (4.10)
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1
uy(x,t) = =L, 1Lt mLth [(uo(x, t) +uqy(x, t))2 - (uo(x, t))z] =0.

Similarly, we have u;(x,t) = uy(x,t) = 0 and so on.
Therefore,
u(x,t) = x2t%. 4.11)

This is the required exact solution of equation (4.1).
Example 4.2: Consider the following nonlinear Klein-Gordon equation similar to [24]

U (2, 1) — Uy, (x, 8) + u?(x, t) = 6xt(x? — t%) + x6t°, 4.12)
with initial conditions
u(x,0) = 0,u,(x,0) =0, (4.13)
and boundary conditions
u(0,t) = 0,u,(0,t) = 0. (4.14)

Applying the double Laplace transform on both sides of (4.12), we get
s?u(p,s) — st(p,0) — i, (p, 0) — p2u(p,s) + pu(0,s) + u, (0, s)

6 6
+Lth[u2(x, t)] = 61)47— 6pzj+ Lth[X6t6]. 4.15)
Further, applying single Laplace transform to initial (4.13) and boundary conditions (4.14), we get
u(p,0) = 0,u;(p,0) = 0,u(0,s) = 0,7, (0,s) = 0. (4.16)
By substituting (4.16) in (4.15) and simplifying, we obtain
_ 36 1
u(p,s) = e + (STPZ)LXLf[th6 —u?(x,0)]. 4.17)

Applying inverse double Laplace transform to (4.17), we get

uCet) = x3¢3 + L, 7L, 7! [(SziﬁLth[xW@ —u?(x, t)]]. (4.18)

Now, applying the Iterative method.
Substituting (3.8) into (4.18) and applying (3.12), (3.13), (3.14), we obtain the components of the solution as follows:

uy(x, t) = x3t3, (4.19)
1, — 1 2
w (e, t) = L, L, [mLth [x0t® = (uoGx, 1) ]] =0, (4.20)
1, - 1 2 2
w,(x,t) = =L, 'L, [mLth [ (o, ) + 3 (x, )" = (o G, 1) ]] =0, @.21)
1, - 1
us(x,t) = =L, 1L, 7! [mLth[(uo +u +up)? — (ug +uy)?]| =0, (4.22)
and so on.
Therefore, we obtain the solution of (4.12) as follows:
u(x, t) = x3t3. (4.23)
Example 4.3: Consider the following nonlinear Klein-Gordon equation similar to [12]
U (2, 8) — Uy (x,t) + u?(x,t) = —xcost + x?cos?t, (4.24)
with initial conditions
u(x,0) = x,u,(x,0) =0, (4.25)
and boundary conditions
u(0,t) = 0,u,(0,t) = cost. (4.26)

Applying the double Laplace transform on both sides of (4.24), we get
s?u(p,s) — st(p,0) — i, (p, 0) — p2u(p,s) + pu(0,s) + u, (0, s)

+L, L [u?(x,t)] = )#jﬂ) + L,L.[x?cos®t]. 4.27)
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Further, applying single Laplace transform to initial (4.25) and boundary conditions (4.26), we get

_ 1 _ —
a(p,0) = 7, %(p,0) = 0,a(0,5) = 0,7(0,5) = 7. (4.28)
By substituting (4.28) in (4.27) and simplifying, we obtain
— _ N _ 2
a(p,s) = —p2(52+1) (S L oL [x? cos? t — u?(x, t)]. (4.29)
Applying inverse double Laplace transform to (4.29), we get
u(x,t) =xcost+ L, 'L, ! [( — ! )L L.[x? cos® t — u?(x, t)]]. (4.30)

Now, applying the Iterative method.
Substituting (3.8) into (4.30) and applying (3.12), (3.13), (3.14), we obtain the components of the solution as follows:

uy(x,t) = xcost, (4.31)
w (e, t) =L, [(SziﬁLth[xz cos? t —up?]| =0, (4.32)
uy(x,t) = =L, 'L ‘1[ 7 Ll [(uo(x ) +uy (x, t)) = (uo(x, D) ]] =0, (4.33)
us(x,t) = =L, L, 7t [( o L Le[(ug + uy +up)? — (ug +uy) ]] =0, (4.34)
and so on.
Therefore, we obtain the solution of (4.24) as follows:
u(x,t) = x cost. (4.35)

Example 4.4: Consider the following nonlinear Klein-Gordon equation
U (2, 8) — Uy (x, 8) + u + ud = (x? — 2) cosh(x + t) — 4xsinh(x + t) + x®cosh3(x +t), (4.36)

with initial conditions

u(x,0) = x? coshx,u,(x,0) = x?sinh x, 4.37)
and boundary conditions
u(0,t) = 0,u,(0,t) = 0. (4.38)
Applying the double Laplace transform on both sides of (4.36), we get
1
s?u(p,s) — su(p,0) — @ (p, 0) — p?u(p,s) + pu(0,s) + u(0,s) + u(p,s) + L L [u3(x, t)] = G-DG-D
1 _ 1 _ 1 _ 1 1 6 3
PG G DD e 2o e T 2grniein T Lekdxt cosh®(x + O (4.39)
Further, applying single Laplace transform to initial (4.37) and boundary conditions (4.38), we get
1
u(p: 0) (P 1)3 (p+1)3 U t(p! ) (p_1)3 (P+1)3 !u(o S) - ux (0 S) - 0 (440)
By substituting (4.40) in (4.39) and simplifying, we obtain
u(p,s) = : ! Ly L [x® cosh3(x + t) — u3(x, t)]. (4.41)

(P-13G-1)  @E+D36+D) - (s2-p2+1)
Applying inverse double Laplace transform to (4.41), we get

L, L. [x® cosh3(x + t) — u3(x, t)]|. (4.42)

_ .2 Y e R S
u(x,t) = x“cosh(x +t) + L, "L, [(52 7T

Now, applying the Iterative method.
Substituting (3.8) into (4.42) and applying (3.12), (3.13), (3.14), we obtain the components of the solution as follows:

uy(x,t) = x2 cosh(x + t), (4.43)
w (x,t) =L, L7t [—ZH)L L,[x® cosh3(x + t) — uy3(x, t)]] (4.44)
u, (x,t) = =L, L, 7t [mL L, [(uo(x t) + uq(x, t)) —uy3(x, t)]] (4.45)
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uz(x,t) = =L, 'L, " LeL[(up +uy +up)® — (ug +uy)?1{ =0,

(s2- 2+1)

and so on.
Therefore,

u(x,t) = x% cosh(x + t).

This is the required exact solution of equation (4.36).
Example 4.5: Consider the nonlinear Klein-Gordon equation similar to [25]

2
U (6, ) —uy, (x, ) + ”Tu + u? = x? sin? (ﬂz—t),
with initial conditions
u(x, 0) = Oluf(xl 0) = ﬂ
and boundary conditions
. mt
u(0,t) = 0,1, (0,t) = sin (7)
Applying the double Laplace transform on both sides of (4.48), we get
s*a(p,s) — su(p,0) — & (p, 0) — p*a(p, s) + pu(0,s) + % (0, 5)
7'[2 —_ .
+Tu(p, s) + L, L{u?(x,t)} = L, L, [xz sin? (nz—t)]

Further, applying single Laplace transform to initial (4.49) and boundary conditions (4.50), we get

T[

u(Os)—Ou(Os)——z-.
s+—

i(p,0) = 0,%(,0) = 775,

By substituting (4.52) in (4.51) and simplifying, we obtain
7 1

u(p,s) = RTER) + )

Applying inverse double Laplace transform to (4.53), we get

L.L, [x sin (—) —u®(x, t)]

u(x,t) = xsm( )+L -1, (—1T>L <L [x sin® —u?(x, t)]‘
p

Now, applying the Iterative method.

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

4.51)

(4.52)

(4.53)

(4.54)

Substituting (3.8) into (4.54) and applying (3.12), (3.13), (3.14), we obtain the components of the solution as follows:

ug(x,t) = x sin (nz—t),

u (x, t) =L, 7Lt —(2 - >L L, [x sin ( ) —uy?(x, t)] 0,
SE—pit—rro

wmo=—u*u*(—L7VLm%+mﬁ )2l = 0,
s2—p

us(x,t) = =L, 'L, 7!

_r
()
and so on.

Therefore, we obtain the solution of (4.48) as follows:

u(x,t) = xsin (nz—t)

LeL[(up +uy +up)? — (ug +uy)?]| =0,

(4.55)

(4.56)

4.57)

(4.58)

(4.59)
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5. Conclusions

From examples 4.1 to 4.5, we conclude that DLT
combined with iterative method is adaptable to a wide range
of nonlinear Klein-Gordon equations. In the solutions of
most of the problems considered in [7, 11, 14, 23, 24] noise
terms appear. By this method all nontrivial examples solved
using earlier methods become trivial in the sense that the
decomposition u(x,t) = %72, u;(x,t) = ug(x,t) +u(x,t)
+uy(x,t) + - consists only of one term i.e.
u(x, t) = ug(x, t).
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