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Abstract Based on the improved generalized exp-function method, the (2+1) space-time fractional Burgers equation
were studied. The single-kink, double-kink, three-kink and four-kink wave solutions were discussed. With the best of our
knowledge, some of the results are obtained for the first time. The improved generalized exp-function method can be applied

to other fractional differential equations.
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1. Introduction

The analytical and numerical solutions of fractional
differential equations (FDEs) attracted great attention and
became a considerably interesting subject in mathematical
physics. There are many methods for calculating the
approximate solutions of FDEs such that the variational
iterations method [1-5], Adomian decomposition method
[6, 7] the homotopy perturbation method [8, 11] and the
expansion-function method. [12-14]. The analytical
solutions of FDEs are still of great interest. Li and He [15]
introduced complex transform for reducing FDEs into
ordinary differential equations (ODEs) [16, 17], so that all
analytical methods for advanced calculus can be easily
applied to fractional calculus. In the literature, there are
many effective methods to treat analytical solutions of FDEs
examples include the exponential function method, the
fractional sub-equation method, the (G'/ G) -expansion

method and the first integral method [18- 34].

The investigation of multi-wave solutions of the nonlinear
partial differential equations (NLPDEs) and nonlinear FDEs
plays an important role in the study of the corresponding
physical phenomena. Zhang and Zhang [35] generalized the
exp-function method for constructing multi-wave solutions
of nonlinear differential difference equations by devising a
rational ansdtz of multiple exponential functions. Many
authors [36-41] used the exp-function method to construct
abundant types of exact solutions of PDEs. In [42]
Abdel-Salamand Hassan improved generalized exp-function,

* Corresponding author:

emad_abdelsalam@yahoo.com (Emad A-B. Abdel-Salam)

Published online at http://journal.sapub.org/ajcam

Copyright © 2016 Scientific & Academic Publishing. All Rights Reserved

also derived Multi-wave solutions of the space—time
fractional Burgers and Sharma—Tasso—Olver equations. In
this paper, the hierarchy of the space-time fractional (2+1)
Burgers equation derived and the generalized exp-function
method are used to obtain multi-wave solution of FDEs in a
unified way. In addition, the single-kink wave, double-kink
wave, three- kink wave, and four-kink wave solutions
obtained for the (2+1) space-time fractional Burgers
equation, the (2+1) space-time fractional
Sharma-Tasso—Olver equation, the (2+1) space-time
fractional fourth order Burgers equation and the (2+1)
space-time fractional fifth order Burgers equation are
studied.

The structure of this paper is as follows: some basic
definitions of the fractional calculus and the description of
the improved generalized exp-function method introduced in
section 2. In section 3, the hierarchy of the integer order and
fractional order of the (2+1) Burgers equation are
investigated. In sections 4 -7, single- kink, double-kink,
three-kink, and four-kink wave solutions are constructed for
the (2+1) space-time fractional Burgers equation, the (2+1)
space-time fractional Sharma—Tasso—Olver equation, the
(2+1) space-time fractional fourth order Burgers equation
and the (2+1) space-time fractional fifth order Burgers
equation. In the last section, some conclusions are given.

2. Description of the Method

In this section we present the generalized exp-method to
construct exact analytical solutions of nonlinear FDEs with
the modified Riemann-Liouville derivative defined by
Jumarie [43-50]
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which has merits over the original one, for example, the & -order derivative of a constant is zero. Some properties of the
Jumarie’s modified Riemann—Liouville derivative are

D$H=F5%%%5x”“ y >0, )

D (c f(x))=cDy f(x), 3)
DELf(x)g(x)] = g(x)D f (x)+ f(x)D{ g(x), (4
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where ¢ is constant. The formulas 4 - 6 follow from the fractional Leibniz rule and the fractional Barrow’s formula. That is

direct results of the equality Dy f(x) = T'(a +1)D, f'(x), which holds for non-differentiable functions. We present the

main steps of this method as follows:
Suppose that the nonlinear FDE, say in three variables x, y and f, is given by:

P(u, D{'u, D¢u, D§u,D;"u, D}%u, D}%u,..)=0, 0<a<l, )

where DYu, Dfu and D;‘ u are Jumarie’s modified Riemann—Liouville derivatives of #, u=u(x,y, t) is an

unknown function, P is a polynomial in u and its various partial derivatives, other wise, a suitable transformation can
transform equation (7) into such equation. The exp-function method for single-wave solution depend on the assumption that
equation (7) has solution in the form

P .
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k x“* ry“ wt®
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where g; and b ; are unknown constants to be determined, the value of p and ¢ can be determined by balancing the

linear term of the highest order with the nonlinear term in equation (7).
In order to seek N -wave solution for arbitrary integer N > 1, we generalize equation (8) in the following form:
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where Ky, ky,.., Py, 1o Pases Ty, @, @, @y, Gy o and by are unknown constants to be determined
laterand py, py,..., Py> 415925---,q are embedded integers.
When N =2, equation (9) gives
2
PP 2 iy
(=1
ailiz e
u(x’t)_u(g)_ 2 ” (10)
a4 D i
. el=l
4 . b/112 €
71=0 /=0
which can be used to construct double-wave solution of equation (7).
When N = 3, equation (9) gives
3
P Py D3 i
(=1
%y iniy ©
i] :0 i2:0 13:0
u(x,0)=u() = s (11)
a D B 2 ik
N
2 2 2 b

71=0 /=0 j3=0
which can be used to construct three-wave solution of equation (7).

Substituting equation (10) into the FDE (7), the left-hand side of equation (7) converted into a polynomial in exponential
functions. Equating each coefficient of the exponential functions to zero gives system of algebraic equations. Solving the set
of equations, we can obtain the double-wave solution. In addition, we can obtain the three-wave and four- wave solutions by
doing the same manner to equation (11).

3. Formulation of the (2+1) Space-Time Fractional Burgers Hierarchy

The space-time fractional Burgers hierarchy equation in (2+1)-dimension can be formulated as follows:
The Burgers hierarchy [51-54] in the (2+1)-dimension can be written in the form,

oo Y

u,+o— —+u u+5(ux+uy)20, n=0,1,23,..., (12)
Ox \ Ox
where ¢ and O are arbitrary constants. The first few elements of the hierarchy (12) are given by
ut+0'ux+5(ux+uy)=0, (13)
u,+O'uxx+20'uux+5(ux+uy):0, (14)
u, +ou,, +30'u§ +3cuu,, +3ou’ u, +5(ux +uy) =0, (15)
u, +ou,,, +10cu, u, +4ocuu,, +120'uu)2c +60u* Uy, +4ou’ u, +5(ux +uy) =0, (16)
U+ O Uy IOqux +15cu, u, . +Scuu,,. + ISGui +50cuu, u,, +10c u? Uy

(17)
+300u> ui +100u Uy, +50u* u, + 5(ux +uy) =0,

obtained by substituting 7 =0,1,2,3, 4, respectively. The resulting PDEs are of first order, second order, third order, fourth
order and fifth order (2+1)-Burgers equation, respectively. Equation (14) is the (2+1)-dimension Burgers equation. Moreover,
equation (15) is the (2+1)-dimension Sharma—Tasso—Olver equation [52].

Similarly, the hierarchy of the (2+1) space-time fractional Burgers equation can be written in the form
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Dtau+0'D)'CB (Df+u)nu+5(Dfu +Dju)=0, n=0,1,23,..., (18)

where Dta R D;CZ ,and D;l are the fractional derivative of the modified Riemann—Liouville defined by equation (1). The

first few elements of the space-time fractional hierarchy (18) are given by substituting 7 =0,1,2,3,4, in equation (18), we
have

D[au+0'Dfu+5(Dfu+D§u)=O, (19)
Dflu+0'D§ﬂu+20'quﬂ u+5(Dfu+Dj:u) =0, (20)
D%u+oD* u+3c[DPul? +30uD*Pu+3cu’® DPu+8(DPu +DJu) =0, @21)

D%u+0oD¥ u+100DPu D*Pu+ 4o uDPu+120u[ DPul?
(22)
+60u’D*Pu+4cu’ DPu+5(DPu +Dju)=0,
Du+o DPu+100[D*u)? +156 DPuDPu + 56uDPu +156[ DP ul?
+500uDPuD*u +100u? D3P u+300u*[DPul? (23)
+100u* D u+50u* DPu+S5(DPu +DJu) =0,
where D)%’Bu ZDXﬁ[Df ul, Diﬂu ZDXﬂ[D)%ﬂu],...,O< a, B,y <1, equations (19)- (23) are the first order, the

second order, the third order, the fourth order and the fifth order (2+1)- space-time-fractional Burgers equation respectively.

4. The (2+1) Space-Time Fractional Burgers Equation

4.1. Single-Wave Solution
When o = 3 =y, equation (20) becomes

Dtau+0'D§au+20'quu+5(Dfu+D;‘u) =0, (24)

which is called the space-time fractional (2+1) Burgers equation. For a single-wave solution, we assume that Equation (24)
admits a solution of the form
S a a a
a,e k x r ot
=4 LY

- ) = + b}
1+be® ° Il+a) Tl+a) T(l+a)

(25)

where k,7, o, a; and bl are unknown constants to be determined. Based on the transformation above, for the terms in

(24) containing fractional derivative, such as Dta u, D}Ofu, Dg u,and Di au, using (3) and (5) one can obtain that
Div(E)=v'DE=awv', DIVE)=v'DIE=kV', o6

DIv(&)=v'DIE=rv, Di*v=DZ(kv)=k>v".

Substituting (25) into equation (24) with (26), solving the resultant algebraic system for the unknowns k.7, w, @, and by,

we obtain the solution set

w=-ck®>-8(k +r), a =kb, @7)
which yields a single-wave solution to the (2+1) space-time fractional Burgers equation as
kbye* k x“ ry® ok + 80k +r)]t”
. Ly (k+r)] , 28)

Yl bt “Tl+a) T(+a) T(+a)
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where by,r, and k are arbitrary constants. Equation (28) displays a single-kink wave solution of the (2+1) space-time
fractional Burgers equation.
4.2. Double-Wave Solution
Suppose that equation (24) admits a solution of the form
B a0 +ag e +a; 9t t*
- °
1+ bloeé:l + bOleéz + bl le§1+§2

k, x* r v 0]
f+zy+z

S v Tlre) Tdia)

=12, (29)

where ki, 1,@,ky, 1y, @, a19,Dy0, 001,091,411, and by; are unknown constants to be determined. Substituting (29)
into equation (24) with  (26), solving the resultant algebraic system for the unknowns
kl , @y, k2 , (0, Cl]o,b]o »ap ’b01 NOE and b] 1> We obtain the solution set

oy =—0ki =Sk +1), @ =—0ks —S(ky+1),

(30)
ay =kibg, ag =kabgy, a1 =0, by =0,
which yields a double-wave solution to the (2+1) space-time fractional Burgers equation as
Kby e + koby e k, x* r, y% ok? +8(k, +r,)] t*
Uy = 1bio 291 & = 14 LY _[oki +o(k, +1,)] , =12, (@31

_1+b10e§1+b01e52’ " T(+a) I(+a) Irl+a)

where by, bgy, k1, i, 7, and k, are arbitrary constants. Equation (31) displays double-kink wave solution of the (2+1)
space-time fractional Burgers equation.

4.3. Three-Wave Solution

Suppose that equation (24) admits a solution of the form
alooeé + 0010352 +a00]e(§3 +alloe§1+§2 + a10]e§1+§3 +ay, le§2+§3 +a]1]e§1+§2+§3
u= ,
l+b100651 +b010652 +b001653 +blloe§1+§2 +b101e§1+§3 +b01le§2+§3 +bllle§1+§2+§3

(32)
ta

(=1,2,3,

(04 o
£ = ky x Ly Lo
b
I'N+a) T'l+a) T'(l+ea)
where ki, ky, ks, 11,15,13, 0,05, @3, @109, Ag10>90015 %1105 A01- 011> A 11>D1005Po10-Poo15Pr110>bro1> Dorr>and
bl 11 are unknown constants to be determined. Substituting (32) into equation (24) with (26), solving the resultant algebraic
system for the unknowns ky,kp, k3, 71,73, 73, @), @2, @3, @100, dg10> 001> %105 @01> 011411151005 6010 D015
b110-b101,b011and by 11 , we obtain the solution set
2 2 2

o =—ocki =6(k+n), @ =—0cky —6(ky+n), wy=—0cky —5(ks +13),

@100 = kibioo> @010 =kabo10- doo1 = k3boor> @110 =0, a0 =0, agy; =0, (33)

a11=0, bjg=0, by =0, by;; =0, by, =0,
which yields a three-wave solution to the (2+1) space-time fractional Burgers equation as

_ kibrgoe™ +kybyi0e® + ksbyg e

Us )
1+ bygge! +by1e +byg e .
a a 2 a
£ = k,x LY _[oki +6(k, +1,)] 1 =123,
I'l+ea) T'(l+a) I'l+ea)

where blOOs b0109b001: N, 1,1, kl,kz, and k3 are arbitrary constants. Equation (34) displays a three-kink wave

solution of the (2+1) space-time fractional Burgers equation.
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4.4. Four-Wave Solution

Suppose that equation (24) admits a solution of the form

& & & Ea &+éy &i+&
Aipp0€” T dgipo€’" +agpro€” t+appo1€”" T d100€ +aj910€
Si+ey &H+é; &ty &3Sy &i+&+Es
+a001€ +apg10€ +api01€ +dgor1€ +ap0€

&+&6+E Ert+ést+éy St&r+83+ey
+ayj01€” 7P +agyg € +ap e

1+ bygo0e™ +by100€™2 +boo10€™ +bygg1€™* +by100€ 2 + bygroe (35)

+b1001€§1+§4 +b0] loe§2+§3 +b0]0]e§2+§4 +b00] le§3+§4 +b1 1 loe§1+§2+§3

+bllole§1+§2+§4 +b01116f§2+§3+§4 +bnlle§1+§2+§3+§4

tlZ

__kyx® ry* @y
S +

- s é = 1’ 25 3’ 4,
Fl+a) T(l+a) T(+a)

where kisky ks, ks 1is10 515, 1, @), @5, @3, @4, 81000 > 901005 %00105 400015 41100 410105 F1001> %0110 %0101

A0011>%41110>41101> 901115 411115 blOOO’bOIOOB bOOlO’ bOOOl’ bllOO’ blOlO’ b10015b0110’ bOlOl’ b00119b11109b1101’
bOll 1» and bll 11 are unknown constants to be determined. Substituting (35) into equation (24) with (26), we obtain a
four-wave solution to the (2+1) space-time fractional Burgers equation as

_ k1b10006§1 + k2b0100e§2 + k3booloeéz3 + k4b0001€§4

1y (36)
12
L+ Bigg0e! +bg100¢ +boo10€™ +bogore™
k,x* o y® [ok?+8(k, +1,)] %
Where £, = "¢ 4t ki (A ,0=1,2,3,4, and 7],15,73,14, » bo100>000105P00015
& i) Tare) T 1725737 brooos P010000010>Pooo1

ki, ky, k3, ky are arbitrary constants. Equation (36) displays a four-kink wave solution of the space-time fractional (2+1)
Burgers equation.

5. The Space-Time Fractional (2+1) Sharma—Tasso—-Olver Equation

When o = ff =y, equation (21) becomes
D%u+0oD3* u+30[D%ul® +30uD>**u+30u’ D*u+5(D%u +Dju)=0, (37

which is called the (2+1) space-time fractional Sharma—Tasso—Olver equation. Doing the same manner, we obtain the
single-wave solution as

& a a 3 a
_ kbye , £ kx LY _[ok”+6(k+r)]t , (38)
1+b]eez IN+a) T'l+a) IN+ea)

Uz

where by,r and k are arbitrary constants. The double-wave solution of equation (37) takes the form

b + kyby e
1+bloe§1 +b01€§2 ’

o a 3 «
& = kpxm |y ok ot r)IET o (39
I'l+a) T'(+a) I'l+a)

Uzp

where by, bgy,7,75,k; and k, are arbitrary constants. The three-wave solution is

_ hybigge® +kabgie™? + ksbyg e
I+ bygoe +Byioe™ +bogie™ (40)
£ - kx| ny” [0k} + 5k, +1)] t*
" T+a) Tl+a) T(l+a)

Uszz

,0=1,2,3,
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where b9, Do10-D001-%> 2573, ki, ky and kjare arbitrary constants. The four-wave solution of the space-time

fractional Sharma—Tasso—Olver equation is

_ kibroooe® +kabyi00e™? + kabyoioe™ + kabygore™

Uzq
1+bygg0e™ +bo100e™ +bo10€™ +byog1€™ 1)
a a 3 a
ggz k/.x " ng _[Gkﬁ +5(kﬁ+r£)]t ,€:1’2’3’4,
'+ea) T'l+a) rd+e)
where byo00> 0100>20010>00001-7172 513574 K15 ky, kyand k4 are arbitrary constants.
6. The (2+1) Space-Time Fractional Fourth Order Burgers Equation
When « = ff =y, equation (22) becomes
D%u+oD!* u+106D% D**u + 4o uD*u +120u[ D%u)? @)

+60u°D%u+4cu> DEu+S(DYu+ D) =0,
which is called the (2+1) space-time fractional fourth order Burgers equation. The single-wave solution of equation (42) is
kbt kx* ry® okt + 8k +r)]t*

= = - 43
1+bes d F(1+a)+r(1+a) r'(l+a) ’ @

Uy

where bl,r and k are arbitrary constants. The double-wave solution to the (2+1) space-time fractional fourth order
Burgers equation is
kybyge® + kyby, e kyx® oy ok + 8k, +1,)] 1

gy = , &= + - L (=12, (@44
B bt thye® T T T+a) T(+a) r(+a)

where by, by1,H,%,k; and k, are arbitrary constants. The three-wave solution to the (2+1) space-time fractional
fourth order Burgers equation is

_ klblooeé +k2b010e§2 +]‘35001e§3

Ugs

1+b100€gl +b()]()e§2 +b001653 (45)
a a 4 @
& = ko x + 1y _[Ukz+5(kz+rz)]t =123,
I(l+a) T(+a) I'd+a)

where byo0, bo10-Po015%> 72-735 ki, kyand kyare arbitrary constants. The four-wave solution of equation (45) is

gy = kibroooe™ + kabyio0€™? + ksbooioe™ + kaboopie™

1+ byo00€™ +bg100€™ +Boo10€™ +bopie™ (46)

a 4 4 ¢
é:/: kfx N Ty _[Gk[ +5(k[+l’[)]l‘ ,0=1,2,3,4,
'"T(+a) T(+a) [d+a)

where b] 000> bO]OO , boo]o 5 bOOOl N s13,7y, k] . k2 , k3 and k4 are arbitrary constants.

7. The (2+1) Space-Time Fractional Fifth Order Burgers Equation

When o = ff =y, equation (23) becomes



116 Emad A-B. Abdel-Salam ez al.:  Solutions of the (2+1) Space—Time Fractional Burgers Equation

DPu+0 DX*u+100[D>*u)* +156D*uD*u + 50uD*u + 150 D%u]’

2 2 13 2 2
+500uDyuD;“u+100u” D;%u+300u”[D{u] (47)
+100u® D**u+50u* D*u+8(D%u + Djfu) =0,

which is called the (2+1) space-time fractional fifth order Burgers equation. Equation (47) admits a single-kink wave solution
in the form

ki be® U kxt oy [0k +5(k+1)]t”
1+bes IF'l+a) T'(+a) r(+a)

Us) (48)

where b;,r and k are arbitrary constants. The double-kink wave solution of the (2+1) space-time fractional fifth order

Burgers equation is

klbloeé:l +k2b01€§2 k/ xa ]"g ya [O_k/5 +5(k/ -H”[)] fa

2 = + - s €:1529 (49)
14 byoe! + by e Z F(l+a) T(+a) I(l+a)

Usy) =

where blO R bOl N O kl and k2 are arbitrary constants. The three-kink wave solution of the (2+1) space-time fractional
fifth order Burgers equation takes the form

_ kibigge®™ + kybgige™ +ksbyg e

Us3

L+ Bygge® +byjge™ +bgg €™ (50)
a a 5 @
g o b ny ok AUk
I(l+a) I'(+a) I(+a)

where bo0, by10-b00151> 12-13> Ky, ko and kz are arbitrary constants. The four-kink wave solution of the (2+1)
space-time fractional fifth order Burgers equation is

sy = kibrogoe™ + kaboio0e™ + ksboo1o€™ + kaboooie™

1+ byggge™ +by100€” +boo10€™ + booore™ (51)

a a 5 a
PRL/E S A LA ALY Ly W
I(l+a) T(+a) rl+a)

where  Dy000s D01005P0010> 0001515725 135 T4 Kis Ky s K obtained. In each of the cases the single-wave, 'the
double-wave, the three-wave and the four-wave solutions

and ky are arbitrary constants. were studied. This method can be applied to other FDEs.

Remark 1: When & =1, then the results are similar to

those obtained by [54].
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