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Abstract This article proposed continuous hybrid multistep methods with Legendre polynomial as basis functions for
the direct solution of system of second order ordinary differential equations. This was achieved by constructing a
continuous representation of hybrid multistep schemes via interpolation of the approximate solution and collocation of
derivative function with Legendre polynomial as basis functions. The discrete schemes were obtained from the continuous
scheme as a by-product and applied in block form as simultaneous numerical integrators to solve initial value problems
(IVPs). The resultant schemes are self-starting, do not need the development of separate predictors, consistent, zero-stable
and convergent. The performance of the methods was demonstrated on some numerical examples to show accuracy and
efficiency advantages. The numerical results compared favourably with existing method.
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1. Introduction

The mathematical modeling of physical phenomena in
science and engineering field especially in mechanical
systems with several springs attached in series or dissipation,
control theory, celestial mechanics, series circuits lead to a
system of differential equations (see Landau and Lifshitz
(1965), Liboff (1980)). Realistically, the analytical solutions
of most differential equations are not easily obtainable. This
necessitated the need for approximate solution by the
application of numerical techniques.

The techniques for the derivation of continuous linear
multistep methods (LMMs) for direct solution of initial value
problems in ordinary differential equations have been
discussed in literature over the years and these include,
among others collocation, interpolation, integration and
interpolation polynomials. Basis functions such as, power
series, Chebyshev polynomials, trigonometric functions, the

monomials X", the canonical polynomial (Q,(x), 7 >0)

of the Lanczos Tau method in a perturbed collocation
approach have been employed for this purpose (see
Abualnaja (2015); Adeyefa et al, (2014); Awoyemi and
Idowu (2005); Lambert (1991)).
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Moreover, power series has also being extensively used in
literature for the same purpose. Sirisena et al., (2004)
proposed a new Butcher type two-step block hybrid
multistep method for accurate and efficient parallel solution
of order ordinary differential equations. Awoyemi and
Idowu (2005) developed a class of hybrid collocation
methods for third order ordinary differential equations with
power series as the basis functions and were implemented in
predictor —corrector mode. Ehigie ef al., (2010) worked on
generalized two-step continuous linear multistep method of
hybrid type for the direct integration of second order
ordinary differential equations. Fudzial et al, (2009)
constructed the explicit and implicit 3-point-1- block (I3P1B)
for solving special second order ordinary equations directly.
Awari (2013) considered the derivation and application of
six-point linear multistep numerical method for the solution
of second order initial value problems which was
implemented in block mode. Yusuph and Onumanyi (2002)
demonstrated a successful application of multiple finite
difference methods through multistep collocation for the
second order ordinary differential equations.

Furthermore, Abualnaja (2015) constructed a block
procedure with linear multistep methods using Legendre
polynomial for solving first order ordinary differential
equations. The method depends on the perturbed collocation
approximation with Legendre as perturbation term for the
solution of first order ordinary differential equations. In the
work of Yakusak et al., (2015), uniform order Legendre
approach for continuous hybrid block methods were
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proposed for the solution of first order ordinary differential
equations.

In this paper, we propose the choice of Legendre
polynomial without perturbation as basis functions for the
construction of continuous schemes, which simultaneously
generate solution of (1). They are self-starting and do not
need any predictors.

Preliminaries

A central notion in this work concerns the choice of
Legendre polynomial as basis functions in the derivation of
the continuous schemes, the implementation strategies
employed (in block mode) and the stability analysis of the
methods. For convenience of the reader, we recall the
definitions as follows:

Definition 1.1: The block method is said to be zero-stable
if the roots 7»]-, j=1, 2,..s of the -characteristic

polynomial p(h) defined by p(A)=|Ti,AN"|=0
satisfies |kj| <1 and for those roots with |kj| =1, the

multiplicity must not exceed the order of the differential
equation. (see Fatunla (1994)).
Definition 1.2: The set of W equals

7 € C; all roots &;(7) of the characteristic equation
satisfy |§,~(z')|,multiple roots satisfy |§l- (T)| <1

is called the stability region or region of absolute stability of
the method (Hairer and Wanner (1996)).

Definition: 1.3 (Widlund (1967))

A method is said to be A(a)-stable if the sector

S, = {z : |arg(—z)| <a,z+# 0}

(24
is contained in the stability region.
Definition 1.4 (Ehle (1969)): A method is called L-stable

if it is A-stable and if in addition Lim R(z)=0.
Z—®©
Definition 1.5 (Olagunju ef al, (2012)): Legendre
polynomial is special case of the Legendre function which
satisfy the differential equation

(l—xz)y”—2xy'+n(n+1)y =0, n>o, |x| <1.
The general solution can be expressed as:
y=AF,(x)+ B0, (x),

P,(x) and Q,(x) are respectively the Legendre
functions of the first-and second-kind of the order n. The nth
order polynomial P, (x) is generally given by the

|x|<1.

following equation:
P@%%ﬂﬂ%ﬁ% Cn-20)
O k\(n

xn—Zk
Part 20! “k)\(n—2k)!

n
where n is the order of the Legendre polynomials, [EJ

n
signifies the integer part of 5 Legendre polynomials are

orthogonal to each other with respect to weight function
w(x) =1 on [-1,1]. The first two polynomials are always the
same in all cases but the higher orders are created with
recursive formula:

(n+D)B(x)=2n+1)xB,(x)-nP,_(x), n=1,2,...
with initial conditions: py(x) =1, p;(x)=x. The first

four terms of the polynomial are; py(x) =1, p;(x)=x,

Py (x) =%(3x2 —1), p3(x) =%(5x3 —3x) .

The paper is organized as follows. Section 1 is of an
introductory nature. The materials and methods are
described in Section 2. Stability analysis of the methods is
discussed in Section 3. In Section 4, some numerical
experiments and results showing the relevance of the new
methods are discussed. Finally, in Section 5 some
conclusions are drawn.

2. Mathematical Formulation
Consider the second-order initial value problem:

V= yhy(a)=ng,y'(@=mn 1)

where f € R is sufficiently differentiable and satisfies a
Lipschitz condition, sufficiently smooth, f: R™*1 —» R™ y
is an m-dimensional vector and x is a scalar variable and a
set of equally spaced points on the integration interval also
given by
Aa=X) <X < .. <Xy < <Xy <xy=b, (2)
with a specified positive integer step number k greater than
zero, h can be variable or constant step-size given by
h=xp.1 —xp,n=1,..,N;AiN = b —a.
Assuming an approximate solution to (1) by taking the
partial sum of Legendre polynomial of the form:

t+s-1
y(x)= Y a,P.(x),x, <x<x,,, 3
r=0

where X can be used only after certain transformation. The
second derivative of (3) gives

t+s—1

V()= Y 4P () )

r=0
Substituting (4) into (1) gives

t+s—1

Y @B ()= [(xp(x),y' ()%, Sx<x,p, (5
r=0

where P.(x) is the Legendre polynomial of degree 7,

valid in x, Sx<Xx

b
ner and a,’s are real unknown
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parameters to be determined and (f+s—1) is the sum
number of collocation and interpolation points. The
well-known Legendre polynomials are defined on the
interval [-1,1].
2.1. Derivation of the Continuous Hybrid Multistep
Methods

Our objective here is to construct a continuous

formulation of the general linear multistep method y(x) of

r=t+s—-1 ¢t>0,s>0 .
considered one-step and two-step methods.

degree Two cases were

1 -1 1
1 11
2 8
0 0 12
M= 0 0 12
0 0 12
0 0 12
0 0 12

T
D=[a05a]7a2,a35a47a55a65]

CASE 1: One-Step Continuous Hybrid Multistep
Method (OSCHMM).

Collocating (5) at points, and interpolating (3) at points

X=X,,5,8= 031, respectively lead to a system of
4
equations expressed in matrix form:
MD =U (6)
where,
-1 1 -1 1
A A B )
16 128 256 1024
-60 180 —420 840
5o 45 105 24l
2 4 32
0 -30 0 105
2
30 45 105 2415
2 4 32
60 180 420 840

T
and U =[,, Vyr1/a> Fns Sus1/as Fnrrzs Fnassas Foa

Solving (6) using Gaussian Elimination method in Maple soft environment produces the following values of a,.'s

aoz_y””ymfhz 8324710f”+415810fn+i+210213610fn+; 2(1)21;20fn+i_80640f"+1 @
al:_zy”+2yn+i+h2(8(7)277of" 640&?%%; 20160fn+% 80640f"+1J ®
azzhz{lsllzf’ﬁ%fwi+&fn+;+%fn+j 1512f”+1 ©)
a3:h2{ 10180fn+%fn+i_éfn+i 1080f”+1 (10
= 2{1318360f %fwi_%fm; 693’2% 13860f”+1J (a
a5:h2[ 94115f +%fn+i_%fni 945f"“J (12
a6:h2{10§95f”_1013695fn+i+%fn 10395fn+% 10395f"“] 1

Substituting (7)-(13) into equation (3) and after some manipulation gives the continuous scheme
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— X—Xx X—Xx
y(X)=(1—4( ”Dyn+4( h”jy 1
n+—
4
n? X=X, X=X, 2 X=X, 3 X=X, 4 X=X, > x—
+——| =367 —= |+ 2880 —8000 +11200 —7680 +2048
5760 h h h h
h2 X, X=X, ’ X=X, N X=X, ° xX-=
135 —3840 +8320 -6912 +2048
1440 h
X X—Xx 3 X—Xx 4 X—Xx 5 X—Xx
”j—1920[ P ”J +6080[ ”j —6144( P ”J +2048[ 1

2 _ _ 3 _ 4 _ 5 _
_ I o[ X | yogo Fn | 4 ga80( T | 5376 X2n | _ogqg[ X2 ¥
1440 h h h

Evaluating (14) at X = X, gives the discrete scheme

X 6

¥ 6
j ]fn+1 (14)
4

2

Vo =4y 3yn+§[z7fn+332f | +222f | +132f 3+7fn+1J (15)

ok
4 4 2 4

The discrete scheme (15) is consistent, zero-stable and of order p =5 with error constant C = ; .
PT< 1966080

Here, it is our intention to get additional discrete schemes, so, we evaluated (14) at the points x = Xpajsd = 3 1 to obtain:
4’2

h2
Yy 3=3y -2y, +——|37f,+432f | +222f | +32f ;3-3f,4 (16)
n+= n+— 3840 n+— n+— n+=
4 4 4 2 4
h2
y =4y 1 mhyy o o) 3670, +540f 1 —282f 4 +116f 3 -21f,n )
n+— it 5760 - n+— n+=
2 4 "2 2 4
The first derivative of (14) is found and evaluated at points x=x, .,i =0, l’ l 3 1 yields the following derivative
4’27 4
schemes:
. h2
hyy =4y =4y, =) 3671, 4540 | =282f (+116f 5=21f,, (18)
el 5760 n+— n+=
4 i 2 4
\ W’
hy =4y | —4y,+ 135, +752f | =246 | +96f 3171 (19)
nt— nt— 60 n+ - n+>
4 4 i) 4
, h?
hy =4y -4y, +——|97f,+1444f | +666f | =521 3+5f, 1 (20)
n+— n+— 5760 n+— n+— n+=
2 4 4 2 4
. h?
hy | =4y | -4y, +—— 81fn+1508f R +1050f R +1932f 3 +469 1., 20
nt n+Z 5760 2 5 )

2
hyn+1:4yn+1—4yn+5g60(81fn+1508f 1+1050f 1+1932f 3+469fn+1J (22)
i) 4

n+—
4
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2.2. Implementation of the One-Step Continuous Hybrid Multistep Method (OSCHMM).

In this section, the implementation strategy of this work is discussed. Following Fatunla (1991, 1994), the general discrete
block formula is given as:

A°Y, = ey, + h*dF (Y,,)+ h*BF (Y,,) (23)

where e, d are vectors, B are RxR matrix and AO identity matrix, p is the order of differential equation. Expressing
equations (20) - (23) and (24) in form of (23) and solving with matrix inversion method gives:

1 y' 1
o1 Y1 0.0 0 "y
1 000 4 00 01 4 .
o100 2| 1o o0 o0 1]”7,1 00 0 L|[¥ 1
2 |= 2 |+hA 2 2 |+
0010 y 0 0 0 1 » N
3 3 20y 3
0 0 0 1) n+ 00 0 1) ny 0004,1,, 24)
Yn+1 Yn 0 0 0 1 y'n
367 3 47 29 7
0 0 0 o — - - S
23040 || “n— 128 3840 5760 7680 || "+
53 1 1 1 1
00 0 — || f — - —  —— | f
2 1440 2| 10 48 90 480 ne
147 117 27 3 9
000 —— |[f 3 — == = —— I f 3
2560 = 640 1280 128 2560 || “n+y
000 - Jn 4 E 4 0 sl
90 15 15 45
Writing (24) explicitly
oo R
n+— 4 23040 n+— n+— n+=
4 4 2 4
ho, (26)
Y 1 =YVt | 53y t144f 1 =30f (+16f 3-3f,u
n+— 2 1440 nt— nt— n+=
2 4 2 4
3h o 342
Y 3= VeVt [49fn+156f 18/ | +20f 3—3fn+1J @7
n+— 4 2560 n+— n+—
4 4 2 4
R
yn+l:yn_hyn+_ 7fn+24f l+6f 1 +8f 3 (28)
90 n+— n+— n+—
4 2 4
The block method is of uniform order p=(5, 5, 5, S)T with error constant Cpﬁ:( 107 1 9 1 jT_
165150720° 645120 3670016 322560
Substituting (25) into (19)-(22) yields
y =y + 2511, +646f | —264f | +106f 3—19f,,, (29)
n+— 2880 nt— n+— n+=
4 4 2 4
' h 30
y l_yn+_ 29fn+124f 1+24f f 3 fn+1 ( )
n+— 360 =
i "4
| 3h 31)
y yn +——19/, +34f 240 H14f 53— [
n+Z 320 nty o n+y
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Vo =yt 1 f 32 12 432f 3+ T (32)
90 n+— n+5

3
n+=
4
Equations (25)-(32) are then applied in block form as simultaneous numerical integrators to solve (1).

CASE 2: Two-Step Continuous Hybrid Multistep Method (TSCHMM).

Similarly, collocating (5) at points, and interpolating (3) at points x=yx ., s=0, l lead to a system of equations of

n+s»> 2
form (6) where,

1 -1 1 -1 1 -1 1

P T O A (A< R 1

2 8 16 128 256 1024

0 0 3 -15 45 —105 210
N - BN S 15
2 8 16 128

0 0 3 0 —1—5 0 ﬁ

2 8
0 0 3 15 4 105 2415

2 8 16 128

0 0 3 15 45 105 210

T T .
D=[a0,a1,a2,a3,a4,a5,a6,] and U =[yn’yn+l/29fn9fn+l/29fn+l’fn+3/2’fn+2] . The continuous scheme
is as follows :

}<x)=[1—2(x‘x"Dyn+z[ﬁjy |
h h nt—
4
n? X=X x-x, ) x-x, Y x-x, x-x, ) x-x,\°
+ —26791( ")+105120[ ”] —14400( ") +102200[ "j —35040( "j +4672[ ”j I

210240 h h h h h h

W X=X, X=X, ’ X=X, ¢ X=X, > X=X,
-—135 -960 +1040 —432 + 64

720 h h h h h

n? X—Xx, X=X, 3 X=X, ¢ X=X, > X—X, 6
+—| 47 —480 +760 —-384 +64 s
480 h h h h h

(33)

n? X=X, X—X, ¥ X=X, 4 X=X, > X=X, 6
+—129 -320 +560 -336 +64

720 h h h h h

n? X=X, X=X, } X=X, ¢ X=X, > X=X,
+ 21 —2880 — | +440 —288 +64

2880 h h h h h

The discrete scheme is obtained as:

hz
Vw2 =4V =30yt 271, 4332 | 4222/, 4132 347/ (34)
n+— 1920 n+§ n+§
The discrete scheme (34) is consistent, zero-stable and of order p =5, with the error constant Cp+2 = L .
15360

Evaluating (33) at the points x = x :i, 1, we obtained the following discrete schemes:

n+i»
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2
Y o33y g —2m, {m +A32f | 42221, +32f 5 —3fn+2] (33)
n+ n+— 3840 n+— n+=
2 2 2 2
h2
Vit =20 = Iat | 19, 4204f  H14f0 +4f 3= fro (6)
n+— 5760 n+— n+=
2 2 2
The first derivative of (33) is found and evaluated at points y = Xppiri =0, l, 1, é, 2 vyield the following derivative
schemes:
: W2
nt— 2880 nt— n+=
2 2 2
' h?
hy 1 =2y 1—2yn+— 135fn+752f 1_246fn+1+96f 3_17fn+2 (38)
n+— nt— 2880 nt— n+=
2 2 2 2
. X
1Y =4y |~ 4y, t | 9T, + 14441 | 4666, ~52f 3 +5f0 (39)
n+— 2880 n+— n+—
2 2 2
, h2
hy 3=2y | =2y,+——|119f,+1296f | +1578f,, +640f 5 —-33f, > (40)
n+= n+— 2880 nt— n+=
2 2 2 2
, n?
hyn+1:2y 1—2yn+— 81fn+1508f 1 +1050fn+1+1932f 3+469fn+2 (41)
n+— 2880 nt nt

The implementation of Two-Step Continuous Hybrid Multistep Method (TSCHMM) is as follows:
Combining (34), (35), (36), (37) and solving by using matrix inversion method gives:

| Y o )y 1
100 0) "] (0001) | [©00F) "
0100 000 1y, 000 11| y,._

00 1 o Y+l _ 00 0 Yn-1 iy ; y'nl n

Vi3 3 Jooo oo 2|V s
0 0 0 1 0 0 01 2 2

Yn+2 Yn 0O 0 0 2 !

Yn

367 3 47 29 7
000 —— = =L =

57600 |(f 1 32960 1440 1920 |(f
00 0 =3 2 2 1 2z _ 1
2 360 || Saa1 a2 s 12 45 120 || fusi (42)

147 || f 5 117 27 3 9 |1 5
000 — |72 ek L S |

640 2 160 320 32 640
0 14 Jn loe 4 16 0 Jne2

45 15 15 45

The above block method is of uniform order p=(5 55, 5)T with the error constant Cpﬂ:( 07 19 ljr.
1290240 5040 28672° 2520

Equations (38) -(41) with (42) are applied in block form as simultaneous numerical integrators to solve (1).
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3. Stability Analysis

In the spirit of Sommeijer et al., (1992), the linear stability
of block method can be investigated by applying the method
to the test equation y" = Ay . This leads to a recursion of

the form:

Y, =M(2)Y,,

M(z)=[I-zD] '[A+zB], z:=Ah

M is called the amplification matrix and its eigenvalues
the amplification factors. By requiring the elements of the
diagonal matrix D to be positive, the matrix [—zD is
nonsingular for all z on the negative real axis. Therefore, in
the sequel, we assume that the (diagonal) elements of D are
positive. We shall use the result on the power of a matrix N
(Varga 1962),

HN =0T [p(N)]") as n—> o0,

where ”” and p(N) are the spectra norm and the radius
of N and where all diagonal sub-matrices of the Jordan
normal form of N which have spectral radius p(NN) are at
most gxq. If the spectra radius p(N)<I, then N is called
power bounded. The region where the amplification matrix
M(z) is power bounded is called the stability region of the
block method. If the stability region contains the origin, then
the method is called the zero- stable. Below are the graphical
representations of stability of OSCHMM and TSCHMM
respectively.

4. Numerical Experiments and Results

In this section, we applied the new methods to some
problems: the first is Undamped Duffing’s equation of Fang
and Wu (2008), two body problem of Fatunla (1990), stiff
problem, linear second order initial value problem, Stiefel
and Bettis problem and Implicit 3-point 1-block (I3P1B) of
Fadzial (2009).

Problem 1: The Undamped Duffing’s equation:

45

y4y=—y> +(cost+<9sin10t)3 —~99¢sin10¢
V(o) =1, ¥'(t))=10¢, €= 10719,

The exact solution y(¢) =cost+e&sin10z.

It describes a periodic motion of low frequency with a
small perturbation of high frequency. The numerical results
are shown on tables land 2 below.

Problem 2: Consider the given two-body problem

=2 3(0)=1,3%(0)=0,

2(0)=0,,(0)=1,
_ ( 2 2)
r=.yi +»3 xe[O,lS;z]
Theoretical solution: y;(x) =cosx; »,(x)=sinx
Problem 3: Consider the stiff problem
y"+1001y"+1000y =0, y(0)=1,y'(0)=1,h=0.1
Theoretical solution: y(x) = exp(-x).
Problem 4:
V' =4y +8y=x", y(0)=2,y(0)=4,xe[0.1],

Theoretical solution:

3x2 x2

2x 3. 3x
X)=e 2cos(2x ——sin(2x))+ —+—+
Y( ) ( ( ) 64 32 16 8
Problem 5: Consider the system of equations of Stiefel and
Bettis problem:

W + 31 =0.001cos(x), 1 (0) =1, 1(0)=0
Yo + ¥y = 0.001sin(x) , 1,(0) =1, y,(0)=0.9995,
pa= [0,407[],

The exact solutions are given as:

y1(x) =cos(x)+0.0005xsin x,
¥, (x) = sin(x)—0.0005x cos x.

Table 1. One-step method for problem 1 Undamped Duffing's Equation

X y-exact solution y-approximate Error
0.0025 0.9999968750041270 0.9999968750041270 0.000000e+000
0.0050 0.9999875000310390 0.9999875000310390 1.110223e-016
0.0075 0.9999718751393280 0.9999718751393290 8.881784e-016
0.0100 0.9999500004266480 0.9999500004266490 7.771561e-016
0.0125 0.9999218760297140 0.9999218760297150 4.440892¢-016
0.0150 0.9998875021243030 0.9998875021243040 9.992007¢-016
0.0175 0.9998468789252480 0.9998468789252500 1.665335¢-015
0.0200 0.9998000066864440 0.9998000066864470 2.775558e-015
0.0225 0.9997468857008410 0.9997468857008460 5.440093e-015
0.0250 0.9996875163004430 0.9996875163004500 7.216450e-015
0.0275 0.9996218988563060 0.9996218988563160 9.436896¢-015




46

Olabode B. T. et al.:

Region of absolute stability of one step method

Continuous Hybrid Multistep Methods with Legendre
Basis Function for Direct Treatment of Second Order Stiff ODEs

8 ! ! ! ! !

" S S S SN N —

o T — ]

sl N
T ——

5 R W TN R NN DY S

s N

74 IS Do = S S

-5 | | | | |

-25 -20 -15 -10 -5 0 5

Reg(z)

Figure 1. Stability Domain of Block of OSCHMM which is A(a)-stable by Definition 1.3
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Figure 2. Stability Domain of Block TSCHMM which is L(a)-stable by definition 1.3 and 1.4

Table 2. The y-exact, y-approximate and error of TSCHMM for problem 1

Two-step method, h = 0.01 problem 1 Undamped Duffing's Equation

X y-exact solution y-approximate Error
0.0050 0.9999875000310390 0.9999875000310390 1.110223¢-016
0.0100 0.9999500004266480 0.9999500004266540 5.551115e-015
0.0150 0.9998875021243030 0.9998875021243660 6.328271e-014
0.0200 0.9998000066864440 0.9998000066864920 4.740652¢-014
0.0250 0.9996875163004430 0.9996875163005230 8.015810e-014
0.0300 0.9995500337785390 0.9995500337786070 6.827872e-014
0.0350 0.9993875625577780 0.9993875625578920 1.136868e-013
0.0400 0.9992001066999190 0.9992001067000950 1.757483e-013
0.0450 0.9989876708913390 0.9989876708916910 3.522738e-013
0.0500 0.9987502604429080 0.9987502604433770 4.684031e-013
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Table 3. The y-exact, y-approximate and error of OSCHMM for problem 2Table 4: The y-exact, y-approximate and error of TSCHMM for problem 2

X yj-exact y»-exact Y- approximate y2- approximate Error in y; Erroriny,
0.1 0.9950041652780 0.0998334166468 0.99500416527 0.99833416647 1.2891E-14 3.0923E-13
0.2 0.9800665778412 0.1986693307950 0.98006657784 0.198669330795 5.1308E-14 6.1279E-13
0.3 0.9553364891256 0.2955202066613 0.95533648912 0.295520206662 1.1448E-13 9.0512E-13
0.4 0.9210609940028 0.3894183423086 0.92106099400 0.389418342309 2.0114E-13 1.1807E-12
0.5 0.8775825618903 0.4794255386042 0.87758256189 0.479425538605 3.0954E-13 1.4346E-12
0.6 0.8253356149096 0.5646424733950 0.82533561490 0.564642473396 4.3747E-13 1.6617E-12
0.7 0.7648421872844 0.6442176872376 0.76484218728 0.644217687239 5.8231E-13 1.8576E-12
0.8 0.6967067093471 0.7173560908995 0.69670670934 0.717356090901 7.4105E-13 2.0184E-12
0.9 0.6216099682706 0.7833269096274 0.62160996826 0.783326909629 9.1035E-13 2.1406E-12
1.0 0.5403023058681 0.8414709848078 0.54030230586 0.841470984810 1.0865E-12 2.2211E-12
Table 4. The y-exact, y-approximate and error of TSCHMM for problem 2
X yi-exact ya-exact yi- approximate y2- approximate Error in y; Error in y,
0.1 0.9950041652780 0.0998334166468 0.99500416527 0.99833416666 1.6897E-12 1.9734E-11
0.2 0.9800665778412 0.1986693307950 0.98006657783 0.19866933084 3.2802E-12 3.9280E-11
0.3 0.9553364891256 0.2955202066613 0.95533648911 0.295520206719 8.1501E-12 5.7761E-11
0.4 0.9210609940028 0.3894183423086 0.92106099399 0.389418342843 1.2859E-11 7.5690E-11
0.5 0.8775825618903 0.4794255386042 0.87758256186 0.479425538695 2.0553E-11 9.1547E-11
0.6 0.8253356149096 0.5646424733950 0.82533561488 0.564642473501 2.7968E-11 1.0652E-10
0.7 0.7648421872844 0.6442176872376 0.76484218724 0.644217687356 3.7894E-11 1.1853E-10
0.8 0.6967067093471 0.7173560908995 0.69670670929 0.717356091028 4.7377E-11 1.2941E-10
0.9 0.6216099682706 0.7833269096274 0.62160996821 0.783326909764 5.8742E-11 1.3657E-10
1.0 0.5403023058681 0.8414709848078 0.54030230579 0.841470984950 6.9468E-11 1.4243E-10
Table 5. The y-exact, y-approximate and error of OSCHMM for problem 3

X y-exact y-approximate Error in OSCHMM (of problem 3)

0.1 0.90483741803595957316 0.90483741803591096220 4.861096E-14

0.2 0.81873075307798185867 0.81873075307788970825 9.215042E-14

0.3 0.74081822068171786607 0.74081822068158785625 1.300098E-13

0.4 0.67032004603563930074 0.67032004603547725100 1.620497E-13

0.5 0.60653065971263342360 0.60653065971244499082 1.884327E-13

0.6 0.54881163609402643263 0.54881163609381692607 2.095065E-13

0.7 0.49658530379140951470 0.49658530379118379194 2.257227E-13

0.8 0.44932896411722159143 0.44932896411698400947 2.375819E-13

0.9 0.40656965974059911188 0.40656965974035351527 2.455966E-13

1.0 0.36787944117144232160 0.36787944117119205438 2.502672E-13

Table 6. Accuracy Comparison of TSCHMM for Problem 4
X y-exact y-approx (of problem4) Error in TSCHMM p=5 Error in Jator & Li (2009),p=5

0.1 2.3941125769963956181 2.3941125055703059230 7.14260896951E-08 5.10704 E-06
0.2 2.7481413324264235256 2.7481411575175150467 1.74908908478 E-07 1.49586 E-05
0.3 3.0078669405110678859 3.0078665760231918731 3.64487876012 E-07 2.78532 E-05
0.4 3.1017624057742078185 3.1017617867959027691 6.18978305049 E-07 4.28908 E-05
0.5 2.9395431007452620774 2.9395421018471828849 9.98898079192 E-07 6.70307 E-05
0.6 2.4118365344157147255 2.4118350550184086061 1.47939730611 E-06 1.02637 E-04
0.7 1.3915548304898433104 1.3915527282654101737 2.10222443313E-06 1.44907 E-04
0.8 -0.262326758334357631 -0.2623295992140394222 2.84087968179 E-06 1.90905 E-04
0.9 -2.697771160773070925 -2.6977748297643383106 3.66899126738 E-06 2.39733 E-04
1.0 -6.058560720845666951 -6.0585652825136523363 4.56166798538 E-06 2.94670 E-04
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Table 7. Accuracy Comparison of OSCHMM and TSCHMM with Implicit 3-point-1 block (13PIB)

H METHOD MAX ERR
13P1B 2.14918(-8)
0.01 OSCHMM 9.115552(-10)
TSCHMM 7.294766(-9)
I3P1B 1.34949(-9)
0.005 OSCHMM 1.39353(-10)
TSCHMM 9.11552(-10)
13P1B 8.64701(-11)
0.001 OSCHMM 9.114593(-13)
TSCHMM 7.291698(-12)
13P1B 3.95277(-10)
0.0005 OSCHMM 1.139323(-13)
TSCHMM 9.114593(-13)
Table 8. y-exact, y-approximate and error in TSCHMM for problem 5
X yi-exact ya-exact yi1-approx (prob5) yz-approx (TSCHMM) Error y, Error y,
0.1 0.9999951220742781 0.003123432421368851 0.9999951220742781 0.003123432421368851 1.64E-18  7.20E-21
0.2 0.9999804883447010 0.006246834371010263 0.9999804883447010 0.006246834371010263 2.87E-18  2.40E-21
0.3 0.9999560989540329 0.009370175377494076 0.9999560989540329 0.009370175377494076 1.26E-18  4.33E-20
0.4 0.9999219541402128 0.012493424969984680 0.9999219541402128 0.012493424969984680 5.73E-18  6.30E-20
0.5 0.9998780542363521 0.015616552678538286 0.9998780542363521 0.015616552678538286 4.10E-18  1.09E-19
0.6 0.9998243996707314 0.018739528034400182 0.9998243996707314 0.018739528034400182 8.60E-18  1.15E-19
0.7 0.9997609909667961 0.021862320570301988 0.9997609909667961 0.021862320570301988 6.97E-18  1.85E-19
0.8 0.9996878287431515 0.024984899820758884 0.9996878287431515 0.024984899820758884 1.14E-17  1.81E-19
0.9 0.9996049137135566 0.028107235322366826 0.9996049137135566 0.028107235322366826 9.83E-18  2.79E-19
1.0 0.9995122466869173 0.031229296614099748 0.9995122466869173 0.031229296614099748 1.43E-17  2.61E-19

On tables 3 and 4, y-exact, y-computed and error of
OSCHMM and TSCHMM for problem 2 are shown while
the y-exact, y-computed and error of TSCHMM for problem
3 is shown on table 5. On table 6, it is observed that the
maximum absolute error of the TSCHMM is
7.14260896951E-08 is (smaller) more accurate than 5.10704
E-06 of Jator & Li (2009) for problem 4.

The accuracy comparison of the new methods and 131PB
are shown on table 7. The new One-step method (OSCHMM)
and Two-step method (TSCHMM) are substantially more
accurate than the numerical solution of initial-value
problems (IVPs) using I3P1B, as the maximum absolute
error is smaller with variable h is 9.115552(-10) while that
the maximum absolute error of TSCHMM is 7.294766(-9)
which is smaller than 2.14918(-8) of I3P1B for h=0.01.

5. Conclusions

We have presented continuous hybrid multistep methods
with Legendre polynomial as basis function for the direct
solution of system of second order ODEs. The derived
methods were implemented in block mode which have the
advantages of being self-starting, uniformly of the same

order of accuracy and do not need predictors, having good
accuracy as shown on table 7. It should be noted that
accuracy and efficiency rate of a method is dependent on the
implementation strategies. If economical computation is
required, then the new methods are the better choice. The
new methods are therefore recommended for general
purposed use. Finally, the region of absolute stability of the
block methods of One-step and Two-step methods were
presented in figures 1 and 2. Maple and Matlab software
package were employed to generate the schemes and
results.
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