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Abstract  We develop a Maple code that computes the solutions of two-person non-cooperative games. When the 
bimatrix game of any two-player, two-strategy, including bimatrix games with symbolic entries, is inputted into our Maple 
package, the program outputs all the Nash equilibrium strategy pairs (pure and/or mixed) along their corresponding payoffs. 
When the bimatrix game of any two-player, m×n strategy game is inputted into our Maple package, the program outputs only 
the pure Nash equilibrium strategy pairs along their corresponding payoffs. 
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1. Introduction 
The Theory of Games concerns the mathematics of 

decision making. It provides a general framework within 
which both cooperation and competition among independent 
agents may be modeled and gives powerful tools for 
analyzing these models. A game is said to be 
non-cooperative if each agent involved pursues his or her 
own interests which are partially conflicting with others’. 
Non-cooperative games are important tools which are 
extensively used in economics, social sciences, political 
science, computer science, biology, and in others fields. The 
main goal in game theory is the identification of potential 
Nash equilibria of a given game. The calculation of Nash 
Equilibria by hand is often tedious and time consuming even 
when the game is fairly small and may be impossible for 
large games. Because of these difficulties, calculations of 
Nash equilibria readily lend themselves to computer 
programming.  

Computation of Nash equilibria has been extensively 
studied and programs for finding Nash equilibria are 
available. However, all the existing methods and programs 
are numerical in nature and therefore cannot be used if the 
payoff matrices in a game contain entries that are parameters 
or symbolic values. However, in many applications of game 
theory, the bimatrix game contains entries which are 
parameters, hence the need to develop a new program. The 
following examples illustrate bimatrix games with entries 
that are parameters. 
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1.1. The Job Market ([1], Page 130-131) 

Firms 1 and 2 have one opening each for which they are 
offering salaries 2a and 2b, respectively. Two players (job 
seekers) are competing for these two openings. Each player 
can apply to only one of the positions and the players must 
simultaneously decide whether to apply to Firm 1 or to Firm 
2. If only one of the players applies for a job, he or she gets it; 
if both apply for the same position, the concerned firm hires 
one of them at random, each player being equally likely to be 
selected. The following bimatrix game models this problem. 

( ) ( )
( ) ( )

Firm 1    Firm 2

, 2 , 2Firm 1 
2 , 2 ,Firm 2
a a a b
b a b b

 
 
 

         (1) 

In this bimatrix, the entries (2a, 2b) and (2b, 2a) are 
self-explanatory. The entry (a, a) is obtained as follows. If 
both players apply to the same firm, then, because it was 
assumed that the firm will select an applicant at random, 
each can expect a payoff of half the salary. A similar 
argument justifies the entry (b, b). Clearly, the analysis of 
this game depends on the values and relationship of and 
between the parameters a and b. Depending on the cases 

2a b<  and 2b a<  (the two salaries are not too far out of 
line with each other), 2b a>  (Firm 2’s position pays very 
well), and 2a b>  (Firm 1’s position pays very well), we 
will see that the nature of Nash equilibria will change from 
one case to the other. Note that numerical programs will not 
be helpful in solving this problem as the entries in the 
bimatrix game are all given as parameters. We will discuss 
the solution of this game in details in Section 4. 
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1.2. An Evolutionary Game ([2], page 282-283) 

Two birds of the same species compete for a territory 
whose value in terms of evolutionary fitness is 2a. Each bird 
can adopt a hawkish or dovelike strategy in a 
simultaneous-move game. If both behave like doves, they 
split the territory. If one behaves like a dove and the other 
like a hawk, the hawk gets the territory. If both behave like 
hawks, there is a fight. The evolutionary fitness of a bird that 
has to fight is b. Assume that each bird is equally likely to 
win the fight and hence gain the territory. However, the fight 
is costly because of the risk of injury. We will use the model 
c = a – b, where c represents the cost of fighting. The 
following bimatrix game models this problem. 

( ) ( )
( ) ( )

Hawk      Dove

, 2 , 0Hawk 
0, 2 ,Dove

a b a b a
a a a

− − 
 
 

       (2) 

What should the birds do? We will analyze this game in 
each of the two situations where a > b (The moderate option: 
the territory is worth fighting for) and a ≤ b (The nuclear 
option: it is too costly to fight). We observe that this game 
cannot be also solved by numerical method. We will give the 
complete analysis of this game in Section 4. 

In order to calculate the Nash equilibria of a game whose 
payoff matrix contains symbols, the use of a computer 
algebra system is most suited. We will use the mathematical 
software Maple [3] to perform the symbolic computation. 
We propose a Maple package which can perform numerical 
as well as symbolic computations of Nash equilibria of 
two-person non-cooperative non-constant games. Our 
package can also find all pure Nash equilibria of 
non-cooperative m×n matrix games. However, it can only 
calculate and determine the mixed Nash equilibria of 2×2 
games. We believe that this package will be a very useful 
tool for researchers in game theory as well as educators and 
students. 

2. Nash Equilibrium Computation 
We begin by recalling a few formal definitions of the 

game theoretic terms employed in this paper. 
Definition 2.1 A finite two-person non-cooperative game 

G is the tuple (S, T, A, B), where S and T are nonempty finite 
sets, the so called pure strategies for Player 1 and Player 2, 
respectively, and A and B are m×n matrices with real entries, 
the so called payoff matrices for Player 1 and Player 2, 
respectively.  

We observe that a finite two-person game is completely 
determined by its bimatrix, a matrix whose entries are pairs 
of real numbers. For example in the game whose bimatrix is 
given below 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

, , ,
, , ,

, , ,

n n

n n

m m m m mn mn

a b a b a b
a b a b a b

a b a b a b

 
 
 
 
 
  





   



   (3) 

Player 1 has access to exactly m pure strategies, that is 
{ }1 2, , , mS s s s=   while Player 2 has at her disposal n 

pure strategies, namely { }1 2, , , nT t t t=  . The game is 

played as follows. Simultaneously, Player 1 chooses is S∈
and Player 2 chooses jt T∈ , each unaware of the choice of 
the other. Then their choices are made known and Player 1 
wins the amount ija  and Player 2 wins the amount ijb . 
This bimatrix can be broken up into two matrices A and B, 
the payoff matrices of Player 1 and Player 2, respectively, as 
shown below. 

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

A

a a a

 
 
 =
 
 
 





   



, 

11 12 1

21 22 2

1 2

n

n

m m mn

b b b
b b b

B

b b b

 
 
 =
 
 
 





   



          (4) 

We say that a game G = (S, T, A, B) defined as above is 
zero-sum if 0ij ija b+ = for all 

{ } { }( , ) 1, 2, , 1, 2, ,i j m n∈ ×  . It is constant-sum if 

, 0ij ija b c c+ = ≠
 

for all i and j. Otherwise, it is called a 
non-constant game. 

The main goal in game theory is the identification of some 
special strategic profiles. For example, given a fixed strategy 
t* ϵ T of the opponent, Player 1 would like to identify a best 
reply strategy, that is, a strategy s*ϵ S that delivers a utility at 
least as great than any other strategy s ϵ S. In symbols, this 
means that ( ) ( )1 1, ,G s t G s t s S∗ ∗ ≥ ∗ ∀ ∈ , where the 
payoff functions G1 and G2 are defined as 

( )1 2, and ( , )i j ij i j ijG s t a G s t b= = . 

The situation when both players have chosen such a 
strategy is of fundamental importance in game theory and 
described by the following definition.  

2.1. Definition (Pure Nash Equilibrium) 
Let G be a finite two-person non-cooperative game. A 

pure Nash equilibrium (PNE) for G is a strategy profile 
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( ),s t S T∗ ∗ ∈ ×  such that s ∗  is a best reply to t ∗  and 

t ∗  is a best reply to s ∗ . In symbols, ( ),s t S T∗ ∗ ∈ ×  is 
a Nash equilibrium in G if and only if  

( ) ( )
( ) ( )

1 1

2 2

, , and

, ,

G s t G s t s S

G s t G s t t T

∗ ∗ ≥ ∗ ∀ ∈

∗ ∗ ≥ ∗ ∀ ∈
  (5) 

The above inequalities indicate that no player can increase 
his/her payoffs by unilaterally deviating from his or her 
equilibrium strategy or that at equilibrium a player’s 
opponent is indifferent to that player’s strategic choice. 

Given a game G, a Nash equilibrium may not exist 
amongst the pure strategy profiles. As an example, consider 
the 2×2 non-cooperative game whose bimatrix game is given 
by 

(3, 4) (2, 7)
(1, 5) (5, 3)
 
 
 

              (6) 

In this game, there is no pair ( ),s t∗ ∗  such that s ∗  is a 
best reply to t ∗  and t ∗  is a best reply to s ∗ . Therefore, 
this game admits no Nash equilibria in pure strategies. 
Fortunately, game theorists usually extend the game G by 
enlarging the domain and extending the payoff functions. A 
standard extension of this point is to consider for each player 
the set of mixed strategies, that is, the sets of probability 
distributions over S and T. If X is a nonempty finite set, say. 

X = {x1, x2, …, xn}, we denote the probability distributions 
over X by  

1 1 2 2

1

| 0 1
( )

and 1

n n i
n

i
i

p x p x p x p
X

p
=

+ + + ≤ ≤ 
 ∆ =  = 
 

∑



 (7) 

Note that one can embed X into Δ(X) by considering the 
element xi in X as mapped to the probability distribution 
which assigns 1 to xi and 0 to everything else. 

For a finite two-person non-cooperative game G = (S, T, A, 
B) defined as above, we observe that selecting a mixed 
strategy for Player 1 is tantamount to selecting a vector  

( )1 2
T

mp p p p=


           (8) 

where Player 1 uses pure strategy si with probability pi. 
Similarly, a mixed strategy for Player 2 is a vector 

( )1 2
T

nq q q q=


            (9) 

where Player 2 uses pure strategy tj with probability qj.  
Now, we extend the game G to a new larger game Gmix in 

the sense of the following definition. 

2.2. Definition (Mixed Game)  
Let G = (S, T, A, B) be a finite two-person non-cooperative 

game. The associated two-person mixed game, Gmix, is a 
tuple ( )1 2( ), ( ), ,mixG S T= ∆ ∆ Ε Ε , where  

( )1 2

1

| 0 1
( )

and 1

T
m i

m

i
i

p p p p p
S

p
=

 = ≤ ≤
 

∆ =  
= 

 
∑





, (10) 

( )1 2

1

| 0 1
( )

and 1

T
m i

n

i
i

q q q q q
T

q
=

 = ≤ ≤
 

∆ =  
= 

 
∑





,  (11) 

and 1 2andT Tp Aq p BqΕ = Ε =
   

are the expected payoffs 
to Player 1 and Player 2, respectively. 

Note that the game Gmix contains the game G. 
Nash’s Theorem [4] says that if S and T are finite as above, 

then there always exists at least one equilibrium in Gmix. Note 
that every equilibrium in G is also an equilibrium in Gmix. 
Hence, throughout, we will only look for the equilibria in the 
mixed game as they also include the equilibria of G. 

2.3. Definition (Mixed Nash Equilibrium)  
Let G = (S, T, A, B) be a finite two-person non-cooperative 

game and let ( )1 2( ), ( ), ,mixG S T= ∆ ∆ Ε Ε  be its 
associated mixed game. A mixed Nash equilibrium (MNE) 
for Gmix is a strategy profile ( ), ( ) ( )p q S T∗ ∗ ∈∆ ×∆

 

such 

that p∗  is a best reply to q ∗  and q ∗  is a best reply to 

p∗ . In symbols, ( ),p q∗ ∗
 

 is a Nash equilibrium in Gmix if 
and only if  

( ) and

( )

T T

T T

p Aq p Aq p S

p Bq p Bq q T

∗ ∗ ≥ ∗ ∀ ∈∆

∗ ∗ ≥ ∗ ∀ ∈∆

    

    

    (12) 

If we set ( )1Tp p p∗ = −


 and ( )1Tq q q∗ = −


, 

it is an easy exercise to show that ( ),p q∗ ∗
 

 is a Nash 

equilibrium if and only if ( ),p q∗ ∗
 

 is a solution of the 
linear programming problem 

[ ] 1
1 0, 0 1 and

q
p p A p

qp
 −  ∂

− = ≤ ≤  ∂   
 

[ ] 1
1 0, 0 1

q
p p B q

qq
 −  ∂

− = ≤ ≤  ∂   
 

We develop a Maple procedure called nashp that produces 
all pure Nash equilibria of all m×n matrix games. The Maple 
codes in this procedure are directly based on the definition of 
pure Nash equilibrium.  

In contrast, to identify the mixed Nash equilibria of 2×2 
games, the Maple procedure which we call nashm will be 
used. The structure of this procedure is based on solving 
linear equations and inequalities which are related to the 
payoff matrices. 
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Let G = (S, T, A, B) be a two-person, two-strategy 
non-cooperative game, that is, both sets S and T contains 
each exactly two elements. Let ( )1Tp x x= −



 and 

( )1Tq y y= −


 be Player 1 and Player 2 mixed strategies, 
respectively. Then, the Maple command solve is utilized to 
solve linear systems of equations subject to inequalities. The 
system with constraints  

[ ] 1
1 0, 0 1

y
x x A x

yx
 −  ∂

− = ≤ ≤  ∂   
   (13) 

and  

[ ] 1
1 0, 0 1

y
x x B y

yy
 −  ∂

− = ≤ ≤  ∂   
   (14) 

symbolically gives the Nash equilibrium strategies for  

Player 1 and Player 2, respectively. This method is easy and 
quick as opposed to the graphical method which is 
extensively used in the literature [5, 6]. This procedure 
returns as output mixed Nash equilibria which are exact, 
however, it misses to provide the pure Nash equilibria when 
they exist. Fortunately, procedures nashp and nashm can be 
used together to identify all Nash equilibria (pure and mixed) 
of 2×2 games. Moreover, we create the Maple procedure 
nasha which calls both nashp and nashm. This procedure 
will be utilized to find all Nash equilibria of 2×2 
non-constant non-cooperative games. 

3. The Maple Package 
We utilize the Maple function Module to create a Maple 

package nashe which includes the procedures nashp, nashm, 
and nashi as follows. 

 

 

MAPLE GAME SOLVER CODES 
nashe := module () 
   option package; 
   export nashp, nashm, nasha; 
    
nashp := proc (A) 
   local m, n, i, j, k, A1, A2, d, t; 
   with(LinearAlgebra); 
   m := RowDimension(A); n := ColumnDimension(A); 
   A1 := Matrix(m, n); A2 := Matrix(m, n); 
   k := 0; 
   for i from 1 to m do 
       for j from 1 to n do 
           A1[i, j] := A[i, j][1]; A2[i, j] := A[i, j][2] 
       od; 
  od; 
  for i from 1 to m do 
      for j from 1 to n do 
          if A1[i, j] = max(Column(A1, j)) and A2[i, j] = max(Row(A2, i)) then k := k+1; 
                if k = 1 then t := [i, j, A1[i, j], A2[i, j]]; 
                   else t := t, [i, j, A1[i, j], A2[i, j]]; fi; else; 
                fi; 
                od; 
          od; 
  if k > 0 then t := [t]; d := t; 
      for i from 1 to k do 
            d[i][1] := UnitVector[row](d[i][1], m); 
            d[i][2] := UnitVector[row](d[i][2], n); 
       od; 
       op(d); else 
       fi; 
 end: 
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The following command makes the package work in 

Maple. 

Savelib (nashe); 

The input of every procedure in the package is a bimatrix, 
that is, a matrix whose entries are ordered pairs of real 
numbers. In each pair, the first number is Player 1’s payoff 
and the second number is Player 2’s payoff. For example, if 
the payoff matrix for Player 1 is given by 

11 12

21 22

a a
A

a a
 

=  
 

            (15) 

and the payoff matrix for Player 2 is 

11 12

21 22

b b
B

b b
 

=  
 

            (16) 

Then, the input matrix for a procedure is written as 

11 11 12 12

21 21 22 22

[ , ] [ , ]
[ , ] [ , ]
a b a b

C
a b a b

 
=  
 

        (17) 

In particular, if 
3 2
2 4

A  
=  
 

 and 
2 4
3 3

B  
=  − 

 are 

the payoff matrices to Player 1 and Player 2, respectively, 
then the input matrix may be typed into Maple as 

C:=Matrix([[[3, 2], [2, 4]], [[2, 3], [4, – 3]]]) 

In order to use a procedure, say nasha, one needs to type 
only once with (nashe) and nasha(C). Of course, one will 
need to press the Enter key in order to have each Maple 
command executed. The output of a procedure is a set of 
Nash equilibria followed by their corresponding payoffs. For 

MAPLE GAME SOLVER CODES (Continued) 
nashm := proc (A) 
   local i, j, A1, A2, z1, z2, s1, s2, t1, t2, p1, p2, sol1, sol2, sol; 
   with(LinearAlgebra); 
   sol1 := NULL; sol2 := NULL; 
   A1 := Matrix(2, 2); A2 := Matrix(2, 2); 
   for i from 1 to 2 do 
       for j from 1 to 2 do 
            A1[i, j] := A[i, j][1]; A2[i, j] := A[i, j][2]; 
       od; 
   od; 
  z1 := Transpose(Vector([1-x, x])).A1.Vector([1-y, y]); 
  z2 := Transpose(Vector([1-x, x])).A2.Vector([1-y, y]); 
  s1 := solve({diff(z2, y) = 0, 0 <= x and x <= 1}, x);  
  s2 := solve({diff(z1, x) = 0, 0 <= y and y <= 1}, y); 
  if s1 <> NULL and s2 <> NULL 
          then t1 := rhs(op(s1)); t2 := rhs(op(s2)); 
                     sol1 := [1-t1, t1]; sol2 := [1-t2, t2]; 
                     p1 := subs(x = t1, y = t2, z1); p2 := subs(x = t1, y = t2, z2); 
                     sol := simplify([sol1, sol2, p1, p2]); 
          else sol := NULL; 
  fi; 
  sol; 
end: 
nasha := proc (A) 
                 module()  option package; export nashp, nashm, nasha; end module 
     
savelib(‘nashe’) 
with(nashe) 
 
                               [nasha, nashm, nashp] 
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example, a Nash equilibrium output has the following 
format. 

[ [Player 1’s optimal strategy], [Plyer 2’s optimal 
strategy], payoff for Player 1, Payoff for Player 2] 

4. Applications 
Our first application concerns an example of a game taken 

from [1], p. 157-160. The bimatrix game is given by  

[3, 2] [2, 4]
[2, 3] [4, 3]
 
 − 

             (18) 

Running this game through our Maple package, we obtain 
the following sequence of outputs. 

 

 

 

 

 

 

 
This game has no equilibria in pure strategies. However, 

the game admits a unique equilibrium in mixed strategies 
where Player 1 uses his first and second pure strategies with 
probabilities 3/4 and 1/4, respectively, and Player 2 uses her 
first and second pure strategies with probabilities 2/3 and 1/3, 
respectively. This mixed strategy equilibrium pays out 8/3 to 
Player 1 and 9/4 to Player 2. 

Our second example is also a game taken from [1], p. 
160-162 with bimatrix game given by 

[3, 2] [2,1]
[0, 3] [4, 4]
 
 
 

               (19) 

Running this game through our Maple package, we obtain 
the following sequence of outputs. 

 

 

 

 
This game admits two Nash equilibria in pure strategies, 

namely, ( )1 1,s t  and ( )2 2,s t  and the corresponding 

payoffs to the players are (3, 2) and (4, 4), respectively. 
There is a unique mixed strategy equilibrium where Player 1 
employs each of his pure strategies with equal probability 
and Player 2 uses her first and second pure strategies with 
probabilities 2/5 and 3/5, respectively. This mixed strategy 
equilibrium pays out 12/5 to Player 1 and 5/2 to Player 2. 

Our third example is also a game taken from [1], p. 
162-163 with bimatrix game given by 

[1, 4] [2, 2]
[2, 2] [4,1]
 
 
 

             (20) 

Running this game through our Maple package, we obtain 
the following sequence of outputs. 

 

 

 

 
Due to the strong domination of pure strategy 2s  over 

1s  for Player 1 and pure strategy 1t  over 2t  for Player 2, 

the pair ( )2 1,s t is the only Nash equilibrium and this 
equilibrium pays out 2 to each player. 

4.1. The Job Market ([1], p. 130-131, 164-165) 

This game was described in Section 1.1 and its bimatrix 
game is depicted by Eq. (1). We perform the analysis of the 
game in three steps. 

Case 1: Assume that 2a b<  and 2b a< , that is, the 
two salaries are not too far out of line with each other. We 
run this game through our Maple package with the given 
constraints to obtain the following. 

 

 

 

 
We see that in this case the game admits two Nash 

equilibria in pure strategies and one mixed strategy 
equilibrium. The pure Nash equilibria indicate that the two 
players are better off when they apply for distinct positions. 
To understand the meaning of the mixed Nash equilibrium, 
we take the example where a = $60,000 and b = $68,000. For 
this example, the mixed Nash equilibrium prescribes that 
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both players apply to Firm 1 with probability 13/32 and to 
Firm 2 with probability 19/32. The expected payoff for each 
player from the use of this mixed strategy equilibrium is 
$95,625. 

Case 2: Assume that a > 2b, that is, Firm 1’s position pays 
very well when the two salaries are compared. We run this 
game through our Maple package with the given constraints 
and Maple yields the following.

 
 

 

 

 
Note that due to the strong domination of pure strategy 

Firm 1 over Firm 2 for both players, the pair (Firm 1, Firm 1) 
is the only Nash equilibrium and this equilibrium pays out a 
to each player. 

Case 3: Assume that b > 2a, that is, Firm 2’s position pays 
very well when the two salaries are compared. We run this 
game through our Maple package with the given constraints 
and Maple yields the following. 

 

 

 

 

Note that this time pure strategy Firm 2 dominates 
strongly Firm 1 for both players. Therefore, the pair (Firm 2, 
Firm 2) is the only Nash equilibrium and this equilibrium 
pays out b to each player. 

4.2. An Evolutionary Game ([2], p. 282-283) 

This game was described in Section 1.1 and its bimatrix 
game is depicted by Eq. (2). We perform the analysis of the 
game in two steps.  

Case 1: a > b, that is, the territory is worth fighting for 
because the cost of the fight is low. We run this game 
through our Maple package with the given constraints on the 
parameters to obtain the following. 

 

 

 

 

We observe that pure strategy Hawk strongly dominates 
pure strategy Dove. Hence, the pure strategy pair (Hawk, 
Hawk) is the only Nash equilibrium and this equilibrium 
pays out each player the territorial amount a – b. 

Case 2: a < b, that is, the territory is not worth fighting for 
because the cost of the fight is too high. A bird may win the 
fight but may not be able afterward to use the territory 
because of injury. This case is sometimes referred to as the 
nuclear option or the suicidal option. We run this game 
through our Maple package with the given constraints on the 
parameters to obtain the following. 

 
 

 

  

Maple yields three Nash equilibria of which two are pure 
strategy pairs, namely (Hawk, Dove) and (Dove, Hawk), and 
one is a mixed strategy pair. We note that the mixed strategy 
equilibrium becomes (Hawk, Hawk) when the cost of 
fighting is equal to the value of the territory, that is, when   
a = b. 

4.3. A Variant of the Game of Chicken ([1], p. 125-127) 

This is a classic game in game theory and has some 
similarities with the Hawk-Dove game discussed in Section 
4.2. When we input this game into our Maple package, we 
obtain the following. 

 

 

 
 

We see that there are two equilibria in pure strategies and 
there is a unique mixed strategy equilibrium where each 
player uses each of his or her pure strategies with equal 
probability. This mixed equilibrium pays out 5/2 to each 
player. 

4.4. Prisoner’s Dilemma ([1], p. 125-127) 

The Prisoner’s Dilemma is a type of non-zero-sum game 
in which two players may each “cooperate” (C) with each 
other or “defect” (D), that is, betray the other prisoner. This 
is a two-by-two game whose bimatrix game is given below. 
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We run this game with our Maple package and we obtain the 
following. 

 

 

 
 

For both players pure strategy D strongly dominates pure 
strategy C. Hence (D, D) is the unique Nash equilibrium. 
Therefore, “defect” is the postulated non-cooperative 
outcome. However (C, C) provides a better payoff to both 
players. Therefore, non-cooperative selfish rationality 
conflicts with collective interest arguments. In Prisoner’s 
Dilemma, we observe that decentralizing the strategic 
choices has a high collective cost. 

4.5. A Three-By-Four Game ([1], p. 129) 

This is an example of a game that shows the limitation of 
our program. Our package can only identify the pure Nash 
equilibria of this game. 

 

 

 

 

This game admits two pure strategy Nash equilibria. But 
we should not be content with these Nash equilibria. The 
game may admit further Nash equilibria when mixed 
strategies are considered. In fact, since games typically have 
an odd number of Nash equilibria, there must be at least one 
mixed strategy Nash equilibrium. Unfortunately, mixed 
equilibrium computational capability of our program is 
limited to only two-player, two-strategy games. 

5. Conclusions 
We developed a Maple package for computing Nash 

equilibria of two-person non-cooperative games. The 
included illustrative examples show that the program 
performs well and successfully identifies the Nash equilibria 
of games whose payoffs are numerical as well as symbolic. 

At the moment, our program can compute the pure Nash 
equilibria of every two-person m-by-n game and the mixed 
Nash equilibria of any two-by-two game. Therefore, a short 
term goal of our research is to develop a program that is able 
to compute the pure and mixed Nash equilibria of every 
two-person m-by-n game. A long term goal is to develop a 
program that can identify the Nash equilibria of two-player 
two-strategy and three player-two strategy quantum games. 
The theory of quantum games for two-player, two-strategy 
and three-player, two-strategy is well-studied and some of its 
references can be found in [7], [8], and [9]. 
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