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Abstract In this paper a mathematical model is presented to examine the effect of treatment, careful and Careless
Susceptibles with control on the transmission of Dengue fever in the society. A nonlinear mathematical model for the
problem is proposed and analysed quantitatively using the stability theory of the differential equations. The results show that
the disease-free equilibrium point is locally and globally asymptotically stable if the reproduction number (Ry) is less than
unity. Then the endemic equilibrium is locally and globally asymptotically stable under certain conditions, using the
additive compound matrices approach and Lyapunov method respectively. However treatment, careful Susceptibles and the
control on the transmission of dengue fever disease will have a positive effect on decreasing the growth rate of dengue fever
disease. The numerical simulation shows that on the application of vaccination, the number of infected individual is reduced.
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1. Introduction

Dengue fever is a severe infection, flu-like illness
transmitted to humans through the bites of infected female
Aedes mosquitoes. Four different serotypes can cause
dengue fever. A human infected by one serotype, on
recovery, gains total immunity to that serotype and only
partial and transient immunity with respect to the other
three. Dengue fever can vary from mild to severe; the more
severe forms of dengue fever include dengue hemorrhagic
fever and dengue shock syndrome. Dengue hemorrhagic
fever occurs when a person get infected by different type of
dengue virus after being infected by another one sometimes
before. Dengue shock syndrome is the most severe form of
dengue infection. Dengue is found in tropical and
sub-tropical climates worldwide, mostly in urban and
semi-urban areas [1].

Mathematical modelling of the population models
continues to provide important insights into population
behaviour and control. Over the years, it has also become an
important tool in understanding the dynamics of diseases,
and the decision making process regarding intervention
programs for controlling population and disease problems
in many countries [2].

Mathematical modelling also became considerable
important tool in the study of epidemiology because it helps
in understanding the observed epidemiological patterns,
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disease control and provides understanding of the
underlying mechanisms which influence the spread of
disease and may suggest control strategies [1-8]. Moreover
[9], presented a dynamical model that studied the temporal
model for dengue disease with treatment. So far no research
has considered a dynamical system that incorporates the
control strategies to reduce the spread of the dengue fever
disease through the campaign to educate the careless human
susceptible, control vector human contact, removing vector
breeding areas, insecticides application and control
maturation rate from larvae to adult. In this work, we present
an extension of the model of [9] to include temporary
immunity, control strategies and Susceptibles with different
behaviour i.e. the dynamical system that incorporates the
effects Careful and Careless Susceptibles on the
transmission of Dengue fever in the society with
vaccination. In this paper, data reported by the ministry of
health in Tanzania is used. In July 2010 for the first time in
Dar es Salaam region -Tanzania, an outbreak of dengue
fever was reported, over 40 people were infected and then
also between May and July 2013,172 were infected with
this disease. Moreover in the year 2014, the government of
Tanzania announced the dangers of the disease in which
people were alerted about the disease and the precaution to
be taken. In this 2014, 399 people were infected in which 2
died of the disease in Dar es Salaam region
(http://www.wavuti.com/2014/05/wizara-ya-afya-kitengo-c

ha.html). Data will be obtained from the different literature
and estimated since there is no enough data in Tanzania. The
purpose of this study is to match the empirical data with the
modal simulation. Hence we formulate the SITRS
(susceptible, Infected, Treated, Recovered, susceptible) and
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SVITRS (Susceptible, Vaccinated, Infected, Recovered,
Susceptible) models for transmission of dengue fever
disease.

2. Formulation of the Model

In this section, we adopt the model presented in [10]. The
model is based on two populations: humans and mosquitoes.

Human population (N h) is divided into five groups such
as S h - Careful human Susceptibles, S by " Careless
human Susceptibles, [, - infected human, 7}, - treated
infected human, R;, - recovery infected human, so that we
N =S8, +8, +1,+T, +R,

population of female mosquitoes, indexed by m is divided

have and the

into three groups that is A, -Aquatic phase (that includes

the egg, larva and pupa stages), S, - Susceptibles

m
(mosquitoes that are able to contract the disease),

I, -Infectives (mosquitoes capable of transmitting the

43

disease to human). In formulating the model, the following
assumptions are considered:

i.  Total human population (N A ) is constant,

ii.  The population is homogeneous, which means that
every individual of a compartment is homogeneously
mixed with the other individuals,

iii. Immigration and emigration are not considered,

iv. Each vector has an equal probability to bite any host,

v. Humans and mosquitoes are assumed to be born
susceptible i.e. there is no natural protection,

vi. The coefficient of transmission of the disease is fixed
and does not vary seasonally,
vii. For the mosquito there is no resistant phase, due to its

short lifetime,

viii. The possibility of careless Susceptibles contracting
dengue fever disease is higher than that for careful
Susceptibles.

Considering the above assumptions, we then have the
following schematic model flow diagram for dengue fever
disease with control:
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Figure 1.

Model Flow diagram for dengue fever disease with control
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From the above flow diagram, the model will be governed by the following equations [10]:

ds, I
7‘ =(1-7)u,N, —(1-7,) B3, N_mSh1 — 1Sy, T OR,, +(1_TI)92S"2
h

dShz ZﬂﬂhNh_(l_Tz)Bz,B hl_mSh — 1, _(1_71)02511
dt m Nh 2 2 5
Th:((l_fz)lﬂshl +(1—Tz)BzSh2)ﬂmh—m—(uh +n, +a)l,
t Nh
T, dR
Tth:nhlh_(ﬂh +0,)7;. 7;:5117}1 —(1, +0) R,
dA,, A
() CRTB AR
ds 7
m:TSﬂAAm—{(l_Tz)B:;ﬂhmh+luijm_T4Sm
dt Nh
dl I
7?:(1_72)B3ﬂth_];Sm_(ﬂm+f4)1m (1)

where ﬂm j, 1s the transmission probability from 7, (per bite), 1, is the maturation rate from larvae to adult (per day),
T5 is the control maturation rate from larvae to adult, Bj is the average daily biting (per day) for mosquito susceptible,
B, 1s the transmission probability from [, (per bite), k& is the number of larvae per human, ¢ is the number of eggs
at each deposit per capita (per day), 7 is the fraction of subpopulation recruited into the population, B, is the average
daily biting (per day) for careful human susceptible, B, is the average daily biting (per day) for careless human susceptible,
0, is the Positive change in behaviour of Careless individuals, 7] is the campaign of educating Careless human susceptible,
My, is the average lifespan of humans (per day), a is the per capita disease induced death rate for humans, u , is the
natural mortality of larvae (per day), 7, is the control of vector human contact, 75 is the reducing vector breeding areas,
1], mean viremic period (per day), i, average lifespan of adult mosquitoes (per day), 74 insecticide application, 6

portion that moves from compartment R to S hy due to loss of immunity and 5h treatment parameter.

3. Model Analysis
8
(Shl’Sh2’Ih’Th’Rh’Am’Sm’[m)CR+ :
We study the solutions of System (1) in the closed set Q= Sh, ,Sh2 1,.1,.R,, 4,.S,,.1, 20,4, <kN,,
S, +1, < mNh,Sh1 +Sh2 +1,+T,+R, <N,
The ) set is positively invariant with respect to Equation (1) [10].

3.1. Disease Free Equilibrium (DFE)
For the disease free equilibrium, it is assumed that there is no infection for both populations of human and mosquitoes i.e.
1 (t) =0 andl,, (t) =0, denoted by ‘ E,’. Thus E;; of the model system (1) is obtained as
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(1—7r)Nh (,uh +(1—11)¢92)+(1—11)6’27rNh

b

E, = (Sh] (1).5,, (1).0,0,0,4,(¢).S, (;),0) - L

Hy, +(1_T1)92
N, 0.0.0 gkN, gkN, 0]
Hy, +(1-177)6, prsny (1, +74)

where g = ((07577/1 —(g + 73+ 750 ,4) (4 + 74 ))

3.2. The Basic Reproduction Number, R

The basic reproduction number, denoted by R, is defined as the average number of secondary infections that occurs

when one infective individual is introduced into a completely susceptible population [11].
The basic reproduction number of the model (1) R, is calculated by using the next generation matrix of an ODE [11].

Using the approach of [11]. R, is obtaining by taking the largest (dominant) Eigen value (spectral radius) of

-1
oF;(Ey) || oV;(Ey)
oX X ; '

where, F; is the rate of appearance of new infection in compartment i, Vi+ is the transfer of individuals out of the
compartment I by all other means and E, is the disease free equilibrium.

1
((1 —73) BiS), +(1-73) B,S}, )ﬂmh -

F:{ﬂ}: Ny
" |F I
’ (1=72) B3 B NlSm

h

Using the linearization method, the associated matrix at DFE is given by
OF, OF,
—H(Ey) —H(Ep)

ol, ol,,

OF, OF,

=2 Z2(E

0 I, ( 0 ) 0 I, ( 0 )

This implies that
((1 ~17,)BiSy, +(1-172) B,S),, )ﬁmh

0
F= N
(1_72)B3ﬁhmsm 0
Ny,
With
s :(l—ﬂ)Nh(,uh+(1—T1)92)+(1—T1)927[Nh
hl /Llh+(1—T1)02
- 7y N g __ kNua
2+ (-1)0 " o(py, +1y)

we have
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0 [(1—72)31(1—7[)(;% +(1—71)02)+(1—rl)¢927r
Hy +(1=171)6,

F=
(1-72) B3 Bumkq
¢(/um + 74 )

The transfer of individuals out of the compartment i is given by

A v

Using the linearization method, the associated matrix at DFE is given by,

oV 1014
OT](EO) —()II(EO)
V= h m
oV 1014
—2(Ey) —*(Ey)
ol,, ol,,
This gives
+1, +a 0
V= Hyp T
0 My + 7T,
With
.y,
v = Myt +a
1
0
ﬂm+T4
Therefore
0 (l—Tz)Bl(l—ﬂ')<luh+(1—T1)92)+927Z'+(I—Tz)Bzﬂ'ﬂh , 1 0
v = ty+(1-71) 6 my+(1=71)6 | |y +my+a
(1-72) B3 Bumky 0 0 !
Pty +74) Hm T4

Then eigenvalues of the equation (2) is given by

04 [(1_72)Blﬂmh (1=7) (s +(1=21) 0 ) + (1=71) y7B,up + (1= 72) By Bty

det(FV*’ —H)Idet (ﬂh +(1—Tl)92)ﬂm
(1-72) kgBs By

01
@ty +74) (1 +1p +a)

This gives

22 \/‘szﬂhmﬁmh (a+n,+u,) BH
@(a+ny, + )y + 0, (L—7)) (1, +74)

where Bzgo(gorsnA —(py+13+75m,) (1 +r4)) (/1;,+92(1—T1))

H =(¢92 (l—rl)(ﬁ+(—1+7r)Bl(—l+z'2))+ ((—1+7z)Bl —ﬁBz),uh (—l+r2))(—1+r2)
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q= _((:UA T3 +TS77A)(:um +T4)—Ts77A(P)

consequently

_ \/_kB3ﬂhmﬂmh (a+m, +p,) BH or 1=— \/_kB3ﬂhmﬂmh (a+n,+u,)BH
pla+n, + )y, + 0, —7)) (4, +74) pla+mn, + )y, +0,(L—7)) (1, +74)

It follows that the Basic Reproductive number which is given by the largest Eigen value for model system (1) denoted by

Ry is given by

R \/_kB3,3hm,3mh (a+m,+uw,) BH

— 3)
O platny + )y, + 05 (=), +74)

If Ry <1, the disease cannot invade the population and the infection will die out over a period of time, and also, if

Ry >1, then an invasion is possible and infection can spread through the population. Generally, the larger the value of Ry,

the more severe, and possibly widespread the epidemic will be, [10].
3.3. Local Stability of Disease Free Equilibrium Point
To determine the local stability of the disease free equilibrium, the variation matrix J E, of the model system (1)

corresponding to the disease free FE(, is obtained as

~uy (1-71)6, © 0 6, 0 0 f
0 p 0 0 0 0 0 y
0 0 w 0 0 0 0 Jj
0 0 T]h —5/,’ —,Uh 0 0 0 0
JE() =] 0 0 0 oy, =0, — uy, 0 0 0 4)
0 0 0 0 0 ¢ pl1-—1 g
P 475
0 0 z 0 0 1475 — Ly, — T4 0
0 0 v 0 0 0 0 —y — T4 |
' q
qe | 1-
P114T5

where ¢ = —p 4 — 73 —1 475 —
Py, +74)

(l—rz)Bl,Bmh ((1—71)92 —(—1+7z),uh)
(1—2’1)92 +,Llh

- (1-72) 2By Buntty b (1-72) kaB3 By
(1-72)0 +a Pty +74)

B 1—1 ) 70,
jZ(l—Tz)ﬂmh[(Ml+ Bl(l—ﬂ'+(l)2j

1—1'2)02'0'/1]1 (1—2’1)024—/,!/1

g=¢(1— 1 J,P=—(1—71)92—ﬂh

P11 45
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(1-72) kaB3 By
(/)(,um + T4)

wW=—a-—1p—Hp ,Z=7

Therefore the stability of the disease free equilibrium point can be clarified by studying the behaviour of J E, in which

for local stability of DFE we seek for its all eigenvalues to have negative real parts. It follows that, the characteristic function

of the matrix (4) with 4 being the eigenvalues of the Jacobian matrix, by using Mathematica software gives the following
values:

Y =—wty, Ap=—(1-7)0,-u,

The other eigenvalues are given as
1 1
M= ——|a+n, +uy + ty, +74 +;\/E ,
2

when +/o is not a real number,

Ay ==0p —py. A5 ==0—

1 1
Ag =——\|a+n, +py, +u, +74 ——NO
6 2( h h m™ ‘4 d

when /o is not a real number,

1
- 2¢((1—r2)92 +,uh)((1—z'1)92 +ﬂh)(ﬂm +T4)

when /p is not a real number, and finally.

(-a-7)

po

1
2g0((1—12)02 +yh)((1—rl)02 +yh)(,um +T4)

when ./p isnot a real number, where

d :go((l—rz)@z +yh)((1—rl)92 +,uh)(,um +r4)
O'=(¢7((1—12)92 +,uh)((l—r1)l92 +yh)(,um +r4)(4(1—12)2

kaB\ B3 By B (1= 72) 02 + 11y, ) (1= 71) 0 = (—147) gy ) +

A= (—a+p)

((1-71)0 +Hh)(4(1—72)2 k4B B3 By Bt + 9 ((1-72)
0y + pay ) (a+ 1y + iy, =ty —T4)2 (#tm +T4)))j

p=((1-72)0, +uh)2 (1-7))0, +ﬂh)2((ﬂ2ﬂf1(ﬂm +T4)2 +

2 2 2 q
@ (,um+z'4) (ﬂm—T3+T4—77AT5) +4n 4750| 1- —-2q¢p
Pn4%s

2
‘ q 2 q
(ym+r4)(,um—r3+r4—77Ar5)(o 1- +q | 1- +
P147s 1475
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2¢u 4 (,um +r4)(—(o(,um +2'4)(/1m —T3+7y _’7A75)+q(ﬂ'(1— 9 )J
PrATs

a :((1—72)92 +yh)((1—rl)z92 +yh)((/)(ym +r4)

' q
(,uA+,um+r3+T4+77AT5)+q(o 1- .
P11 4Ts

Hence under certain conditions the system is stable since all the eight eigenvalues are negative. These imply that at

Ry <1 the Disease Free Equilibrium point is locally asymptotically stable.

3.4. Global Stability of Disease Free Equilibrium Point
In this subsection, the global behaviour of the equilibria for system (1) is analysed. The following theorem provides the
global property of the disease free equilibrium £, of the system. The results are obtained by means of Lyapunov function.

In choosing the Lyapunov function, we adopt the idea of [12].
Theoreml: If R < 1, then the infection-free equilibrium is globally asymptotically stable in the interior of €

Proof: To establish the global stability of the disease-free equilibrium, we construct the following Lyapunov function:

L([) = —k@B3 Sy (a+ny, + 1y)BHI), (t)+((p(a + 7y + yh) (5)

2
(1, + 0, (1—71))) (H +74) I (1)
Calculating the time derivative of L along (4), we obtain
L' (f) = _kaSﬂhm (a+77h +ﬂh)BH[;Z (t)+(qo(a+77h +/Jh)
2 '
(,uh +92 (1—2'1))) (ﬂm +T4)Im (t)
Then substituting ;1 &l ;n (¢) from system (1), we get

1

1
L (t): —quB?,ﬂhm (a+77h +ﬂh)BH(((1—u2)BlSh] + (1—“2)32Sh2 )ﬂmh N—m—(,uh +I7h +a)lhj+
h

1
(oCamy + 1)ty + 03 1 =21))” (i +74) [(l—rz)Bsﬂhm N’;Sm ~ (44 +,4)1m]

\/ (=kB3 By By (@ + 1, + 1) BH )
@(a+17, + 1)1, + 05 (1= 7)) (4, +74)

With R, =

it follows that

L'(t)=—((p(a+77h +,uh)(,uh +6, (1—11)))2 (,um +r4)2 I, (\/?RO +1)(1—\/?RO)

_((p(a+77h +yh)(yh +6, (l—rl))(ym +z'4))2 Rg

Bonla+ny + 1 )epBH

(k(o(a+77h +,uh)BH(,uh +7]h +a)1h +(g0(a+77h +,Llh)
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2
(/“h + 0, (1—‘[1))) (7 +r4)(1—12);f};Sm]

((I_TZ)Blshl +(1—T2)325h2)
Np,

where f =

Thus,L’(t ) is negative if Ry <1 and L'=0 ifand onlyif I;, =1, =0 is reduced to the DFE. Consequently,
the largest compact invariant set in{(Shl Spy LTy Ry > Ay Sm,lm) e Q, L'=0} when Ry <l is the singleton

{Eq} . Hence, by LaSalle’s invariance principle, it is implied that"E()” is globally asymptotically stable in € [13]. This

completes the proof.

3.5. Existence of Local and Global Asymptotic Stability of Endemic Equilibrium
Since we are dealing with presence of dengue fever disease in human population, we can reduce system (1) to a

4-dimensional system by eliminating 7}, R}, 4,, & S, respectively, in the feasible region Q. The values of S, canbe

determined by setting S, = mNy — 1, to obtain

dsSp, I

W =(1=7) Ny = (1=72) Bi By~ Spy = 1Sy + O Ry +(1-7) 6,5,
¢ N,

dsy,

I
— 2 =Ny —(1-22) B2 B Nf’;’ls% — uySp, —(1-71) 6,5,

di !
7;1 :((1_T2)Blsh1 +(1—12)sth2)ﬁmh me—(ﬂh +np+a)ly
h
i, !
7 = (1-72) B3y 2= (mNy =Ly ) = (st +74) Ly ©)
t Np

3.5.1. The Endemic Equilibrium and Its Stability

Here, we study the existence and stability of the endemic equilibrium points. If Ry >1, then the host-vector model

system (6) has a unique endemic equilibrium given by

E*:(SZI,SZ2,IZ,I:1) in Q,with

SZl = (1=22) Ny By (a+my + 1) (B2 (2(1-71) 6y + 1) -)
Bl((l—rl)92+yh))(ym+r4)+(1—12)2m+B3Nhﬂhmﬂmh
(N ((1-70) (282~ B ) 0y +((2-2) By sy~ (1-7) By ) +

(28,-B,) 1—1'1)192+,uh)Rh)+\/((1 0) N2R2,

(45

4B Bzﬂh a+ny +,uh)((1—z'1)92 +,uh)(,um +r4)

(ty +174)

B3 By BrnkBH

[ a—Hyh+yh)(,uh+¢92(1—11))(,um+‘[4))2R§
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+(1—72)m+B3ﬂhm (Nh,uh +01RZ))+(B2/,lh (—(I—Tz)mﬂ'
=By Ny, B iy +(a+77h +,uh)(,um +T4))+Bl ((a+77h +yh)

((1—71)‘92 +ﬂh)(ﬂm +14)=(1=72)m— B3 By, (Nh#h ((1—T1)
0, +(1—7z)yh)+91((1—z'1)92 +yh)RZ)))2]JJ/

(2(1—2‘2)2 m+(Bz _BI)B3Nhﬂhmﬁmhluh ((1—1’1)02 +,Uh)),
SZQ - (((1—T2)Nhﬂmh (a+77h +ﬂ)h By, +

2
((ﬂ(‘”% +#h)(#h +6) (I_TI))(“m ”4)) Ry
B3 By, kBH

(l—rz)NhBl((l—rl)Hz +,uh))(,um +r4)+(1—12)2m+

(Nhﬂh (BsNhﬂhmﬂmh”Bzﬂh +By((1-71) 6y + (1+7) ))

(‘/’(“’Uz a1y ) (s + 03 (1=71) ) (4t +74))2 R}

’ kBH(a—H]h—i-,uh)

N30, ((1-71) 6, +yh)RZ)+\/((1_T2)2

N}%ﬂih (4BIB2,uh (a+77h +,uh)((1—rl)€2 +,uh)(,um +r4)

[((p(a+77h +,uh)(,uh +6, (I_TI))(/“m +z'4))2 Rg

B3 By B kBH

(ym +T4)+(1—72)m+33ﬁhm (Nh/,lh +91RZ))+
(Bz,uh (—(1—T2)m72'—B3Nhﬂhm,uh +(a+77h +yh)(;¢m +‘['4))+
Bl((a+'7h +,uh)((1—r1)6’2 +,uh)(ym +r4)—(l—rz)m—

B3 Bm (Nhﬂh((1_71)€2 +(1‘”)ﬂh)+91 ((1‘T1)92

+#h)RZ)))2DJ/(2(172)2m+(B2 )

B3N, B Bn M ((1 —71) 0 + 1 ))
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[*: kﬁthH(a—H]h +/,lh)(ﬂm+2'4)
h kﬂthH(a+77h +,uh)(1—12)m+(¢7

(a+77h +,uh)(,uh +6, (l—rl))(ym +2'4))2 Rg

Ly = (1= 22) Ny B a+ g+ 1 X(1= ) By + (By + By)aay)
(tt +74)+(1-17 )2 m+ B3N By B (N iy (B iy +
Bi(1-71) 0y +(1=7) sy ) + BiO (1= 7)) 65 + )Ry +
V((l—fz)z Ni Bk (43132/1}1 (a+my+0,)((1-7) 02 + 411

2
((P(CH"?h +ﬂh)(#h +6, (1—T1))(ﬂm ”4)) Ry
B3ﬂhmﬁmthH

(/”m +T4)

(#tm +72)+ (1=22) m + B3 By (Nhﬂh +OR, ))+(32#h (~(1-72)
mm — ByNp, By My +(a+77h +#h)(ﬂm +r4))+Bl ((a+77h +,uh)

((1—T1)92 +ﬂh)(ﬂm +T4)—(1‘T2)m—33ﬁhm(Nhﬂh ((1—T1)
0, +(1—7r),uh)+6’1 ((1—71)6’2 +,uh)RZ)))2Jjj/(2(l—z—2)2 B,

BB (Bzﬁhm (Nh/uh +ORy )(\/?Ro + 1)(\/7Ro —1)+(1‘T2)m))

But from (3)
(@Cat )y + Oy (1= 1))y +74))° RY
(a+77h +,Uh)— B3ﬂhmﬂmthH
2
Bﬁ __((p(a+77h+,uh)(,uh +92(1—T1))(ym+1'4)) R02
2
5 (a+ . )_ ((0(0“7;; +ﬂh)(ﬂh +92(1—f1))(ﬂm+f4)) Rg
mh M+ Hy )= B,f3, kBH
where

(t + T ) @(a+ 17, + 1)1y, + 0, (1= 1)), +74))°
B By Bt KBHB3 B, (N 117, + 6,(R;,) ")

3.5.2. Local Stability of the Endemic Equilibrium

f=

In order to analyse the stability of the endemic equilibrium, the additive compound matrices approach is used, using the

*
idea of [14]. Local stability of the endemic equilibrium point is determined by the variational matrix J(E£ ) of the nonlinear

*
system (6) corresponding to £ to get
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BB (1-72) I,

—u
h N,

0
By By (1 B 72)1;1

J(E*)

Ny,
0

From (7) the second additive compound matrix is given by

all 0

a1 apx

J[ZJ(E*) | 0 ap
a41 0

0 0

0 0

By B (1—12)1:1

where A:—yh—é’z(l—r])— N
h

B3 Bpm (1—12)1:1
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44 45 dae
asy ass 0
*
0 By (1-72) Bunm
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Ny,

. B (Bl (1-72)Sp, + B, (1—12)S;2)
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B (l—fz)ﬁmhfzz

Ny,

B3y (1-72) 1
Np
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3

_ BiBun (1-72)Sp,
Ny
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Ny,

I (31 (1—T2)SZI +B) (1—72)522)
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3 N,

k
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Ny
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- " ,
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Ny
%
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41 N, 3
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* *
By(1-175) 5,1 By, (1-15)1
asy :mB3(1_72)ﬂhm_ 3( ]\2[) hm*m agg = —a—1), -ty — 1, — T4 - 3 hmfv 2) h
h h
By (1-2) BunSh, B (1-22) Bl
A3 =~ N ’ a63 = v
h h
* *
iy - By (1-72) By as By (1-22) BuiSh, vy =(1-7)6
Np N,

%
The following lemma is stated and proved by [15] to demonstrate the local stability of endemic equilibrium point £ .

Lemma 1: Let J (E*) bea 4x4 real matrix.

* [2]
If tr (J (E )) , det (J (E>l= )) and det [J (E*) j are all negative, then all eigenvalues of J (E* ) have negative real

parts.
Using the above Lemma, we will study the stability of the endemic equilibrium.

*
Theorem 2: If R >1, the endemic equilibrium E  of the model (1) is locally asymptotically stable in €

*
Proof: From the Jacobian matrix J (E ) in (7), we have

—a =1y — My, — T4~ 0.

* . .
tr(J(E*)):_Blﬂmh(l_TZ)]m_3ﬂh_92(1_2.1)_3216mh(1_72)]m BSﬂhm(l_Tz)Ih 3
Ny Ny, N,

Det(J(E*)) __ b (go(“"h ) (1 + 05 (1=71) ) (1t +T4))2
Ni kB3 By B BH

R; (Nh (£ +74)+ B3 B (1—T2)IZ)(Nh#h + B By (1—72)1;)
(Nh (4w + 05 (1=71)) + By By (1_f2)l;kn)+B3ﬂhm:Bmh:uh(_1+T2)2
(mNh —Ifn)(BzNh(yh +0,(1-2,)) 53, + By (N3 (02 (1-71)+

) SZI 4By By (1-72) Iy (SZI " SZ2 )))) <0

det(J][j] (E*)) = —Nl}?((l 22" B3 BB (mNh —1;1)

((1—12)2 gRg (mNh —I;)F—&-(Nh (a+77h +2,uh)+(1—z'2)

* *
Blﬂmhlm)(J(V+(_(1_TZ)BlﬂmhlmBl (Nh (,uh T Hm +2-4)4_
(1=72) B3 1) Sy + &R; Al (1= 23) B Byl Spy +(1-72)

BB lm (1-71) ByN02Sh ))))Jr(Nh ((1=21) 0y + a1y + 11, +74)
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(mNh —I;)(gRg (1-12) B3 1,3, +(N ((1-71) 05 + 21,
+(1=75) (B +By) Bun Ly )(BlSZl +B,yS), ))))D <0
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But IBmh =

om (3)

Let g

2
It follows that f3,,, = —gR(y where

* 2
. AB 1, (p(a+np + pp )y + O (1=, +74)
Nh(a +77h +2/1h)k(a +7]h +,Llh)B3ﬁhmBH

F = (Bl (Nh (a+77h + py, + 1y, +z-4)+(l—rz)B3,B’hmIZ)SZ1 +
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0, +2u)+(1-7,) (B +Bz)ﬁmh1;;)(B1(Nh(a+nh +

(1=1) 0y +2u )+ (1=2) By Bupl)Siy +(1=71) BaVy
* *

€2Sh2)+(Nh (a+77h +ﬂh +,um +T4)+(1—T2)B3ﬂhmlh)

*
Thus, from the lemma 1, the endemic equilibrium E of the model system (7) is locally asymptotically stable in (2 .
3.6. Global Stability of Endemic Equilibrium Point (EEP)

*
Theorem 3: If Ry >1 the endemic equilibrium E  of the model system (1) is globally asymptotically stable.

*
Proof: To establish the global stability of endemic equilibrium £ we construct the following positive Lyapunov
function V as follows;

* *
* * * * * * * * * * Shl * * Sh2
V(Shl’Shz’Ih’Th’Rh’Am’Sm&Im): Sh]—Sh]—Sh] 10g7 + ShZ_Sh’Z_ShZ IOgT +
1 2
¢ * *
* * I * * 1 * * Ry,
]h—]h—lh log— + Th_Th —Th log— + Rh_Rh_Rh log— +
Ip I Ry,
A s I
A —A —A log ™ |+| S —8 S log"™ |+| 1, —1, —1I log-™
Apy S 1,

Direct calculation of the derivative of V' along the solutions of (1) gives,

*
dv | Sw=Sn |9Sp
dt Shl dt

* *
Sh, ~Sh, dShz+ Iy =1y |dly

Sh2 dt 1/’! dt

* * *
T, — T, |dT, R, — R dR A, —A dA
4 h h h + h h h " m m m
Th dt Rh dt A

" dt
* %
S =S |8 [ L= |l
S dt I dt

m

R D 4
dt

3
where

* * \2
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Iy Iy h
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dv dv
Thus from equation (8), if X <Y. Then d— will be negative definite, implying that 7 <0. It then follows that
t t

dv ) ) * * * % % % * %
7=0 if and only if Sh1 :Sh1=Sh2 =Sh2,1h =Ih, T, =T, Ry =Ry, 4, = 4, S, =8,and [, =1, . Therefore
t

. . . ® k% %k k% % dv . . * *
the largest compact invariant set in Shl , Sh2 ATy Ry Ay Syyo 1y, €Qi— = 0} is the singleton {E } where E is the
dt

*
endemic equilibrium of the model system (1). By LaSalle’s invariant principle, then it implies that E is globally
asymptotically stable in € if X <Y . This completes the proof.

4. Numerical Simulations

Here, we illustrate the analytical results of the study by carrying out numerical simulations of the model system (1).
Parameter values are obtained from the different literatures like (http://www.wavuti.com/2014/05/wizara-ya-afya- kitengo-
cha.html), [9], [10] and [16]. Other parameter values are estimated to vary within realistic means and given as shown below.

1
Pim =0375 . By =045, 7=096, B =05, By =09, By=07 sty = k=3, 0y =035, 41y =025,

1

M =——— n =1/3, ¢=5, 6,=06,a=0001,7,=04,7y=02, 72=055, 7,=0.13,7: =03,
h 78 % 365 h 2 1 2 3 4 5
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5, =098 and 6 =0.01 (9)
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Figure 2. Distribution of population with time in all classes of human and mosquito when no control is applied i.e. 7] = 0,7 N = 0.7 3= 0,

2'4 =0,2'5 :0’6}1 =1

Figures 2 show the distribution of population with time in all classes of human and mosquito when no control is applied.

Figures 2 show the human and mosquito populations in the absence of any control. The human infection reaches a peak
between the 2th and the 20th day. The infection of the mosquitoes reaches a peak between the 10th and the 30th day. The total
number of infected humans obtained from System (1) is higher than observations in Tanzania. The difference is due to the
absence of the data in the whole country of Tanzania [17].

Figures 3 (i)-(ii) show the variation of infected human and mosquito populations with combine use of all five controls as
shown: A=T1 =Tz =T3 =T4 =Z'5 =0, B=T1 272 =T3 =T4 =T5 =0.25,

C=r1=1p=13=714=75=050,D=11 =19 =13 =74 =75 =0.75,
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Figure 3. (i)-(ii): Variation of infected human and mosquito populations with combine use of all five controls

From figure 3 (i)-(ii), it is observed that when all the controls are used, the disease is eradicated.

5. Formulation of the Model with Vaccination

In this section, we develop a deterministic model that describes the dynamics of Dengue fever under application of
Vaccination and treatment for humans where S hy is the careful human susceptible population, S hy is the careless human

susceptible population, 77, is the vaccinated human population, [, is the infected human population, 7, is the treated
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human population and R, is the recovered human population, 9 is the fraction of the vaccinated careful human
susceptible, ¥ is the proportional rate at which vaccinated careful human susceptible loses effect, @ is the reaction of the
vaccinated careless human susceptible, o is the proportional rate at which vaccinated careless human susceptible loses
effect, O is the proportion of the vaccinated new born, ¢ is the infection rate of vaccinated careful human susceptible and
& 1s the infection rate of vaccinated careless human susceptible. Susceptible individuals acquire Dengue fever through the

bite of female Aedes mosquito with force of infections given by B, ,Bm A N_h S Iy and B, ﬂm A N_h S hy where B,>B, .
Considering the above clarification, we then have the following schematic model flow diagram for dengue fever disease
with vaccination:

8
By Hy a H 2
(1-7)p,N, B, _if_-
! N, : n . 5 -
S,,l I, T, Rh
NN
J
ou N d
62 ﬂi & V" I
B?ﬂ-.fn where p= I—'
P N,
7y N, o ° # _ L
£ and_;:sﬁ,ﬂ_lN—

Figure 5. Model Flow diagram for dengue fever disease with vaccination

From the above flow diagram, the model will be governed by the following equations [17]:

dSh1 I,
P (1=7) 3 Npy = B By v h ~(tap +9) Sy, + O Ry + 028, + 2V
h
das I
“h TNy = BB " Spy ~ (11 + 02 + @) Sy, + PV
dt Nh
dV; 1
—dth = ouy Ny, + 39Sy, + oSy, —(;{+p+yh)Vh _(¢BI +ng),Bmh Nth
h
dl 1 1
7}1 :(BlShl +sth2)ﬂmh £+(¢Bl +832)ﬂmh th —(,uh +T]h +Cl)1h
dt N, N,
ar, dR;,

Mass vaccination generates the possibility of eliminating or eradication the infectious disease [18]. The more vaccinated
people, the less likely a susceptible person will come into contact with the infection. With the introduction of a vaccine, the
SITRS model related to the human population changes to the SVITRS model. Vaccination is continuous with a constant

proportion O of vaccinated new born. A fraction ¢ and @ of careful and careless susceptible is vaccinated
respectively. The vaccination reduces but does not eliminate susceptibility to infection. For this reason, we consider the
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infection rate of vaccinated people: when @ =& =0 the vaccine is perfect and when ¢ =& =1 the vaccine has no
effect at all. The vaccination loses effectiveness at arate X and £ careful and careless susceptible respectively [17].

5.1. Model Simulation

Here, we perform numerical simulations of the model system (11) using the set of estimated parameter values. Parameter
values are obtained from the different literatures like (http:/e/www.wavuti.com/2014/05/wizara-ya-afya-kitengo-cha.html),

[9], [10], [16], other parameter values are estimated to vary within realistic means and given as fj,, =0.375,
1
78x365
I]h =1/3, ¢=5 ,0, =0.6, a=0.001, $=085,7x=0.75, w=082, p=030, 0=0.16, $=025 £=0.70,

1
Bop =045, 7=096, B[ =05, B, =09, B; =07, = k=3, n4=035, 1y =025, u =

8, =098 and 6 =0.01.

Figures 4 show the variation of infected human populations with different levels of infection rate of vaccinated careful
human susceptible ¢, infection rate of vaccinated careless human susceptible & , fraction of the vaccinated careful human

susceptible ¢ and fraction of the vaccinated careless human susceptible @ .
From figure 4 we vary infection rate of vaccinated careful susceptible ¢, infection rate of vaccinated careless human

susceptible &, fraction of the vaccinated careful human susceptible ¢ and fraction of the vaccinated careless human
susceptible @, and it is observed that the effectiveness of the vaccine reduces the disease spread.
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Figure 4. Variation of infected human populations with different levels infection rate of vaccinated careful human susceptible ¢ , infection rate of

vaccinated careless human susceptible & , fraction of the vaccinated careful human susceptible @ and fraction of the vaccinated careless human

susceptible (0

6. Conclusions

A compartmental model for Dengue fever disease was
presented, The was model based on campaign of educating
Careless human susceptible 7] , control vector human

contact 7, , reducing vector breeding areas 73, and
insecticide application 74, control maturation rate from

larvae to adult 75 and treatment. The results show that

Treatment and the controls on the transmission of dengue
fever disease will have a positive effect on decreasing the
growth rate of dengue fever disease. Then also shows that

when @ =& =0 the infected human population decrease

and when @=&=1 the infected human population
increase.
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