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Abstract  This paper considers an optimal control analysis for HCV model by incorporating education, health care, 
immunization, screening of immigrants and treatment in the model. The goal is to minimize the spread of HCV disease in 
the community with inflow of infected immigrants and to minimize the costs of control strategies. In this context, the 
existence of an optimal control is proved. The results show that the effective use of optimal screening of immigrants 
together with education, health care, immunization and treatment has a significant impact in reducing the spread of the 
disease in the community. 
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1. Introduction 
Hepatitis C a most common viral infection of the liver is 

usually caused by hepatitis C virus. Hepatitis C virus (HCV) 
was first identified in the year 1989 [9]. An estimated 170 
million people worldwide (3% of the world's population) are 
now thought to be HCV chronic carriers. It is also estimated 
that 85% of the individuals exposed to HCV develop chronic 
hepatitis C, of which about 15% have the possibility to clear 
the virus spontaneously within a few months of infection [9] 
Most common avenues through which HCV is spread are 
unprotected sex, sharing of contaminated needles among 
drug addicts and those with other STDs. Some people also 
get this virus from tattoo and piercing salons. It is also 
possible to contract HCV at birth, as it can be transmitted 
from mother to baby. As a matter of fact, Hepatitis C virus in 
pregnancy is emerging and today it is becoming an 
increasing source of concern [4].  

Mathematical modelling of the spread of infectious 
diseases continues to become an important tool in 
understanding the dynamics of diseases and in decision 
making processes regarding diseases intervention programs 
for disease in many countries. For instance, [1] formulated 
and analysed a mathematical model on the effect of 
Treatment and Infected Immigrants on the spread of 
Hepatitis C Virus disease at Acute and Chronic stages. [3] 
investigated the dynamic behaviour of an SEI (Susceptible- 
Exposed- Infective) model with acute and chronic stages. 
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Optimal control theory has found wide-ranging 
applications in biological and ecological problems [6]. 
Specifically, there have been various studies of 
epidemiological models where optimal control methods have 
been applied. [8] used optimal control theory to determine 
the optimal timing and intensity of an HCV antiviral 
treatment programme for active injecting drug users (IDUs) 
with a variety of policy objectives, budget constraints, and 
prevalence settings. [2] determined an optimal treatment 
strategy using interferon and ribavirin, through mathematical 
modelling. [9] considered a deterministic multipatch 
hepatitis C virus model in order to study the impact of 
movement between the patches and optimal control 
movement of infectives and treatments on the transmission 
dynamics of the disease. Studies conducted so far have not 
focused on the use of optimal control theory to minimize the 
cost of the control strategies (education, health care, 
immunization, screening of immigrants and treatment) of 
HCV disease. The main outputs of these findings will be 
minimum spread of HCV disease, costs, contribution to the 
design of public health policy, suggestion on future research 
and decision framework for programme implementation.  

2. Optimal Control Analysis 
The model sub-divides the total human population at time 

t , denoted by ( )N t , into sub-populations of susceptible 

individuals ( )S t , exposed individuals (infected but not 

infectious) ( )E t , individuals with acute infection (initially 

infected) ( )A t , chronic infected individuals (infectious 

individuals) ( )C t  and recovered individuals ( )R t . Total 
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population at time t  is given by 

 ( ) ( ) ( ) ( ) ( ) ( )N t S t E t A t C t R t= + + + +     (1) 

The interaction between the classes will be assumed as 
follows: exposed ( )E , acute infected ( )I  and chronic 

infected ( )V  immigrants enter into the population with the 

rates 1 2 3, ,π π π  respectively. Susceptible individuals 
contacts with acute and chronic infected individuals at rates 

( )1,2iiβ =  respectively. Susceptible individuals acquire 
HCV infection following contact with an active infectious 
individual at a rate 

( )1 2A C
N

β β
υ

+
= . 

The exposed individuals develop to acute infected group 
at a rate θ  while acute infective develop to chronic group at 
a rate 1k  and exposed individuals move to chronic class at 

the rate 2k . The infectious individuals recovered at a rate 
ρ , and recovered individual loses immunity and become 
immediately susceptible again at a rate σ . Acute and 
chronic infected individuals undergo death due to the disease 
at the rate a  and d  respectively. 

It is assumed that the rate of contact of susceptibles with 
chronic individuals is much less than acute infectives 
( )2 1β β≤  because on chronic stage people become aware 
of their infection and may choose to use control measures 
and change their behaviour and thus may contribute little in 
spreading the infection. 

Taking into account the above considerations, the model 
will be governed by the following system of equations:  

 ( )1 2 31dS Q π π π S R μS
dt

υ σ= − − − − + −  

 ( )1 2
dE Qπ S k μ E
dt

υ θ+ += − +  

 ( )2 1 1+
dA Qπ E k ρ + a+ μ A
dt

θ= + −          (2) 

 ( )3 2 1 2
dC Qπ k E k A ρ d μ C
dt

+ += + + −  

 ( )1 2
dR ρ A ρ C + μ R
dt

σ= + −   

with nonnegative initial conditions and ( )N >0 0 . 
We introduce into the model (2), time dependent 

preventive ( )1 2 3, ,  u u u  efforts as controls to minimize the 
spread of the disease. We wish to minimize the spread of 
HCV disease, as well as minimizing the cost associated with 
control strategies. For effective control to be achievable in a 
finite time, we need to consider time dependent controls. We 
then proceed by applying Pontryagins maximum principle to 
determine the conditions for effective control in finite time. 

We introduce into the model (2), education, health care, 
immunization ( )1u , screening of immigrants ( )2u  and 

treatment ( )3u
 

as time dependent controls to curtail the 
spread of HCV disease. The model (2) becomes 

 ( ) ( )2 1 2 2 2 3 11 1dS Q u π u π u π u S R μS
dt

υ σ= − − − − − + −  

 ( ) ( )2 1 1 21dE Qu π u S k μ E
dt

υ θ+ += − − +  

 ( )2 2 1 3 1+
dA Qu π E k u ρ + a+ μ A
dt

θ= + −        (3) 

 ( )2 3 2 1 3 2
dC Qu π k E k A u ρ d μ C
dt

+ += + + −       

 ( )3 1 3 2
dR u ρ A u ρ C + μ R
dt

σ= + −   

Here,  

( )1 2β A β C
N

υ
+

=  

where 20 1u≤ ≤ , is the screening control, 10 1u≤ ≤  is 
the control on education, healthcare and immunization and 

30 1u≤ ≤ , is the treatment control for [ ]0,t T∈ . To 
investigate the optimal level of efforts that would be needed 
to control the disease, we form the objective function J , 
which is to minimize the spread of the disease and the cost of 
applying the control 1 2 ,u u  and 3u . 

22 2
3 31 1 2 2

1 2 3
0

min
2 2 2

T A uA u A uJ B E B A B C dt
 

= + + + + +  
 
∫ (4) 

where 1 2 3 1 2 3, , , ,  and B B B A A A  are positive weights. 

The terms 2 2 2
1 1 2 2 3 3,  and  A u A u A u are the costs 

associated with 2u (screening of immigrants), 1u  
(education, health care and immunization) and 3u
(treatment). With the given objective function ( )1 2 3, ,J u u u , 
our goal is to minimize the spread of the disease, while 
minimizing the cost of controls ( ) ( ) ( )1 2 3,  and  u t u t u t . 

We thus seek an optimal control triple 1 2 3,  and  u u u∗ ∗ ∗  
such that  

( ) ( ){ }1 2 3 1 2 3 1 2 3, , min , ,  | , , uJ u u u J u u u u u u∗ ∗ ∗ = ∈ (5) 

Here { }1 2 3, ,u u u u= such that 1 2 3, ,u u u are 

measurable with 10 1u≤ ≤ , 20 1u≤ ≤ and 30 1u≤ ≤  

for [ ]0,t T∈  is the control set. The necessary conditions 
that an optimal control problem must satisfy come from 
Pontryagin’s maximum principle [10]. This principle 
converts (3)-(4) into a problem of minimizing pointwise a 
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Hamiltonian H , with respect to 1 2 3,  and u u u  

 

( ) ( ){ }
( ) ( ){ }

( ){ }
( ){ }

( ){ }

22 2
3 31 1 2 2

1 2 3

2 1 2 2 2 3 1

2 1 1 2

2 2 1 3 1

2 3 2 1 3 2

3 1 3 2

2 2 2
1 1

1
S

E

+A

C

R

A uA u A uH B E B A B C

Q u π u π u π u S R μS

Qu π u S k μ E

Qu π E k u ρ + a+ μ A

Qu π k E k A u ρ d μ C

u ρ A u ρ C + μ R

λ υ σ

λ υ θ

λ θ

λ

λ σ

+ +

+ +

= + + + + + +

− − − − − + −

+ − − +

+ + −

+ + + −

+ + −

(6) 

Where the ,  ,  ,   and S E A C Rλ λ λ λ λ  are the adjoint 
variables or co-state variables. By applying Pontryagin’s 
maximum principle [10] and the existence result for the 
optimal control from [3], we obtain 

Proposition1. For optimal control triple 1 2 3, and u u u∗ ∗ ∗  

that minimizes ( )1 2 3, ,J u u u  over u , then there exist 

adjoint variables ,  ,  ,   and S E A C Rλ λ λ λ λ  satisfying. 

( )( ) ( )1 11 1S
s E

d u u
dt
λ

υ µ λ υλ− = − + − −  

( )1 2 2
E

E A C
d k μ k
dt
λ β θ λ θλ λ+ +− = − + − −  

 
( )

( ) ( )

3 32 1 1 1 1

1 1
1 11 1

A + u uA C R

S E

d k ρ + a+ μ k ρ
dt

u S u S
N N

λ β λ λ λ

β βλ λ

− = − + − −

+ − − −
(5) 

 
( )

( ) ( )

3

3

3 2

2 2
1 1 21 1

C u C

uS E R

d ρ + d + μ
dt

u S u S ρ
N N

λ
β λ

β βλ λ λ

− = − +

+ − − − −
 

( )R
S R

d + μ
dt
λ σλ σ λ− = − +  

and with transversality conditions 

 ( ) ( ) ( ) ( ) ( ) 0S E A C RT T T T Tλ λ λ λ λ= = = = =  (6) 

and by optimality conditions; 

( ){ }*
11 max 0,min 1,  u u= ,

( ){ }*
22 max 0,min 1,  .u u=

 
and 

( ){ }*
33 max 0,min 1,  .u u=  

To find 1 2 3,   and u u u  we first solve the optimality 
conditions given by  

1 2 3
0,   0 and 0H H H

u u u
∂ ∂ ∂

= = =
∂ ∂ ∂

        (7) 

We differentiate equestion (6) with respect to 

1 2 3,  and u u u  to get 

 1 2 1 2
1 1

1
s E

A C A CH A u S S
u N N

β β β βλ λ+ +∂    = + −   ∂    
(8) 

( )2 2 1 2 3 1 2 3
2

S E A C
H A u Q Q Q Q
u

λ π π π λ π λ π λ π∂
= − + + + + +

∂
 

3 3 1 2 1 2
3

A C R R
H A u A C A C
u

ρ λ ρ λ ρ λ ρ λ∂
= − − + +

∂
 

We therefore solve for 1 2 3,  and u u u  by equating 

1 2 3
0,  0 and 0H H H

u u u
∂ ∂ ∂

= = =
∂ ∂ ∂

 as described by Lenhart 

and Workman (2002). 
By equating system (8) to zero we obtain    

( ) 1 2
1

1
E S

A Cu S
NA

β βλ λ
 +

= −  
 

      

( )1 2 3 1 2 3
2

2

S E A CQ Q Q Q
u

A
λ π π π λ π λ π λ π+ + − − −

= (9) 

1 2 1 2
3

3

A C R RA C A Cu
A

ρ λ ρ λ ρ λ ρ λ+ − −
=  

From the system (9) then 1 21 2, u u u u= =  

3 3 and u u= . Hence the optimality conditions is written as 

( ) 1 2
1

1
max 0,min 1, E E

A Cu S
NA

β βλ λ∗    + = −        
     

( )1 2 3 1

2 3
2

2
max 0,min 1,

S E

A C

Q Q
Q Qu

A

λ π π π λ π

λ π λ π∗

   + + −
   

− −   =             
 

1 2 1 2
3

3
max 0,min 1, A C R RA C A Cu

A
ρ λ ρ λ ρ λ ρ λ∗    + − − =         

(10) 

By standard control arguments involving the bounds on 
the controls, we conclude similarly as Okosun (2012) that 

1
*

1 11

1

0  if    0

 if    0 1

1   if     1 

u

u u u

u

 ≤
= < <
 ≥

,

2
*

2 22

2

0  if    0

 if   0 1

1   if    1 

u

u u u

u

 ≤
= < <
 ≥

 and  

3
*

3 33

3

0  if    0

 if   0 1

1   if    1 

u

u u u

u

 ≤
= < <
 ≥

                       (11) 
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According to the prior boundedness of the state system, 
the adjoint system and the resulting Lipschitz structure of the 
ODEs, we obtain the uniqueness of the optimal control for 
small T . The uniqueness of the optimal control follows 
from the uniqueness of the optimality system, which consist 
of equations (5) and (6) and transversality condition with 
characterization (10). 

There is a restriction on the length of time interval in order 
to guarantee the uniqueness of the optimality system. This 
smallness restriction of the length on the time due to the 
opposite time orientations of (5) and (6); the state problem 
has initial values and the adjoint problem has final values. 
This restriction is common in control problems [see 5, 6, 7] 

3. Simulation for the Optimal Control 
Problem 

In this section, we study numerically an optimal 
transmission parameter control for the HCV model. In order 
to study the effects of control 2u  (screening rate) and 
control 1u  (education, health care and immunization) and 

3u  (treatment) on transmission dynamics of HCV infection, 
the numerical simulations of the model (3) are carried out 
using the following set of estimated values: 1β =0.38, 2β
=0.001, θ =0.5, 1k =0.5, 2k =0.34, 1ρ =[0.02-0.5], 2ρ
=[0.002-0.45], σ =[0.13-0.5], a =0.0034, d =0.5, µ

=[ 0.0001-0.09], Q = [5-85], 1π = [0.4-0.6], 2π =0.2, 3π
=0.03, N = [2-15]. Assume the weights at final time are 
being kept fixed as, 1 2 35,  20,  15,  B B B= = =

1 210,  7A A= = , to illustrate the effect of various optimal 
strategies on the transmission dynamics of HCV.  

Figure (1) shows the simulation of the model with control 
1u  (education, health care and immunization) and screening 

of immigrants ( )2u  
The screening control 2u  and the education, health care, 

immunization ( )1u are used to optimize the objective 

functional J  while we set the treatment 3u , to zero . We 
observed in figure 1(A) that due to the control strategies, the 
number of exposed population decreases while the 
population of exposed increases when there is no control. A 
similar decrease is observed in figure 1 (B) and (C) for 
infectious population in the presence of control strategies 
while an increased number is observed for the uncontrolled 
case. The control profile is shown in figure 1(D) we see that 
the optimal education, health care, immunization 1u  is at 
the upper bound, till the time 4.7T =  years before 
dropping to the lower bound while the optimal screening 2u  
is at the lower bound till the final time. It observed that 2u  
did not contribute meaningfully to the elimination of the 
disease except that it increases the control operational cost. 
Hence for cost effectiveness and disease optimal control 
strategy 1u  seems sufficient. These results show that in the 
presence of screening rate without education, health care and 
immunization, the community is not disease free and a stable 
endemic situation exists. Therefore, an effective and optimal 
screening in the population together with education, health 
care and immunization will be beneficial to the community 
for the control of HCV disease.  

 

Figure 1.  Simulations of the model showing the effects of education, health care, immunization ( )1u  and screening ( )2u  on the spread of HCV 
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Figure (2) shows the simulation of the model with screening 2u  and treatment ( )3u  

 

Figure 2.  Simulations of the model showing the effects of screening ( )2u and treatment ( )3u on the spread of HCV 

 

Figure 3.  Simulations of the model showing the effects of education, health care, immunization ( )1u  and treatment ( )3u  on the spread of HCV 
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controls 1u  and 3u  are optimized. 
We optimize the objective function J  using the 

education, health care, immunization 1u  and treatment 3u  
while the screening of immigrants control 2u  is set to zero. 
The results in figure 3(A-C) show a significance difference 
in the numbers of exposed and infectious humans with 
optimal strategy compared to the number without controls. 
Due to the control strategies, the number of exposed 
population decreses while the population of exposed 
increases when there is no control. In figure 3(B) and (C), the 
infectious population decrease in the presence of control 
strategies while an incresed number is observed for the 
uncontrolled case. From the control profile shown in figure 
3(D), the results suggests control on education, health care, 
immunization 1u  to be at the upper bound for 4.5 years 
before dropping gradually to the lower bound while the 
control on treatment 3u  to be at the upper bound for 3.7 yrs 
before dropping gradually to the lower bound at final time.  

Figure (4) shows the simulation of the model where by 
both controls 1u , 2u  and 3u  are optimized. 

 

We use all the three controls, education, health care, 
immunization ( )1u , screening of immigrants 2u  and 

treatment 3u  to optimize the objective functional J . We 
observed in figure 4(A-C) that the control strategies resulted 
in a decrease in the numbers of exposed ,E  acute infected 
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numbers of ,E A and C in the uncontrolled cases. The 
control profile in figure 4(D) suggests that education, health 
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time. The optimal screening 2u  is at the lower bound till the 
final time. These results show that in the presence of 
screening rate without education, health care, immunization 
and treatment, the community is not disease free and a stable 
endemic situation exists. Therefore, an effective and optimal 
screening in the population with education, health care, 
immunization and treatment will be beneficial to the 
community for the control of HCV disease.  

 

Figure 4.  Simulations of the model showing the effects of all controls on spread of HCV 
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From figures (1-4) and table 1, it is clear that the spread of 
the disease decreased and the total cost is also decreased by 
the optimal control policy. 

From Table (1), it is noted that when both controls are set 
to zero ( )1 2 0u u= = , the cost of the objective function is 
much (1.0997e+004) while the total cost is small (3.0003e+003) 
when all controls ( )1 2 3   and  u u u  are used to optimize 
the objective function J . It is shown that the spread of the 
decreses when all controls are optimized decreases at final 
time compared to the case without control. All controls 
( )1 2 3   and  u u u  result in a significant increase in the 
number of recovered individuals at the final time compared 
to the uncontrolled case.  

4. Conclusions 
In this paper, we performed optimal control analysis for 

HCV model. Using Pontryagin’s maximum principle we 
derived and analyzed the conditions for optimal control of 
the disease with effective use of education, health care, 
immunization, screening of immigrants and treatment. The 
results suggest that the effective optimal screening of 
immigrants together with education, health care, 
immunization and treatment has a significant impact in 
reducing the spread of the disease. 
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