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Abstract  A class of bilinear differential operators is discussed. Some bilinear differential equations which generalized 
Hirota bilinear equations are used through assigning appropriate signs. We formulate a more general bilinear equation with 
mix DƤ –operators using different natural numbers P = 5. The resulting bilinear differential equations are identified by a 
special kind of Bell polynomials, and also the linear superposition principle is applied to the construction of their linear 
subspaces of solution. We have also given amore examples by algorithm using weights of dependent variable. 
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1. Introduction 
In recent years, there has been much interest in 

investigating different kind of exact solutions of nonlinear 
evolution equations such as soliton, positon, complexiton 
and rational solutions etc. Exact solutions play an important 
role in the study of nonlinear physical phenomena. For 
example the wave phenomena observed in fluid dynamics, 
solitons in the study of waves and so on [1]. The exact 
solutions if available, of those nonlinear equations can 
facilitate the verification of numerical solvers and aid in the 
stability analysis of solutions. However, investigating or 
establishing relations among different exact solutions is also 
a very important topic. Since these relations not only provide 
an approach to deforming exact solutions, but also help us to 
study the structures and properties of some complicated 
forms such as solitons [2, 3]. Hirota presented a direct 
method to solve a kind of specific bilinear differential 
equations [4]; and soliton solutions are despite their diversity, 
a universal phenomenon that Hirota bilinear equation 
describe [4-6]. 

It is well known that under the Cole-Hope transformation 
u = 2(log f) xx the Korteweg de-Vries equation  

6 0xxx x tu uu u+ + =        (1.1) 

can be transformed into  
24 3xxxx xxx x xx xt x tF F F F F FF F F− + + − (1.2) 

which reads  
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          (1.3) 

using the Hirota D-operator. Using the bilinear form, the 
Wronskian solutions, including solitons, negatonspositons 
and complexiton, are presented for some nonlinear evolution 
equations [7, 8]. The Hirota D-operator are defined as  
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Though Hirotabi linear equations are special, there are 
many other differential equations which cannot be written in 
the Hirota bilinear form. In this paper, enlightened by the 
idea proposed in [9], we are going to investigate one of the 
several questions posed in the [9] I i. e mixing the 
DƤ-operators with different natural number Ƥ = 5 in order to 
formulate a more general bilinear equations so as to shed 
more light on the study of some kind of generalized bilinear 
differential operators and their corresponding bilinear 
equations, which have some nice mathematical properties. 
Another important issue we are also going to ascertain is the 
links between the bilinear equations and multivariate Bell 
exponential polynomial and their linear subspaces of 
solutions together with the linear superposition principle also 
as discussed in [9]. 
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2. Bilinear Differential Equation 
Operators and Bilinear Equation 

2.1. Bilinear pD operators−  

In this section we will summarized the essential facts on 
bilinear differential operators and bilinear equations 
associated with the multivariate polynomial as given in [9]. 
Some definitions related to this may also be found in [10, 11] 

Let P be given a natural number. We introduce bilinear 
differential operators as follows: 
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Where the powers of α are determined by  
( )( 1) , where i = r(i) mode  

with 0 r(i) ,   i 0

i r iα = − Ρ
≤ ≤ Ρ ≥

    (2.2) 

If p =1 the observe the normal derivative, while the cases 
of P = 2k, k є



, reduce to Hirota bilinear operators. (see, e. 
g [9] how the powers of α can be determined and the 
difference between the Hirota bilinear differential operator 
[1] and the Dp- operators). 

2.2. Bilinear Equations 
A bilinear differential equation associated with a 

multivariate polynomial [9] 1( ,... )iF F x x=  is define by 

1 1
( ,..., ) . 0

l lp x p xF D D f f =           (2.3) 

which reduces toHirota bilinear equation if 
2 ,p k k N= ∈  assuming p=3 we particularly have the 

generalized bilinear KdV equation  
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The generalized bilinear Boussinesq equation 
2 4 2 2
3, 3, 2( ) . 2 2 6 0t x t t xxD D f f ff f f+ = − + = (2.4) 

and the generalized bilinear KP equation 
4 2
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Such generalized bilinear equations have some common 
characteristics: 

Bilinear: the nearest neighbours to linear equations. 
In this paper, we also would like to discuss with more 

examples (other than that of [9]) that can also provide 
solution on: 
• How can one identify bilinear equations defined by (2.3)? 

and: 

• What type of exact solution are there to bilinear equation 
defined by (2.3)? 

through the Bell exponential polynomials and the linear 
superposition principle respectively. 

3. Relations with Bell Exponential 
Polynomials 

Let 1 2( , ,..., )na a a  be a sequence of real or complex 
numbers. Its partial (exponential) Bell polynomial 

. 1 2( , ,...)n kB a a  is define as follows [10, 11] 
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the exact expression can be written as 
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Where the sum is over n-tuples of nonnegative integers 

1( ,..., )nk k  satisfying the constraint 1 22 ... .nk k nk n+ + + =  

3.1. Binary Bell Polynomials 

Here also a summary of the main idea of the proposed 
work will be stated and some definitions regarding the Bell 
polynomials where two properties used to link bilinear 
equations to a special kind of Bell polynomials will be 
employed (see, for example [9] for the details).  

We first explore a relation of the Bell polynomials to the
pD -operators. For simplicity in the computational procedure 

we assume  
( ) ( ),x xf e g eξ η= =         (3.1) 

Thus using (work), we have  
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where and , 1r r
rx x rx x rξ ξ η η= ∂ = ∂ ≥  

Similarly to the case of the Hirota D-operators [1], we 
introduce binary Bell 

;
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Where , 1r r
rx x rx xv v and w w r= ∂ = ∂ ≥  

As an example we have  
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Now setting  
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From (3.4), we have a combinatorial formula for the pD
-operators 
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We now introduce Ƥ-polynomials in order to qualify the 
bilinear equations 
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The first few of the which in the case of Ƥ=5 read 
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In terms of  
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The combinatorial formula (3.7) becomes 
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if f= g, a relation between bilinear expressions and the Ρ
-polynomials will become 
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is equivalent to an equation and a linear combination of Ρ
-polynomials in lnq f= : 
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This is a characterization for our generalized bilinear 
equations in one dimensional case. 

3.2. Multivariate Binary Bell Polynomials 

For a c∞
 function 1( ,..., )ly y x x= , we can define 

the variables as in [9] 
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and the multivariate Bell polynomials  
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which can be computed through  
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Three examples in differential polynomials function are  
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Based, on (3.14) we can show that the homogenous 
property  
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implies the addition formula for the multivariate Bell 
polynomials: 
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In a similarly manner [9] uses  

1 1( ,.., ) ( ,..., ),i lx x x xf e g eξ η= =                             (3.22) 

for the sake of computational convenience and by (3.19) and (3.21) we can compute that 
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Let us now introduce binary multivariable Bell 
polynomials in differential polynomials form: 
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Where 
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Then from (3.23) a combinational formula follows 
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again on employing the following multivariable Ρ
-polynomials 

1 1 1; ... ; ...( ) ( 0, )
i i l ln x n x n xq v w qηγΡ ΡΡ = = =

 
(3.27) 

For example, we have  
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Thus, a bilinear equation  
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is equivalent to an equation on a linear combination of 
multivariate Ƥ-polynomials in  
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where the coefficients 
1...

'
li ic s   are constants. This is a 

characterization for generalized bilinear equations as 
discussed in [9], defined through the D operatorsΡ − .

 

4. Linear Superposition Principle 
4.1. Subspaces of Solutions 

Let 1( ,..., )lF x x  be a multivariate polynomial. 
Consider a bilinear equation 

1, , ,( ... ) . 0
lp x p xF D D f f =         (4.1) 

Define a set of N wave variables 
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1, 1 ,... ,1 ,i i l i lk x k x i Nθ = + + ≤ ≤    (4.2) 

Where the , 'j ik s  are constants, and form a bilinear 
combination of N exponential waves  
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Where all the 'i sε  are arbitrary constants 
Note that there are bilinear identities of the form 
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Where the powers of α obey the rule (2.2). Following the 
criterion for obtaining the linear subspaces of solutions 
defined by [10] (see [5] and [6] for details) which stated a 
theorem that support an arbitrary linear combination of N 
exponential waves and an equivalent theorem on the linear 
subspaces of exponential N-wave solutions as in [7] we can 
use a type of parameterization for wave numbers and 
frequencies and list the sequential solution procedures as 
follows: 

We introduce of the independent variables: 

1 1( ( ),..., ( ) ,..., ,l lw x w x w w=         (4.5) 

where the weight 'iw s  can be both positive and negative. 

Form a homogenous polynomial 1( ,..., ),lF x x defined 
by (3.30), in some weight. 

Parameterize 1, ,,...,i l ik k   using a parameter ik : 

, , 1jw
j i j ik b k j l= ≤ ≤           (4.6) 

and then determine the proportional constants 'jb s  and 

the coefficients 1,..., 'i i lc s  . 

4.2. Illustrative Examples 

In this section a few concrete examples will be given to 
illustrate the effectiveness of the approach. 

To present illustrative examples we consider the 
(2+1)-dimensional case with as again the (3+1)-dimensional 
case as presented in [9] 
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Then upon forming a homogeneous multivariate 
polynomial in some weight 
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we solve the system (4.4) and (4.6) for the proportion 
constants 1 2 3, ,b b b  and the coefficients  

1 2 3, , 'i i ic s
   in order that the corresponding bilinear 

equation and their associated linear subspace of solutions 
consisting of linear combination of exponential waves we 
will be ascertained. We are now going to present two 
concrete illustrative examples by applying this general idea 
below in order to shed more light on the general idea 

Example 1 Examples with positive weights let us set the 
weights of independent variables  

( ( ), ( ), ( )) (1,3, 4)w x w y w t =        (4.10) 

And consider a polynomial being homogenous in weight 4 
4

1 2 3F c x c xy c t= + +          (4.11) 

Following the parameterization of wave numbers and 
frequencies in (4.8), we set the  
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Where ,1ik i N≤ ≤  are the arbitrary constants but the 

proportional constants 1 2 3,b b and b  are to be determined 
Now, a direct computation show that the corresponding 

bilinear equation reads  
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The corresponding linear subspace of N-wave solutions is 
given by (4.14) 
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where , 1i i Nε ≤ ≤  are arbitrary constants but the 

proportional constants are 1 2andb b and are defined by  
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Example 2 Example with positive and negative weights 
Let us set weights of independent variables  

( ( ), ( ), ( ), ( )) (1, 1,3)w x w y w z w t = −     (4.16) 

and consider a polynomials being homogenous in weight 2 
2 2

1 2 3F c x c xy t c yt= + +        (4.17) 
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Following the parameterization of wave numbers and 
frequencies, we get the wave variables 

1 3
1 2 , 1i ix i ik b k y b k t i Nθ −= + + ≤ ≤    (4.18) 

where 1ik i N≤ ≤ , are arbitrary constant but the 

proportional constant 1 2andb b  are to be determined by 

(4.5) 

Similarly, a similar direct computation shows that the 
corresponding bilinear equation reads 
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and it possess the linear subspace of N-wave solutions 
determined by 
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Where the ' and 'i is k sε  are arbitrary but 

1 2andb b  need to satisfy 

3 1 2
1 2 2

2 3

2,
2
c c cb b
c c
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5. Conclusions 
We have discussed on the kind of the generalized bilinear 

differential operators , xDΡ  , their link with Bell 

polynomials and applied the linear superposition principle to 
the corresponding bilinear equations. We mixed the 

-operator with different natural number p = 5 to formulate a 
more general bilinear equation as it was posed for further 
investigation in [9]. 
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