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Solitary Wave Solutions of the High-order Nonlinear
Schrdlinger Equation in Dispersive Single Mode Optical
Fibers
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Abstract The dynamics of propagation of waves in the transmission supports as high-nonlinear and dispersive optical
fibers is governed by Schrédinger equations that integrate supplementary nonlinear terms. This particularity complicates the
resolution of this equation. So the resolution of such an equation requires a suitable method. In this article, we construct
solutions of the type solitary wave by means of a method which supposes from the onset that the equation admits a solution
that is a combination of the bright soliton and dark soliton and thereafter proceed by elimination of the constants until the
exact solutions or those that are nearer to the exact solutions are obtained.
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1. Introduction

The nonlinear partial differential equations that describe
the propagation of waves in the atomic chains, electric lines
and optical fibers are for most of schrodinger’s type. They
present nonlinear terms that are most often of cubic order,
quintic and so on. The research of the analytical solutions for
these equations is never an easy task. It is justified besides by
the multitude of mathematical methods that many authors
use every day in the resolution of mathematical problems
[1-13]. The nonlinear partial differential equations that
describe the propagation of waves in the atomic chains,
electric lines and optical fibers are for most of schrodinger’s
type. If we come back to the optical fiber transmission
support that is currently in the center of modern
telecommunications, one realizes that in the case of
high-nonlinear dispersive single mode optical fiber, the
dynamics of propagation of waves is governed by the
following Schré&dinger equation [14].
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where U is the slowly varying amplitude of the electrical

th

field envelope, A, is the N~ order of the dispersion

parameter, « is the linear loss parameter, " is the
parameter of saturation of the nonlinearity and y designates

the magnitude of the kerr parameter and nonlinear absorption

and i2 =—1 . This nonlinear partial differential equation is
not easy to solve. This difficulty to solve is translated by very
few works that propose analytical solutions of this equation
as presented above. Our aim in this work is to propose some
analytical solutions to this equation, or merely to find the
solutions very close to the exact solutions. The equation (1)
is high-nonlinear and dispersive; then susceptible to have
some solitary solutions. Thus, the method of research of the
solutions, consist in supposing initially that the equation (1)
admits a solution that is a combination of solitary waves of
nature bright and kink of the shape

n j
Z[a sinh at}exp(—ikz), 2

1= coshI at

ji=01; 1=12,..,

the number of terms of equation (2); aj| , a and K the

where i =-1; N ; N designates

constants to determine as a function of the parameter of the
equation (1). When the equation (2) and its different
derivatives are introduced in the equation (1), we get the
complicated coefficient equations and of which the
elimination of the constants case by case, permits to obtain
the solutions progressively. In this work, we will limit in the

case where we have four complex coefficients a jl - So the
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manuscript is presented as follows: In section 2, we obtain  analyze the different possibilities of obtaining the solutions.
the equations of the coefficients &j) . In the section 3, we Finally section 4 concludes our work.

2. Coefficient Equations

After reducing in the same denominator, equation (1) becomes
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The aim is to construct explicitly the solutions of equation (2) in the form
inhQ inhQ .
U(z,t)= 8 p SNt g +d > ot exp—ikz, @
coshQgt  coshQpt  cosh“ Qg cosh” Qut

where the coefficients &jj of equation (2) are substituted by a=a,+ig , b=b, +ib, c=c, +ic¢; and

d =d, +id; are complex numbers such that a,, &, by, bj, ., Cj, d,and d; are real constants to be determined
as a function of the parameters of the system. So equation (3) inserted into equation (1) yields
10

1
F.(a.,ai,b,,bi,c.,c,d., di ) ———
nzzl n (82 b G I)cosh'”Qot
10 )
sinh Qnt
+>' F (a,,a,b.,bi,c.,c,d,,di ) ——9 )
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ZGI(ar’ai’br’bi’cr1ci’dradi)—|
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where 1°=-1, Fn(ar,ai,br,b,,cr,ci,dr,di), R (ar.a.br by, cpc,dp,di), Gy (ar,ai,br,bi,cr,ci,dr,di)
and Fn(ar,a;,by,bj,cp,ci,dp,d;) are function of the constants @, @, by, by, ¢, ¢, dyand d;. From the

real and imaginary part of equation (5), we obtain according to the terms in 1/ cosh" Qpt and 1/ cosh' Qqpt the series
of equations

Fa(ar,8,bp by, cp0c5,d,,dj ) =0, (6)
and
G|(ar,ai,br,bi,cr,ci,dr,di)=O. )
Similarly the terms in sinh Qot/COSthot and sinhQut / cosh™ Qqt lead to the following equations
Fk'(ar’ai’br'bl’crici’dr'di):0’ ®)
and
Fn’1(ar,ai,br,bi,Cr,Ci,dr,di)ZO. 9)

Equations (4), ..., (7) are the main equations which permits to investigate the form of solutions as in equation(4). Since
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these equations have eight unknowns, and not easy to solve, we proceed by different analyses.

3. Analysis of the Solutions

a) Firstcase: g =0, b, =0, ¢; =0, d, =0
From equations (6) and (7) we obtain
Termin 1/ coshi® Qot,

cf—crdi2 =0,
Termin 1/ cosh® Qot,

58,0 (arcrz —bidicr)+ 25 dic? —d?) =0,

Termin 1/ cosh® Qot,

$295 (B¢, ~10df ~5a + 5bi2)+ BsQ (bic, +8a,d; )~ 3B, (cr ~df)=o,

Termin 1/cosh’ Qot,
- 3405 (22627 ~14a,df + 280bidic )
—45,0, (20dicr2 —44d® -12a,c, by ~12b2d; - 24diar2)
+243, (—Ya,rcr2 + ardiz) =0.

The combination of equation (10) and (11) gives

Insertion of (14) in (12) and (13) respectively yields
aldi + azbi =0,
and

bybid; +bobZ +byd? =0,
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(10)

(11)

(12)

(13)

(14)

(15)

(16)

where a1 = 3ﬂ2 —10ﬂ4Q5; dy = 9ﬂ2, ag =3ﬂ2 , bJ_ = —(10ﬂ4Q% +36ﬂ2); b2 = 48ﬂ390, b3 = 24ﬂ390

Eliminating di between equation (13) and (14) gives the quadratic equation

AbZ +Bb, +C =0,

17)

where the coefficients A, B and C are given by A:a§b3—a1a2bl+a12b2 ; B=ayagh —2azab; and

c= b3a§.
-For A=0,ie. a%bg =ajaoh +a12b2 we obtain
g - ag(aghs —ayly )
I - )
a (2agh; —ayly )

o _Tea(abs—ab)
" & (2aghy -ayhy)

(18)

(19)
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bi =4d, = —b?,as .
2aphs —aqhy
The resulting solution of equation (3) in this case is given by
I a3 1 i sinh Qqt |
2ayb; —ayby { coshQpt  cosh Qqt
Ui (z,t)= exp—ikz.
, a(aghs—aiby) £1 . sinhQqt
2 (2ab3 —agby )| cosh® gt cosh? Qt |

—For A#0;ie. a§b3 # agayhy + a12b2 ,we obtain when BZ % 4AC the following values

_-B+yB?-4AC

a =h 2A
4 _% 3| -ByB2-4AC
I d 2A

and

Cr Zidi =t —=
& 2A

The resulting solution of equation (3) in this case is given by

*

~B+yB?-4AC( 1 L SinhQt
2A coshQqt  coshQqt

Up(2,t)=
%_2{—81\/82 ~4AC

& &

_ForB? =4AC , equation (25) reads

2A

£1
>+
cosh” Qut

_ﬁ( 1 i sinh Qot]
2A{ coshQgpt  cosh Qpt
Us(z,t)= :
i[3+ a,B j[ *1 i sinh Qqt
8 2aA )| cosh?Qgt  cosh? Qgt

b) Second case: onlya, #0; ¢; #0

We obtain from order 1/cosh’ Qpt to 1/ cosh® Qqt of equation (6) and (7), the following equations

70 Bci +128, =0,

and

|

i sinh Qqt
cosh? Qot

exp—ikz -

6(I + 1) + BT Q3 (4ci2 —30a2 ) — Ao 0 (1267 ~18a7 ) =0

From equations (27) and (28) one finds
Gi

and

=128,/

2
7004,

exp—ikz -

(20)

(21)

(22)
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(27)

(28)

(29)
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a =+ (30)

2 4 2
T+y+—=6,I00—-28,I'Q
[ 1253, ] V4 3134 AR .
1036, )\ 5Aral-34r0}

Here, the solution of equation (3) is given by
I+ +3ﬁ rog - 28,08 .
Ua(2,t) =+ 123, Vrgpa i T ezt (g 12i3, 1 (31)
4\ == - )
7054, 58,708 — 36,108 coshQot ) 7035, | cosh? Qgt

c) third case: onlyc, # 0, d; #0

From the terms in 1/ cosh® Qpt and 1/cosh’ Qqt of equations (6) and (7) the equations

(5@@5 —3ﬁ2)cr2 +(3,82 —10ﬂ495)di2 -0, (32)
and
c? = 20d?. (33)
Substituting equation (33) into equation (32) with the constraint [, = 30[349(2) /19 gives the solution of the form

+i/20 , dsinh Qg
costhot costhOt

]exp—ikz, d; #0. (34)

U5(z,t):di[

d) Fourth case: only a, =0 and b; #0

We obtain for any parameter coefficient of the nonlinear partial differential equation (3) b, =xa,. So the solution of
equation (3) in this case is given by

Us(z.0) :ar[ 1, .sinhQqt

£i
coshQgt  coshQqt

]exp—ikz, a, =0, (35)

e) Fifth case:only ¢; #0, d, #0

th

From the order1/ cosh™ Qqt to order 1/ cosh® Qot of equations (6) and (7), we obtain C; ==d, and the solution

is given by
i N sinh Qqt
cosh? Qot cosh? Qot

}exp—ikz, d, #0. (36)

U7(z,t):dr{

f) sixth case: only b, #0, ¢; #0

Here both right-hand side and left-hand side of the obtained equations (6),..., (9) vanish for B3 = 5, =0. Then any
solution of the following form verify equation (3)

U(z,t)=|b SINhQt 5 G exp—ikz, 37)
coshQqt  cosh? Qg

where br and Cj are real numbers.

g) Seventh case: only b, =0

The equation which derives from the term in sinh Qot/cosh5 Qpt gives b, =«/ﬁ4gg /TR, With g, =0. The solution
in this case is given by
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2
P20

1

exp—ikz. (38)

U(z,t)=

4. Conclusions

To start the research of solutions as proposed in this
manuscript, we remark that in numerous studies of the
modulational instability proposed by most authors on the
equation (1), the perturbated solution is most often a plane
wave and very rarely a solitary wave. This is how we took
the option to determine some solitary waves of this equation.
Knowing that there is no standard method of resolution of the
nonlinear partial differential equations, we have use the
effective method as used in this manuscript to attain our
objective. Certainly it necessitates a lot of concentration, but
also gives a lot of satisfaction. Apart from the above
solutions obtained, the following cases:

g =b=¢ =d; =0;
ar:br:Cr:dr:al :CI :0,

a =C, =d, =3 =b =¢; =0;

ar =b =d; =g = =¢; =0;
ar:br:Cr:dr :a'| :bi :CI :O

lead to trivial solutions or impossibilities. This principle of
looking for solution maybe extended to other types of
nonlinear partial differential equations susceptible to have
some solitary wave solutions. A numerical approach can also
be considered.
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