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Abstract  The dynamics of propagation of waves in the transmission supports as high-nonlinear and dispersive optical 

fibers is governed by Schrödinger equations that integrate supplementary nonlinear terms. This particularity complicates the 

resolution of this equation. So the resolution of such an equation requires a suitable method. In this article, we construct 

solutions of the type solitary wave by means of a method which supposes from the onset that the equation admits a solution 

that is a combination of the bright soliton and dark soliton and thereafter proceed by elimination of the constants until the 

exact solutions or those that are nearer to the exact solutions are obtained. 
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1. Introduction 

The nonlinear partial differential equations that describe 

the propagation of waves in the atomic chains, electric lines 

and optical fibers are for most of schrödinger’s type. They 

present nonlinear terms that are most often of cubic order, 

quintic and so on. The research of the analytical solutions for 

these equations is never an easy task. It is justified besides by 

the multitude of mathematical methods that many authors 

use every day in the resolution of mathematical problems 

[1-13]. The nonlinear partial differential equations that 

describe the propagation of waves in the atomic chains, 

electric lines and optical fibers are for most of schrödinger’s 

type. If we come back to the optical fiber transmission 

support that is currently in the center of modern 

telecommunications, one realizes that in the case of 

high-nonlinear dispersive single mode optical fiber, the 

dynamics of propagation of waves is governed by the 

following Schrödinger equation [14]. 
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where  is the slowly varying amplitude of the electrical 

field envelope, n  is the 
thn order of the dispersion 

parameter,   is the linear loss parameter,   is the 

parameter of saturation of the nonlinearity and  designates 

the magnitude of the kerr parameter and nonlinear absorption 

and 
2 1i    . This nonlinear partial differential equation is 

not easy to solve. This difficulty to solve is translated by very 

few works that propose analytical solutions of this equation 

as presented above. Our aim in this work is to propose some 

analytical solutions to this equation, or merely to find the 

solutions very close to the exact solutions. The equation (1) 

is high-nonlinear and dispersive; then susceptible to have 

some solitary solutions. Thus, the method of research of the 

solutions, consist in supposing initially that the equation (1) 

admits a solution that is a combination of solitary waves of 

nature bright and kink of the shape 
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where 
2 1i   ; 0,1j  ; 1,2,....,l n ; n  designates 

the number of terms of equation (2); jla ,   and k  the 

constants to determine as a function of the parameter of the 

equation (1). When the equation (2) and its different 

derivatives are introduced in the equation (1), we get the 

complicated coefficient equations and of which the 

elimination of the constants case by case, permits to obtain 

the solutions progressively. In this work, we will limit in the 

case where we have four complex coefficients jla . So the 
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manuscript is presented as follows: In section 2, we obtain 

the equations of the coefficients jla . In the section 3, we 

analyze the different possibilities of obtaining the solutions. 

Finally section 4 concludes our work. 

2. Coefficient Equations 

After reducing in the same denominator, equation (1) becomes 
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The aim is to construct explicitly the solutions of equation (2) in the form 
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where the coefficients jla of equation (2) are substituted by r ia a ia  , r ib b ib  , r ic c ic   and 

r id d id   are complex numbers such that ra , ia , rb , ib , rc , ic , rd and id  are real constants to be determined 

as a function of the parameters of the system. So equation (3) inserted into equation (1) yields 
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where 
2 1i   ,  , , , , , , ,n r i r i r i r iF a a b b c c d d ,  , , , , , , ,k r i r i r i r iF a a b b c c d d ,  , , , , , , ,l r i r i r i r iG a a b b c c d d  

and  , , , , , , ,m r i r i r i r iF a a b b c c d d
 

are function of the constants ra , ia , rb , ib , rc , ic , rd and id . From the 

real and imaginary part of equation (5), we obtain according to the terms in 01/ coshn t  and 01/ coshl t  the series 

of equations 

 , , , , , , , 0n r i r i r i r iF a a b b c c d d  ,                                  (6) 

and 

 , , , , , , , 0l r i r i r i r iG a a b b c c d d  .                                  (7) 

Similarly the terms in 0 0sinh / coshkt t   and 0 0sinh / coshmt t   lead to the following equations 

 , , , , , , , 0k r i r i r i r iF a a b b c c d d  ,                                 (8) 

and 

 , , , , , , , 0m r i r i r i r iF a a b b c c d d  .                                 (9) 

Equations (4), …, (7) are the main equations which permits to investigate the form of solutions as in equation(4). Since 
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these equations have eight unknowns, and not easy to solve, we proceed by different analyses. 

3. Analysis of the Solutions 

a) First case: 0ia  , 0rb  , 0ic  , 0rd   

From equations (6) and (7) we obtain 

Term in 
10

01/ cosh t , 

3 2 0r r ic c d  ,                                       (10) 

Term in 
9
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The combination of equation (10) and (11) gives 

;r i r ic d a b  .                                       (14) 

Insertion of (14) in (12) and (13) respectively yields 

1 2 0i ia d a b  ,                                        (15) 

and 

2 2
1 2 3 0i i i ib b d b b b d   ,                                (16) 

where 
2

1 2 4 03 10a     ; 2 29a  , 3 23a  ,  2
1 4 0 210 36b      ; 2 3 048b   , 3 3 024b   . 

Eliminating id  between equation (13) and (14) gives the quadratic equation 

2 0i iAb Bb C   ,                                      (17) 

where the coefficients A , B  and C are given by 
2 2
2 3 1 2 1 1 2A a b a a b a b   ; 1 3 1 3 2 32B a a b a a b   and 

2
3 3c b a .  

- For 0A  , i.e. 
2 2
2 3 1 2 1 1 2a b a a b a b   we obtain 
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The resulting solution of equation (3) in this case is given by 
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 For 0A  ; i.e. 
2 2
2 3 1 2 1 1 2a b a a b a b  , we obtain when 

2 4B AC  the following values 
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The resulting solution of equation (3) in this case is given by 
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 For
2 4B AC , equation (25) reads 
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b) Second case: only 0ra  ; 0ic   

We obtain from order 
7

01/ cosh t  to 
6

01/ cosh t  of equation (6) and (7), the following equations 

2
0 4 27 12 0ic    ,                                          (27) 

and 

     2 2 2 2 2 2 2
4 0 2 06 4 30 12 18 0i i r i rc c a c a           .                 (28) 

From equations (27) and (28) one finds 

2
2 0 412 / 7ic     ,                                        (29) 

and 



 American Journal of Computational and Applied Mathematics 2014, 4(2): 45-50 49 

 

 

4 2
4 0 2 0

2
2 4 2
0 4 4 0 2 0

2
2

12 3

7 5 3
ra

  


  

     
  

     

.                           (30) 

Here, the solution of equation (3) is given by 
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c) third case: only 0rc  , 0id   

From the terms in 
8

01/ cosh t  and 
7

01/ cosh t  of equations (6) and (7) the equations 
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and 

2 220r ic d .                                           (33) 

Substituting equation (33) into equation (32) with the constraint 
2

2 4 030 /19    gives the solution of the form 
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d) Fourth case: only 0ra   and 0ib   

We obtain for any parameter coefficient of the nonlinear partial differential equation (3) i rb a  . So the solution of 

equation (3) in this case is given by 

0
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e) Fifth case: only 0ic  , 0rd   

From the order
10

01/ cosh t  to order 
9

01/ cosh t  of equations (6) and (7), we obtain i rc d   and the solution 

is given by 
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f) sixth case: only 0rb  , 0ic   

Here both right-hand side and left-hand side of the obtained equations (6),…, (9) vanish for 3 2 0   . Then any 

solution of the following form verify equation (3) 
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where rb  and ic are real numbers. 

g) Seventh case: only 0rb   

The equation which derives from the term in 5
0 0sinh / cosht t   gives 2

4 0 2/rb      with 
3 0  . The solution 

in this case is given by 
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4. Conclusions 

To start the research of solutions as proposed in this 

manuscript, we remark that in numerous studies of the 

modulational instability proposed by most authors on the 

equation (1), the perturbated solution is most often a plane 

wave and very rarely a solitary wave. This is how we took 

the option to determine some solitary waves of this equation. 

Knowing that there is no standard method of resolution of the 

nonlinear partial differential equations, we have use the 

effective method as used in this manuscript to attain our 

objective. Certainly it necessitates a lot of concentration, but 

also gives a lot of satisfaction. Apart from the above 

solutions obtained, the following cases: 

0i i i ia b c d    ;  

0r r r r i ia b c d a c      ;  

0r r r i i ia c d a b c      ;  

0r r r i i ia b d a b c      ; 

0r r r r i i ia b c d a b c         

lead to trivial solutions or impossibilities. This principle of 

looking for solution maybe extended to other types of 

nonlinear partial differential equations susceptible to have 

some solitary wave solutions. A numerical approach can also 

be considered. 
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