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Abstract  In this study, we investigate convergence properties of time and space discretization of Parabolic Volterra 
integro-differential equations (PVIDE) is outlined. The rectangle and the trapezoidal rules applied for integral term of these 
equations and finite difference method (Backward-Euler method) used for partial differential part. The integral is 
approximated in each case by the quadrature rule with relatively high-order truncation error. We consider time step 
methods based on the backward-Euler method and combined with the appropriate quadrature rules. 

Keywords  Finite difference method, Backward-Euler method, Parabolic Volterra integro-differential equations, 
Integral equations, Partial differential equations, Time and space discretization, Mixed rule, Quadrature rule, Error 

 

1. Introduction 
In[5] and[1], Linz and Baker considered the numerical 

solution of Volterra integral equations of the second kind 
using the rectangle, the trapezium and Simpson’s rules for 
finding )(tu  with the quadrature rule. Whereas, in this 
paper we introduce the numerical treatment of parabolic 
Volterra integro-differential equations using the 
backward-Euler scheme for finding ),( txu  with the finite 
difference method. In[2], Douglas introduced the numerical 
treatment of parabolic Volterra equations using the 
backward-Euler and Crank-Nicolson methods for finding 

),( txu  with the finite difference method of the form 
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Douglas’s has used quite simple equation, but it is 
important that he used firstly time discretization using the 
backward-Euler and Crank-Nicolson methods. However, 
In[2] and[7] the numerical examples are not given. In this 
paper the time and space discretization are studied with 
examples. In this paper we will study the numerical solution 
by the time-continuous finite difference method of 
parabolic Volterra equations of the form  
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in .LBD ×=  In the ),( tx  plane let :),{( txD =  

,0 π<< x },0 Tt <<  and let ),( txu  have the initial 

and boundary conditions ),()0,( xfxu =  on ,0 π≤≤ x  

),(),0( tutu π= =0. 

Here we denote by D  the closure of .D A  is an 
elliptic second order partial differential operator and B  is 
a second order partial differential operator respectively. 

We assume that both operators are smooth. The equation 
(2) is to be solved subject to the above initial and boundary 
conditions. As they defined in[5] and[1], the kernel 

),( tsK  is a smooth, real-valued function of both variables 

for ,0 ts ≤≤  and ),( txS  is supposed to be a smooth 
function of x  and t . The numerical methods will be a 
combination of finite difference and quadrature schemes for 

the time stepping, with time step k . Introducing a lattice 
in ,D  we define for positive integers m  and ,n

,/ mh π=  ,/ nTk =   

}.,..,2,1,0;,..,2,1,0:),{(, mjnijkihD ji ===  

For any function U  defined on , ,i jD  we set 

).,(, jkihUU ji =  We replace the time derivative in (2) 
by a difference quotient, and use a quadrature rule for the 
integral term of the form 
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where jn,α  a quadrature is weight and ),( jkihU  is the 

approximation to ).,( sxu  

2. Numerical Methods for Parabolic 
Volterra Integro-differential 
Equations 

In this section we will study the initial boundary value 
problem first considered in the introduction, i.e., 
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in .LBD ×=  In the ),( tx  plane let :),{( txD =  

,0 π<< x },0 Tt <<  and let ),( txu  have the initial and 

boundary conditions ),()0,( xfxu =  on ,0 π≤≤ x  

),(),0( tutu π= =0. 
One of the difficulties involved in such a method is that if 

0, ≠jnα  for j ≤ n, then all values of ),( jkihU  have to 
be retained, causing great demands for data storage. In 
Sloan and Thomée[7] a quadrature rule based on fewer 
points is proposed, thus reducing the number of time levels 
at which the data need be saved. 

The quadrature rule will be of the form 
1
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We define the backward difference method by 
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The simplest quadrature rule of type (3) which is 
consistent with the order of accuracy of the backward-Euler 
scheme is the rectangle rule 
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which corresponds to choosing kjn =,α  for 0 ≤ j ≤ n − 1, 
so that 
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Let ]/1[ km =  and .+∈Zm  Set ,1 mkk = and let 

l  be the largest integer such that .1 nktlk n ≤≤  In 

approximating the integral term over ],0[ nk we shall apply 
the trapezoidal rule with step size 1k  on ],0[ 1lk  and the 

rectangle rule with step-size k  on the remaining part 
],[ 1 nklk . More precisely, with ,1jkt j =  
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Note that this rule has a storage requirement of )( 2/1−kO  

as opposed to )( 1−kO  for the simple rectangle rule. Sloan 
and Thomée[7] deal with stability and convergence results 
for two different time discretization of (6), based on the 
backward-Euler and Crank-Nicolson methods respectively. 
In their paper, the time discretization is studied in the 
treatment of the integral term. Let k be the time step in the 
backward-Euler scheme for the equation 
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or for the following form with elliptic operator under the 
integral term, 
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If we substitute the backward difference for ,tu  centred 

difference for xxu  in (10), and a quadrature rule for the 
integral term, we obtain the following form 
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and if we substitute the backward difference for ,tu centred 

difference for xxu  in (11), and a quadrature rule for the 
integral term, we obtain the following form 
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where h is the mesh step for x. The sum on the RHS is the 
quadrature approximation to the integral term of (10) or (11) 
at the point .jkt j =  The weights in the quadrature rule 
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correspond to (9) above. For sufficiently regular functions g 
the truncation error is of order ),( 1

2
1 kkkO +  assuming that t 

is bounded. If we take )( 2/1
1 kOk =  the accuracy is similar 

to that of the backward-Euler scheme. If the weights 1
vα  

are trapezoidal weights for step-size 1k  and 2
vα  are 

rectangle rule weights for step-size k, we can write 
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From (14) we have 
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where, as easily verified (assuming 11 ≤k ), 
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Note that in the numerical solution of Example 2.1, 
Example 2.2 and Example 2.4, we did not include the 
function ).,( txS  Examples with the function ),( txS  can 
be done in a similar manner.  

Example 2.1: Consider the initial-boundary value 
problem 
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for ,0 Tt ≤≤  ,0 π≤≤ x with ),sin()0,( xxu =

,0),0( =tu  and  ,0),( =tu π which has the exact solution 

( ) (1 )( , ) cos( ) sin( ) sin( ),tu x t e t t xα αβ β
β

−   −
= +  

  
(18) 

where 2/)1( += κα and 2/)412( 2 λκκβ −−+−= . 
Taking κ  = 1 in the equation (18) we have the solution 

.0),sin()cosh(),( >= − λλ forxtetxu t       (19) 

If we put κ  = 1 and λ  = −1 in (18) we obtain the 
solution 

).sin()cos(),( xtetxu t−=           (20) 

The last result corresponds to the simplest form of our 
main problem (17). We will solve the equation (17) with the 
backward-Euler method. Firstly, we use the rectangle rule 
throughout for the integral term in equation (17). Table 1 
shows numerical results for this case. Unless otherwise 
indicated, throughout this section and the next section we 
take κ  = 1 and λ  = −1, and T = 0.5. Table 1 shows that the 
combined backward-Euler and rectangle rule has error O(k) 
for this Example 2.1 

Table 1.  Rectangle rule showing effect of time-step k, for Example 2.1, has 

an error of order )(kO  with fixed 100/π=h  

t =0.5  k=0.005 k=0.0025 k=0.00125 

x  Exact  1Error  2Error  3Error  

0.31 0.16448 0.109841E-03 0.584606E-04 0.274675E-04 
0.63 0.31287 0.208929E-03 0.111199E-03 0.522463E-04 
0.94 0.43062 0.287567E-03 0.153052E-03 0.719108E-04 
1.26 0.50623 0.338055E-03 0.179923E-03 0.845362E-04 
1.57 0.53228 0.355452E-03 0.189182E-03 0.888866E-04 
∥error∥  2.513425E-03 1.337721E-03 7.498422E-04 

In this test we see that the space error has the expected 
order in our numerical calculations.  

Secondly, we use the trapezoidal rule throughout for the 
integral term in equation (17). The numerical results are 
given by Table 2. Thirdly, we obtain the numerical solution 
of equation (11) using the trapezoidal rule and rectangle rule 
as in (9) which is called the mixed rule. Table 2 illustrates 
that the combined backward-Euler and trapezoidal rule also 
has error of order k for Example 2.1 

Table 2.  Trapezoidal rule showing effect of time-step k, for Example 2.1, 

has an error of order )(kO  with fixed 100/π=h  

t =0.5  k=0.005 k=0.0025 

x  Exact  1Error  2Error  

0.31 0.16448 0.119405E-03 0.632306E-04 
0.63 0.31287 0.227122E-03 0.120272E-03 
0.94 0.43062 0.312607E-03 0.165540E-03 
1.26 0.50623 0.367491E-03 0.194604E-03 
1.57 0.53228 0.386403E-03 0.204619E-03 
∥error∥  2.732282E-03 1.446872E-03 

Table 3 shows numerical results for the mixed rule 
(backward-Euler scheme). In Table 3, we take m = integral 
part of ]/1[ k , with ;1kkm =  for the cases in Table 3, we 

have ]/1[ k = integer. First, we will apply the simplest rule 
which is the rectangle rule for the integral term. Table 3 
illustrates that the combined trapezoidal and rectangle rule 
has error of order k for Example 2.1. 

Table 3.  Mixed rule showing effect of time-step k, for Example 2.1, has an 

error of order )(kO  with fixed 100/π=h  

t =0.5  
k =0.01 

1k =0.1 

k =0.0025 

1k =0.05 

k =0.00111 

1k =0.0333 

x  Exact  1Error  2Error  3Error  

0.31 0.16448 0.240776E-03 0.667188E-04 0.337623E-04 
0.63 0.31287 0.457984E-03 0.126907E-03 0.642197E-04 
0.94 0.43062 0.603361E-03 0.174672E-03 0.883908E-04 
1.26 0.50623 0.741033E-03 0.205339E-03 0.103910E-03 
1.57 0.53228 0.779169E-03 0.215907E-03 0.109257E-03 
∥error∥  0.550955E-02 0.152669E-02 0.772564E-03 
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Now consider the equation (11) where we have an elliptic 
operator under the integral sign. The numerical results for 
this equation are given in Table 4.  

Example 2.2: Consider the initial-boundary value 
problem 
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for ,10 ≤≤ t  ,0 π≤≤ x with ),sin()0,( pxxu =

,0),0( =tu  p is a positive integer, p=1, 2, 3,…, 

.0),( =tu π This has the exact solution 

( /2) (2 )
( , ) cosh( / 2) sinh( / 2) sin( ),at a

u x t e ct ct px
c

− −
= +   

   
   

(22) 

where )1( 2 += pa κ , )(2 λκ += pb  and )4( 2 bac −= . 
If we choose κ  = 1, λ =-1 and p  = 1 in (22) we obtain 

the solution 

21( , ) (1 cos( ))sin( ).
2

tu x t e t x−= +      (23) 

Table 4 illustrates that the combined backward-Euler and 
rectangle rule has error O(k) for Example 2.2 

Table 4.  Rectangle rule showing effect of time-step k, for Example 2.2, has 

an error of order )(kO  with fixed 100/π=h  

t =0.5  k=0.005 k=0.0025 k=0.00125 

x  Exact  1Error  2Error  3Error  

0.31 0.16448 0.381092E-03 0.194095E-03 0.955590E-4 

0.63 0.31287 0.724881E-03 0.369190E-03 0.181764E-3 

0.94 0.43062 0.997714E-03 0.508147E-03 0.250178E-3 

1.26 0.50623 0.117288E-02 0.597365E-03 0.294103E-3 

1.57 0.53228 0.123325E-02 0.628109E-03 0.309241E-3 

∥error∥  1.141703E-02 5.813977E-03 2.987913E-03 

The last result corresponds to the simplest form of our 
main problem (21). In Table 4 we use the rectangle rule 
throughout for the integral term in equation (21). Equation 
(21) can be solved with the backward-Euler and 
Crank-Nicolson method (CN) in a similar manner. After 
these calculations we will extend our simple examples for 
more general initial conditions. First, we take the initial 
condition )()0,( xxxu −= π on .0 π≤≤ x  We can 
obtain the exact solution for general initial conditions by 
using Fourier expansions. 

Example 2.3: Solve the problem 
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,)()0,( xxxu −= π                   (25) 

.0),(),0( == tutu π                   (26) 

The Fourier coefficient for the initial values of ),( txu  is 
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Thus 
π3

8
n

bn =  if n is odd or zero is even, giving 
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In the following example, we have solved the equation (17) 
with a different initial condition. In Example 2.1, we have 
chosen the initial condition ),sin()0,( xxu =  however in 

Example 2.4, we have taken )()0,( xxxu −= π . 
Example 2.4: Solve the problem 
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,)()0,( xxxu −= π                 (30) 

,0),(),0( == tutu π                 (31) 

0,0 ><< txfor π .  

If we consider the Fourier expansion of )( xx −π , then 
we get the solution, for κ  = 1 and λ  = −1  

3
1

8 sin( )( , ) ( , ) ,
m

pxu x t v p t
pπ

∞

=
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where p takes odd values, ),( tpv  is given by 

( 1)( , ) cosh( ) sinh( ) ,tv p t e t tα αβ β
β

−  −
= − 

 
 (33) 

Where 2/)1( 2 += pα  and )2( 2 ααβ −= . 
The first term of (24), for p = 1, is 

),cos()sin(8),(1 txetxu t−=
π          (34) 

which is π/8  times the solution of Example 2.1, because 
the first term of the Fourier series of the initial condition of 
Example 2.4 is equal to π/8  times initial condition of 
Example 2.1. It is enough to take the first twelve terms of the 
solution (32), to obtain 9 figures in the results. The errors for 
the rectangle rule are given in Table 5. Table 5 illustrates that 
the combined backward-Euler and rectangle rule has error of 
order k for Example 2.4. 
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Table 5.  Rectangle rule showing effect of time-step k, for Example 2.4, has 

an error of order )(kO  with fixed 100/π=h  

t =0.5  k=0.005 k=0.0025 

x  Exact  1Error  2Error  

0.31 0.41904 0.341195E-03 0.180052E-03 

0.63 0.79695 0.608422E-03 0.321954E-03 

0.94 1.09668 0.759394E-03 0.403546E-03 

1.26 1.28977 0.813800E-03 0.434301E-03 

1.57 1.35517 0.823146E-03 0.440112E-03 

∥error∥  6.425446E-03 3.418732E-03 

In Table 6, we used the mixed rule for Example 2.4. In this 
calculation, we have obtained errors of O(k). Table 6 
illustrates that the combined backward-Euler (mixed rule) 
has error of order k. 

Table 6.  Mixed rule showing effect of time-step k, for Example 2.4, has an 

error of order )(kO  with fixed 100/π=h  

t =0.5  
k =0.005 

1k =0.0707 

k =0.0025 

1k =0.05 

k =0.00125 

1k =0.0353 

x  Exact  1Error  2Error  3Error  

0.31 0.41904 0.373460E-03 0.196973E-03 0.108695E-03 

0.63 0.79695 0.681001E-03 0.360494E-03 0.199164E-03 

0.94 1.09668 0.863980E-03 0.459313E-03 0.254606E-03 

1.26 1.28977 0.936862E-03 0.500141E-03 0.278308E-03 

1.57 1.35517 0.952040E-03 0.509165E-03 0.283822E-03 

∥error∥  0.732195E-02 0.389736E-02 0.216348E-02 

3. Error Analysis in Time and Space for 
Backward-Euler 

In this section, we introduce the discretization errors for 
our equation (12). In applications the operators A and B will 
not be differential operators such as 
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But rather approximate operators (arising from finite 
difference space discretization) which depend on some mesh 
parameter h. Our results will be useful if the error bounds are 
uniform in h. The error at a mesh point is defined by 

).,(),(, jkihUtxue jiji −=         (36) 

As we defined in Section 2, we abbreviate ),( ji txu
 
and 
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Then it follows from (10) and (12) that jie ,  satisfy the 
equation 
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where ji,τ  is the truncation error given by[3]. In Table 7, 
the space error is shown for the CN and trapezoidal rule 
(see[3] and[4]) for Example 2.1. The numerical results for 
the space error test give )( 2hO . The rectangle rule can be 
done similar manner. In Table 7, CN and trapezoidal rule 
showing effect of space-step for .001.02000/0.2 ==k   

Table 7.  CN and trapezoidal rule has an error of order 2h  

t =2.0  10/π=h  20/π=h  40/π=h  

x  Exact  1Error  2Error  3Error  

0.31 -0.01740 0.145398E-04 0.338862E-05 0.829468E-06 
0.63 -0.03310 0.276563E-04 0.644555E-05 0.157774E-05 
0.94 -0.04556 0.380656E-04 0.887153E-05 0.217158E-05 
1.26 -0.05356 0.447488E-04 0.104291E-04 0.255284E-05 
1.57 -0.05632 0.470517E-04 0.109658E-04 0.268422E-05 
∥error∥  7.345935E-02 1.835834E-02 4.588388E-03 

In this test we see that the space error has the expected 
order in our numerical calculations. 

4. Conclusions 
In this paper, numerical method has been successfully 

developed for solving parabolic Volterra integro-differential 
equations. Numerical quadrature rules have been applied for 
integral term and backward-Euler method has been used for 
partial differential part. Errors values presented from Table 1 
to Table 6 are calculated based upon backward-Euler and 
suitable quadrature methods with time step k. Values in these 
tables illustrate an error of order )(kO . Finally, in Table 7 

the space error justifies )( 2hO  in our numerical solution. 
Numerical order of convergence is also calculated: 

.
)2ln(

)ln()ln( 21 ErrorErrorOrd −
=  
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We expect that Ord = 1 in time-step k and Ord = 2 in 
space-step h. Obtained theoretical results are confirmed by 
numerical experiments. 
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