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Abstract  The mainstream of visco- elastic materials are receptive to heat and in space technology, highly speed space 

flights, internal combustion engines, satellites, certain parts of mechanical structures have to man oeuvre under elevated 

temperatures consequently the state of affairs are thermal sensitive. It  is observed that thermal effects are recurrently 

overlooked in most of the cases so far they have to be taken in to concern. It is significant to study vibration behaviour in the 

presence of thermal gradient due to rising use of modern materials in structural components. Moreover, weight of composite 

structure is minimized by optimizing its lay up and by tapering its thickness. This paper is the study of thermal effect on free 

transverse vibrations of clamped rectangular plate. The plate is considered to be varying in thickness as exponentially in b oth 

directions. Ray leigh-Ritz technique is applied to give a good approximat ion for the frequency corresponding to the first two 

modes of v ibration. A two terms deflection function has been used as a solution. The effect o f linear temperature variation h as 

been considered. Deflect ion and time period corresponding to the first two modes of vibrations of clamped p late have been 

computed for various values of aspect ratio, thermal constants, and taper constants. Comparison have been done with 

published one for unheated plate and found in close agreement.  
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1. Introduction 

The study of v ib rat ions come up with the oscillatory  

behav iour o f bod ies  and  it  is  experienced  that  many 

technolog ical des igned  structu res experience v ib rat ions 

therefore the study of vibration of plates of certain aspect 

ratios with some simple boundary conditions is the call fo r of 

the p resent t ime. Some new materials also posses t ime 

dependent  behav iour which  is  als o  in fluen t ial. The 

requirement of techn ically  better designed filaments and 

parts of machines in aircraft structures, jet engine, nuclear 

power plants and building activities in the cold regions has 

enhanced the constraint o f study of various prob lems of 

plates cont inuously supported by  elastic o r v isco-elast ic 

media. As visco-elasticity is the property of many modern 

materials by nature and visco-elastic plates are recurrently 

approximated for analytical purpose and for this reason the 

vibrat ions of such p lates are of great  meaningfu l. In the 

course of time, the study of vibration of plates has acquired  
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great weight age in  the field of research, engineering and 

space technology. Further, the study of vibration behaviour 

in the presence of thermal gradient of visco-elastic plates is 

required due to its practical importance in  the field of 

engineering because Machines very repeatedly operate under 

diverse temperature conditions. In majority of cases the 

impact of temperature are ignored yet they need to be taken 

in to consideration. The reason behind this is that during 

heated up periods structures are exposed to high intensity 

heat fluxes and the material properties undergo significant 

changes hence the thermal effect on modulus of elasticity of 

material cannot be neglected. Most of engineering materials 

are found to have linear relat ionship between modulus of 

elasticity and temperature. Applications of such materials are 

due to lessening of weight and size, low operating cost and 

enhancement in efficiency and strength. 

Further, tapering saves weight by removing preventable 

weight. Thickness tapering is advantageous since stresses 

tend to vary appreciably within the structure. 

Free vibrat ion of visco-elastic orthotropic rectangular 

plates was discussed by Sobotka[1]. The effect of a thermal 

gradient on the frequencies of an orthotropic plate of variab le 

thickness has been discussed by Tomar and Gupta[2]. Singh 

and Saxena[3] worked on transverse vibration of rectangular 
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plate with bi-directional thickness variation. Gupta and 

Khanna[4] studied the vibration of visco-elastic rectangular 

plate with linearly th ickness variations in both direct ions. 

Li[5] discussed the vibration analysis of rectangular plate 

with general elastic boundary supports. Gupta et al.[6] 

solved the problem of vibration of visco elastic 

parallelogram plate with parabolic thickness variation. Gupta 

and Kumar[7] studied the effect of thermal grad ient on 

vibration of non-homogeneous visco- elastic elliptic plate of 

variable thickness. Free vibration analysis of 

non-homogeneous visco-elastic circular plate with varying 

thickness subject to thermal gradient was studied by Gupta 

and Kumar[8]. Recently, Gupta and Sharma[11] studied the 

thermally  induced vibration of non-homogeneous 

trapezoidal plate with varying thickness and density. 

This present paper is the study of the thermal effect on 

vibration of clamped v isco-elastic rectangular plate whose 

thickness varies exponentially in both directions with the 

assumption that the plate is clamped on all the four edges. A 

frequency equation of plate has been obtained by 

Rayleigh-Ritz technique for two terms of deflect ion function. 

The assumption of s mall deflection and linear visco-elastic 

properties of ‘Kelvin’ type are taken.  

Time period and deflection at  different points for the first 

two modes of vibration are calculated for various values of 

thermal gradients, aspect ratio and taper constants. Also 

results are illustrated with graphs. Here it  is important to note 

that all the numerical calcu lations have been made using the 

material constants of ‘Duralium’ an alloy of Aluminium, 

Copper and traces of Magnesium and Manganese.  

2. Formulation of Problem and Equation 
of Motion  

The equation of transverse motion of a visco-elastic p late 

of variab le thickness, taken in Cartesian co-ordinates, 

density  , thickness of plate h, deflection w and time t is 

given by Bhatnagar and Gupta[10]:  
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The constitutive relation for Mx, My, Myx are given by: 
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is flexural rigidity, in  which  is the Poisson’s ratio and E is 

Young modulus of elasticity.  

Since the thickness of the visco-elastic plate varies in two  

directions i.e . in x and y direction, consequently thickness h 

and flexural rig idity of the plate become function of x and y, 

therefore taking deflection w as a product of two functions 

as: 

w = w (x, y, t) = W (x, y) T (t )      (3) 

where W (x, y) is the function of coordinates in x, y and T (t) 

is a time function. 

Using equation (3) in equations (1) and (2) and then 

equating both sides of the equation to a constant, say k
2
, one 

gets two separate differential equations as follows:  




































































yx

W

y

W

y

D
2

yx

W

x

W

x

D
2

y

W

yx

W
2

x

W
[D

2

3

3

3

2

3

3

3

4

4

22

4

4

4

 

0Wρhk]
yx

W

yx

D
v)2(1

x

W
v

y

W

y

D

y

W
v

x

W

x

D 2
22

2

2

2

2

2

2

2

2

2

2

2

2





















































       (4) 

and  
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Here dot denotes time derivative. 

Equation (4) is a d ifferential equation of transverse motion and equation (5) is a d ifferential equation of time function of 

free vib ration of visco-elastic plate of variab le thickness. 

With the assumption that the temperature of the visco-elastic rectangular plate varies linearly in one dimension only i.e. 

along x-axis and also if  and 0 denote the increase in temperatures above the reference temperature at any point at distance 

x/a and at the end x= 0 respectively then  can be expressed as: 
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Here a is the length of the plate. 

The temperature dependence of the modulus of elasticity for most of engineering materials as is g iven by Tomar and 

Gupta[2]: is: 

E () = E0 (1 - )                                         (7) 
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where E0 is the value of Young’s modulus at some reference temperature i.e . =0 and  is the slope of the variation of E with 

. 

On substituting the value of  from equation (6) into (7), one gets: 
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where  = 0 (0 <  <1), known as thermal gradient.  

The expression for Kinetic energy P and Strain energy V as given by Leissa[9] are: 

 









a

0

b

0

22 dxdyWhkρ
2

1
P                                      (9) 

and 

dxdy
yx

W
v)2(1

y

W

x

W
2ν

y

W

x

W
D

2

1
V

2
2

2

2

2

2
2

2

2
2

2

2a

0

b

0 




































































           (10) 

The thickness of the visco-elastic rectangular plate is assumed to vary exponentially in both directions i.e.  
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Here b is the width of the plate, 1 and 2 are taper constants along x-axis and y-axis respectively and h0 is the thickness of 

the plate at x=y=0. 

3. Boundary Conditions and Frequency Equation  

Here we are using Rayleigh-Ritz technique for finding the solution. This method implies that maximum strain energy must 

be equal to the maximum kinetic energy; therefore, the problem under consideration must satisfy 

 (V – P) = 0                                         (12) 

for arb itrary variation of W satisfying relevant geometrical boundary condition. 

The boundary conditions for a rectangular p late clamped (c) along  all the four edges are: 
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and the corresponding two-term deflection function is taken as: 
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which is satisfied by equation (13).  

Here A1 and A2 are determined by using equation (13).  

Assuming the non-dimensional variables as: 
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In view of equations (11) and (14), equations (9) and (10), become:  
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Here variation of X is from 0 to 1 and that of Y is from 0 to b/a.  

On substituting the values of P and V from equation (16) and equation (17) in equation (12), one gets: 
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Substitution of W from equation (14) in  equation (18) gives rise to two unknown A 1 and A2, which  can be determined as 

follows: 

0)Pkn(V
A

1

22

1

1





 0)Pkn(V

A
1

22

1

2





                   (19) 

On solving we have: 

b11 A1+ b12 A2 = 0                                        (20) 

b21 A1+ b22 A2 = 0 

where b11, b12, b21, b22 involve parametric constants and the frequency parameter.  

 The determinant of the coefficient of equation (20) must vanish for a non-triv ial solution, therefore one gets, the frequency 

equation as: 
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On solving equation (21) one gets a quadratic equation in k
2
, which gives two values of k

2
. On substituting the value of A1 

= 1, by choice, in equation (14) one gets A2 = -b11/b12 and hence W becomes:  
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4. Time Function of Free Vibrations of 
Visco-Elastic Plate 

The expression for Time function of free vibrat ions of 

visco-elastic plates of variable thickness can be derived from 

equation (5) that depends upon visco-elastic operator 
~

D  

and which for Kelvin’s Model can be taken as:  
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where   is visco-elastic constant and G is shear modulus. 

The temperature dependence of shear modulus G and 

visco-elastic constant  as is given by Gupta and Kumar[7]:   
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where G0 is shear modulus and 0 is visco-elastic constant at 

some reference temperature i.e. at  = 0, 1 and 2 are slope 

variation of  with G and  respectively. Substituting the 

value of  from equation (6) and using equation (15) in 

equation (24), one gets:  

G = G0 [1 - 1 (1 – X)], where 1 = 10, 0 < 1 < 1 and  = 

0[1 - 2 (1 – X)], where 2 = 20, 0 < 2 < 1 (25)  

Here 1 and 2 are thermal constants. 

Substituting equations (23) and (25) in equation (5), one 

gets: 
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Equation (26) is a second order differential equation in  

time function T. The solution of which after applying init ial 

condition T=1 and 


T = 0, at t = 0, comes out to be: 
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Substituting equations (28) and (22) in  equation (3), 

deflection w can be expressed as: 

w =[XY (a/b) (1 –  X) (1 – Ya/b)]
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Time period of the vibrat ion of the plate is given by: 

K = 2/k , where k is frequency given by equation (21).  

5. Numerical Calculations and 
Discussions 

For calculat ions, the following material parameters of 

‘Duralium’ which is an alloy of Aluminium, Copper, 

Magnesium and Manganese have been taken: 

E = 7.08 x 10
10

 n/m
2
     G =      2.632 x 10

10
 n/m

2
 

 = 14.612 x 10
5
 ns/m

2 
   =       2.80 x 10

3
 kg/m

3
 

 = 0.345              h0 =            0.01m 

where h0    is the thickness of the plate taken at the centre.  

Computations have been made for calculating time period 

K and deflection w for d ifferent values of taper constants 1 

and 2, aspect ratio a/b and thermal gradients , 1 and 2 for 

the first two modes of v ibration. A ll these results are shown 

in figures 1 to 7. 

In Fig.1, the results of time period K for a fixed value of 

aspect ratio a/b (=1.5) and for different thermal gradient  

ranging from 0.0 to 1.0 with a difference of 0.2 but for all the 

values of X, Y and for all 1, 2 and for four combinations of 

1 and 2 for the first two modes of vibration as follows:  

1 2 

0.0 0.0 

0.0 0.2 

0.4 0.0 

0.4 0.2 

It can be clearly seen that as thermal gradient  increases, 

time period K increases continuously for both the modes of 

vibration. 

Fig.2 depicts the values of time period K for d ifferent 

values of aspect ratio a/b ranging from 0.5 to 2.5 with  a 

difference of 0.5., and all values of X, Y and for all 1, 2 for 

both the modes of vibration having the following cases: 

 1 2 

0.0 0.0 0.0 

0.3 0.4 0.2 

In both the cases, it can be seen that the value of time 

period K decreases as aspect ratio  a/b increases for both the 

modes of vibration. It  is clearly  shown in fig.2 that time 

period K continuously decreased as aspect ratio a/b 

increased. 

Fig.3 shows the results of time period K, for the first two  

modes of vib ration, for fixed aspect ratio a/b and fo r fixed 

thermal grad ient (=0.3) and fo r fixed value of taper 

constant 2(=0.2) for d ifferent values of taper constant 1 

ranging from 0.0 to 1.0 with a difference of 0.2 but for all the 

values of X, Y and 1, 2. It can be noted that time period K 

decreases as taper constant 1 increase for both the modes of 

vibration. Fig. 3 supports the result of a steady decrease in 

time period K with increase in taper constants 1. 

The results of time period K, for the first two modes of 

vibration for fixed aspect ratio  a/b, fixed thermal gradient  

and for fixed value of taper constant 1  but for different 

values of taper constant 2  ranging from 0.0 to 1.0 with a 

difference of 0.2 and for all X, Y and 1, 2 are displayed in 

fig.4. For both the modes of vibration, time period K 

decreases with increase in taper constant 2. 

Figs.5 (a), 5(b) and 6(a), 6(b) respectively depict the 

variation of deflection w for different X for fixed aspect ratio 

a/b (=1.5) for the first two modes of vibration  at initial time 

0.K and t ime 5.K for different values of Y for the following 

cases: 

Figure  1 2 1 2 

5(a) 0.0 0.0 0.0 0.2 0.3 

5(b) 0.0 0.0 0.0 0.2 0.3 

6(a) 0.2 0.3 0.4 0.2 0.3 

6(b) 0.2 0.3 0.4 0.2 0.3 

All these figures depict that deflection w for the first mode 
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of vibration first increases and then decreases till zero as X 

increases for different values of Y. It can also be observed 

from all these figures that deflection w for the second mode 

of vibration, for Y = 0.2, first increases then decreases and 

then increases and finally  becomes zero  but for Y = 0.6, 

deflection w first increases and then decreases till zero as X 

increases. 

In fig.7, the variat ion of deflection w for different values 

of aspect ratio a/b, and for fixed values of X (= 0.2) and Y (= 

0.2) at init ial time 0.K and at time 5.K is shown for: 

Figure  1 2 1 2 

7 0.0 0.0 0.0 0.0 0.0 

From fig 7, it can be concluded that deflection w for the 

first mode of v ibration continuously increases at initial time 

0.K and first increases and then slightly decreases at the time 

5.K but an increase followed by decrease is observed for 

second mode of vibration, with increase in aspect ratio a/b, at 

initial t ime 0.K and at time 5. K.  

Nomenclature 

x,y Coordinates in the plane of the plate                         Rheological operator 

Mx , My  Bending moments                         D             Flexural rigidity  

Myx     Twisting moments                                       Visco elastic constant 

E   Young’s modulus                         w (x, y, t)          Transverse deflection of plate at point 

G   Shear modulus                            , 1 , 2                Temperature constants 

     Poisson’s ratio                            1, 2            Taper constants 

h Thickness of the plate                         a,b             Length and breath of the plate. 

h0  Thickness of the plate taken at the centre         t              Time 

 

 

Figure 1.  Variation of Time period K with different  Thermal Gradient  and Constant Aspect Ratio (a/b) 
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Figure 2.  Variation of T ime period K with different  Aspect Ratio (a/b) 

 

Figure 3.  Variation of Time period K with different  Taper Constant 1 and Constant Aspect Ratio (a/b=1.5) 

 

Figure 4.  Variation of Time period K with different  taper constant 2 and Constant Aspect Ratio (a/b=1.5) 
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Figure 5(a).  Deflection W vs X with constant Aspect Ratio (a/b=1.5) and for different X and Y 

 

Figure 5(b).  Deflection W vs X for constant Aspect Ratio (a/b=1.5) and for different X and Y 

 

Figure 6(a).  Deflection W vs X with constant Aspect Ratio (a/b=1.5) and for different X and Y 
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Figure 6(b).  Deflection w vs x for constant Aspect Ratio (a/b=1.5) and fordifferent X and Y 

 

Figure 7.  Variation of deflection w for different Aspect Ratio (a/b) and for X=Y=0.2 

6. Conclusions 

It is concluded that as thermal gradient increases, time 

period increases continuously and hence frequency 

decreases for both the modes of vibrat ion, therefore thermal 

effects can never be neglected. If thermal stresses are 

removed in the above case, the result match with the 

unheated plate in which temperature effect  was not taken 

into account. After comparing authors conclude that as 

temperature effect introduced, time period and deflection 

increase gradually in comparison to unheated plate of 

varying thickness. Therefore engineers can see and develop 

the plates in the manner so that they can fulfil the 

requirements. 
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