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Abstract  The different orthogonal relationship that exists in the Löwdin orthogonalizat ions is presented. Other 
orthogonalizat ion techniques such as polar decomposition (PD), principal component analysis (PCA) and reduced singular 
value decomposition (SVD) can be derived from Löwdin methods. It is analytically shown that the polar decomposition is 
presented in the symmetric o rthogonalization; principal component analysis and singular value decomposition are in the 
canonical orthogonalization. The canonical orthogonalizat ion can be brought into the form of reduced SVD or vice-versa. 
The analytic relation between symmetric and canonical orthogonalizat ion methods is established. The inter-relationship 
between symmetric o rthogonalization and singular value decomposition is presented. 
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1. Introduction 
Orthogonalizat ion methods come in  two categories, v iz., 

sequential and democratic. The Gram-Schmidt method[1] 
takes the linearly independent set of vectors one-by-one and 
gives an orthonormal set. The democratic orthogonalization 
methods due to Löwdin namely the symmetric and canonical 
orthogonalizat ions handle all the given vectors 
simultaneously and treat them on equal footing. Löwdin 
orthogonalizat ion methods[2, 3, 4] were discovered for the 
purpose of orthogonalizing hybrid  electron o rbits in  quantum 
chemistry. A few other orthogonalization methods have been 
developed independently to deal with specific problems in 
computer science, mathematics, statistics and biology etc. A 
comparision of Löwdin orthogonalization schemes to other 
orthogonalizat ion techniques such as polar decomposition, 
principal component analysis and singular value 
decomposition is presented. The derivation and interesting 
geometric properties of these two procedures are described 
in the references[2, 5, 6]. Applications of Löwdin methods to 
a variety of interdisciplinary problems have been explored in 
the last decade. They have applications in cognitive 
phenomena[7, 8], data reduction[9] and in the generation of 
new polynomials[10]. 

 
* Corresponding author: 
ramesh.annavarapu@helsinki.fi (Ramesh Naidu Annavarapu) 
rameshnaidu.phy@pondiuni.edu.in(Ramesh Naidu Annavarapu) 
Published online at http://journal.sapub.org/ajcam 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

2. A Brief Overview of Löwdin 
Orthogonalization Methods 

Let 𝑽𝑽 ≡ {𝑣𝑣1����⃗ ,𝑣𝑣2����⃗ , … , 𝑣𝑣𝑚𝑚�����⃗ }  be a set of m-linearly  
independent vectors in ann-dimensional space which can in 
general be a complex vector space. A general non-singular 
linear transformation Acan transform the basis 𝑽𝑽to a new 
basis𝒁𝒁: 

𝒁𝒁 = 𝑽𝑽𝑽𝑽                    (1) 
The set 𝒁𝒁(≡ {𝑧𝑧𝑘𝑘���⃗ }) will be orthonormal if 

⟨𝒁𝒁|𝒁𝒁⟩ = ⟨𝑽𝑽𝑽𝑽|𝑽𝑽𝑽𝑽⟩ = 𝑨𝑨† 𝑴𝑴𝑴𝑴 = 𝑰𝑰,         (2) 
where M is a  Hermitian  metric matrix of the given basis V. 
A general solution to the orthogonalization problem is 

obtained using the substitution 
𝑨𝑨 = 𝑴𝑴−1 2⁄ 𝑩𝑩,                    (3) 

where B is an arbitrary unitary matrix. 
The specific choice 𝑩𝑩 = 𝑰𝑰 gives the symmetric 

orthogonalization, 
𝒁𝒁 ≡ 𝜱𝜱 = 𝑽𝑽𝑴𝑴−1 2⁄ ,                  (4) 

while 𝑩𝑩 = 𝑼𝑼, where Udiagonalizes Mgives the canonical 
orthogonalization, 

𝒁𝒁 ≡ 𝜦𝜦 = 𝑽𝑽𝑽𝑽𝒅𝒅−1 2⁄ .                  (5) 
These two orthogonalized basis sets have novel geometric 

properties[5] whileconsider the Schweinler-Wigner matrix[6] 
in terms of the sum of squared projections. 

3. Results 
3.1. Polar Decomposition 
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The polar decomposition[11] of a matrix 𝑽𝑽 ⋲Rn×m, where 
R is a  set of real numbers, can  be obtained from the Löwdin’s 
symmetric orthogonalizat ion. The symmetric orthonormal 
basis of a matrix Vis expressed as 

𝜱𝜱 = 𝑽𝑽𝑴𝑴−1 2⁄ ,                     (6) 
where 𝛷𝛷 ⋲Rn×mand 𝑴𝑴 ⋲Rm×m. Now multip lying both sides 
of eqn. (6) from right by 𝑴𝑴−1 2⁄ , we get  

𝑽𝑽 = 𝜱𝜱𝑴𝑴1 2⁄ .                      (7) 
This is called as polar decomposition of the matrix 𝑽𝑽. 

3.2. Principal Component Analysis 
Let 𝑽𝑽 ⋲Rn×m, then the sum of squares and cross-products 

(SSCP) matrix Scan be constructed using 𝑽𝑽𝑽𝑽T. The SSCP 
matrix is the covariance matrix without subtracting the mean. 
The diagonal values are sums of squares and the off-diagonal 
values are sums of cross products. The eigenvalues and 
eigenvectors of the SSCP matrix Sare constructed. We have 
found that the eigenvalues are the same as the eigenvalues of 
the Gram matrix constructed using 𝑽𝑽 T  𝑽𝑽  in  the case of 
Löwdin orthogonalizat ions. The eigenvectors in the two 
cases are different. However, the eigenvectors of the SSCP 
matrix S, called as the principal components[12] of 𝑽𝑽, are 
the same as those obtained using the canonical 
orthogonalized set 𝜦𝜦 = 𝑽𝑽𝑽𝑽𝒅𝒅−1 2⁄ . The eigenvectors of S are 
ordered so that the first two principal components retain 
most of the variance present in the o rig inal set of vectors. We 
have computed the sum of the projection-squares[5] o f the 
given vectors onto principal components[5, 13]. Th is gives 
the eigenvalues of Sand is the same as the sum of 
projection-squares of the original vectors on the canonical 
orthonormal vectors, i.e ., theeigenvalues of M. For mvectors 
in n dimensions, we find that the principal components 
obtained through the principal component analysis of a 
square matrix 𝑽𝑽  are equal to the orthonormal vectors 
obtained through the Löwdin’s canonical orthogonalizat ion. 
Hence in the case of square matrices, the principal 
component analysis of the pure SSCP matrix is equivalent to 
the canonical orthogonalizat ion. 

3.3. Singular Value Decomposition 

The singular value decomposition[14, 15, 16] of a 
non-singular matrix 𝑽𝑽can be obtained from the Löwdin’s 
canonical orthogonalization. The canonical 
orthogonalizat ion of a matrix Vcan be written as 

𝜦𝜦 = 𝑽𝑽𝑽𝑽𝒅𝒅−1 2⁄                      (8) 
Multiplying both sides of equation (8) from its right with 

d1/2, we have 
𝜦𝜦𝒅𝒅1 2⁄ = VU I= VU.              (9) 

Now mult iplying equation (9) on both sides from right 
with U†, we get 

𝑽𝑽= 𝛬𝛬𝒅𝒅1 2⁄ U†                      (10) 
This is the singular value decomposition of matrix 𝑽𝑽and is 

called as reduced singular value decomposition form of the 
canonical orthogonalization. 

3.4. Analytic Relations between Symmetric and 
Canonical Orthogonalizations 

We can analytically  obtain the relationship between 
symmetric and canonical orthogonalizations. If one of them 
is obtained from the Hermit ian metric matrix, say canonical 
or symmetric, then the other can be obtained from the 
following fundamental relat ions. 

The symmetric orthonormal basis is given by 
𝜱𝜱 = 𝑽𝑽𝑴𝑴−1 2⁄                  (11) 

From the equation Z = VA = 𝑽𝑽𝑴𝑴−1 2⁄ 𝑩𝑩and for B = U, We 
have 

𝜦𝜦 = 𝑽𝑽𝑴𝑴−1 2⁄ 𝑼𝑼                (12) 
or, 𝜦𝜦 = 𝜱𝜱𝜱𝜱                 (13) 

This analytic relation is useful to construct the canonical 
orthonormal basis directly using symmetric orthonormal 
basis and the eigenvectors of the Hermit ian metric matrix.  

The symmetric o rthonormal basis can be obtained from 
the canonical orthonormal basis by multip lying both sides of 
equation (13) from its right with U†as shown below. 

𝜦𝜦U† = 𝜱𝜱𝑼𝑼U†                  (14) 
𝜦𝜦U† = 𝜱𝜱𝜱𝜱 = 𝜱𝜱                 (15) 
or, 𝜱𝜱 = 𝜦𝜦U†.                  (16) 

3.5. Symmetric Orthogonalization in SVD 

We can analytically  obtain the symmetric 
orthogonalizat ion[17] from the singular value decomposition. 
Let 𝑽𝑽 ⋲Rn×m with n ≥ m be a non-singular matrix. Then the 
singular value decomposition of Vcan be written as 
𝑽𝑽

= �
𝑤𝑤11 𝑤𝑤12 ⋯ 𝑤𝑤1𝑚𝑚

⋮ ⋱ ⋮
𝑤𝑤𝑛𝑛1 𝑤𝑤𝑛𝑛2 ⋯ 𝑤𝑤𝑛𝑛𝑛𝑛

� �
𝜎𝜎11 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝜎𝑛𝑛𝑛𝑛

� �
𝑢𝑢11 𝑢𝑢12 ⋯ 𝑢𝑢1𝑚𝑚

⋮ ⋱ ⋮
𝑢𝑢𝑛𝑛1 𝑢𝑢𝑛𝑛2 ⋯ 𝑢𝑢𝑛𝑛𝑛𝑛

� 

= W Σ U†, where (Σ = d1/2), 
where W⋲Rn×mand U⋲Rm×mare matrices with their columns 
as orthonormal vectors. The columns Wj, j = 1, 2, …, m of 
Ware called left singular vectors of Vand the columns of Uj , 
j = 1, 2, …, ,m of U(or rows of U†) are called right singular 
vectors of 𝑽𝑽. And Σ⋲Rm×mis square and diagonal matrix 
with σi’s as the singular values of 𝑽𝑽. By convention, the 
singular values are arranged in a descending order as σ1 ≥ σ2 
≥…≥σm ≥ 0. This form of singular value decomposition is 
known as reduced singular value decomposition. This 
reduced SVD can give the symmetric orthogonalizat ion. 
Using the analytic relationship between the symmetric and 
canonical orthogonalizations, the symmetric 
orthogonalizat ion of the matrix 𝑽𝑽 can be written from the 
reduced SVD as follows, 

𝜱𝜱 = W U†,                       (17) 
𝛷𝛷ij = Wi1(U†)1j + Wi2(U†)2j + … +Wim(U†)mj (18) 

= Wi1(U)j1 + Wi2(U)j2 + … +Wim(U)jm ,     (19) 
where W is the same as the canonical orthonormal basis 𝜦𝜦. 
The symmetric o rthonormal basis 𝜱𝜱 is unique since it takes 
the linearly independent set of columns of 𝑽𝑽 as input and 
gives the orthonormal columns of WU† as output. It is unique 
because of its two noteworthy properties[18]; one is that the 
symmetric bases preserve the same symmetry as the original 
ones and other is that the bases are least deformed from the 
original ones in the least-squares sense[19]. 
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4. Discussion and Conclusions 
The democratic orthogonalization procedures consider the 

entire lots of vectors in one go. We concentrated mainly on 
the democratic type because their applications have not been 
explored much except in the domain of quantum chemistry. 
We have established that the canonical orthogonalization 
was in fact invented independently by several people from 
time to  time with  different names such as principal 
component analysis and singular value decomposition. We 
have established their equivalence. The connections between 
symmetric and canonical orthogonalizat ions have also been 
established. Analytic relation between symmetric and 
canonical orthogonalizations methods is presented. The 
inter-relationship between symmetric and SVD is also 
shown. 
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