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Abstract  We consider a class of nonlinear singular perturbation problems of the form 

[ ] β=α=∈=+′+′′ε )(,)(];,[),(),())(()( byaybaxxryxqxypxy  with a boundary layer at one end point. Using the theory of 
singular perturbations, the original problem is reduced to an asymptotically equivalent first order initial value problem. Then, 
a variable step size in itial value algorithm is applied to solve this initial value problem in a narrow region containing the layer 
region. The algorithm is based on the exact integration of a locally linearized  problem (on a special non uniform mesh) 
exhibit ing uniform convergence in ε  for any x. Some problems are solved to demonstrate the applicability and efficiency of 
the algorithm. It is observed that the present method approximates the exact solution very well.  
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1. Introduction 
Singular perturbation problems occur very frequently in 

flu id mechanics and other branches of applied Mathematics. 
The solut ion of the s ingularly perturbed boundary  value 
problems has a mult i scale character. The solution varies 
rapidly  in  some parts and varies slowly  in  some other parts. 
The numerical treatment of singular perturbation problems is 
far from triv ial, because of the boundary layer behaviour of 
the solution. There are many physical situations in which the 
sharp changes occur inside the domain of interest, and the 
narrow regions across which these changes take place are 
usually referred as shock layers in fluid and solid mechanics, 
transition points in quantum mechanics, Strokes lines and 
surfaces in Mathemat ics. These rapid changes can not be 
handled by slow scales, but they can be handled by fast or 
magnified  o r stretched  scales . A common strategy  for 
dealing with this type of problems consists of div iding the 
domain  of integration into two sub domains and then to apply 
a different scheme on each sub domain[1, 2]. In recent years 
a large number of analyt ical methods have been proposed[cf. 
Bender and Orszag[3], Kevorkian and Cole[4], O’ Malley[5], 
Nayfeh[6], Smith [7], Hu et .al[8]. Numerical methods  
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based on initial value techniques and boundary value 
techniques are given in[9, 10, 11, 2]. Non linear single step 
methods for initial value problems were discussed by Van 
Niekerk[12]. A non standard explicit method for in itial value 
problems is proposed by Ramos[13]. The more efficient, 
simpler computational techniques are required to solve 
singular perturbation problems.  

In general, finding a numerical solution of boundary value 
problems is more d ifficult than finding numerical solution of 
the corresponding initial value problems. Therefore it is 
better to convert the second order boundary value problem 
into asymptotically equivalent initial value problem. This 
replacement is significant from the computational point of 
view. A variab le step size init ial value algorithm is applied to 
solve this initial value problem in a narrow region containing 
the layer region. The algorithm is based on the exact 
integration of a locally linearized prob lem (on a special non 
uniform mesh) exh ibiting uniform convergence in ε  for 
any x.  

2. Description of the Method 
To describe the method, we consider a nonlinear 

singularly perturbed two-point boundary value problem of 
the form:  

)())(,(]))(([)( xrxyxqxypxy =+′+′′ε , ],[ bax∈  (1) 
with β=α= )(  ,)( byay         (2) 
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where ε is a  small positive parameter (0<ε<<1) and α, β are 
known constants. We assume that )(),,()),(( xryxqxyp are 
sufficiently continuously differentiable functions in ].,[ ba  
Further more, we assume that (1)-(2) has a solution which 
displays a boundary layer of width O(ε) at 0=x  for small 
values of ε. 

First we obtain the reduced problem by setting 0=ε  in  
equation (1) and solve it for the solution with an appropriate 
boundary condition. Let )(xyo  be the solution of the 
reduced problem 

)(),(]))(([ 00 xryxqxyp =+′  with β=)(0 by . 
We now set up the approximat ion equation to given 

equation (1) as follows  
)())(,(]))(([)( 0 xrxyxqxypxy =+′+′′ε      (3) 

where we simply replaced )(xy by )(0 xy  in the last term 
of left hand side of the equation (1).  

Now we rewrite the equation (3) in the form  
)(]))(([)( xHxypxy =′+′′ε           (4) 

where )).(,()()( 0 xyxqxrxH −=  
By integrating (4), we obtain  

KxAxypxy +=+′ε )())(()(           (5) 
where ∫= dxxHxA )()(  and K is a  constant to be 
determined. 

In order to determine K , we introduce the condition that 
the reduced equation of (5) should satisfy the boundary 
condition β=)(by . 

i.e., KbAbyp =− )())((  

∴ )()( bApK −β=                (6) 
Remark: Th is choice of K ensures that the solution of the 

reduced equation of (1)-(2) satisfies the reduced equation of 
(5). Hence, the equation (5) is a first order equation which is 
asymptotically equivalent to equation (1). 

We rewrite the equation (5) as 
10  ,)(),,()( <<ε<α==′ε ayyxfxy      (7) 

where )).(()(),( xypKxAyxf −+=     (8) 
It is well known that the solution of (7) has singularity of 

boundary-layer type for defin ite conditions on the function
),( yxf . On the other hand, classical integration schemes 

are usually ineffective in numerically  solving (7) (see[14] for 
more details). However, there exist special schemes which 
present uniform convergence (in ε ) fo r part icular cases (see 
for the linear case[14], and[15,16] for Riccati-type), but 
these methods are also inadequate in general for nonlinear 
problems. Thus, to integrate problem (7) one must choose 
not only a difference scheme with good properties of 
stability ([14] A0 –stability, for example), but also a special 
non uniform mesh (on the interval[a, b]) which will depend 
on ε in the boundary layer zone and will be independent in 
the remainder. Algorithms of this type can be found in[17]. 
The one we shall give here also possesses these features. 

In order to know the behaviour of the solution of the 
singular perturbation problems in the boundary layer region, 
it is always suggestive to divide the original problem into 
two problems namely the inner region problem and the outer 

region problem and solve them separately. The general idea 
of domain decomposition process was originally introduced 
by Prandtl, which was later named as the method of matched 
asymptotic expansions. For many singular perturbation 
problems, a reduced problem is well defined and solution is 
known a priori. We div ide the orig inal problem into two 
problems, an inner region problem and an outer region 
problem. The inner region problem is defined over a narrow 
region ]100,0[ ε∈x  and the outer region problem is defined 
over the interval ].1,100[ ε  
Solution of the Inner Region Problem 

The inner reg ion problem is given by (7)  
10  ,)(),,()( <<ε<α==′ε ayyxfxy  , ].100,0[ ε∈x  

Mesh Selection Strategy 
We form the non uniform grid in such a way that one 

wants to get more informat ion about the solution of the 
boundary value problem (1) in the boundary layer region. 
This is quite natural because one would like to portray the 
behaviour of the solution in side the boundary layer region. 
The required  step size can be determined d irectly  according 
to the variation of the solution with in a time step as follows: 

If we stand at a point ix  and we want to determine a 

point 1+ix , which verifies ,)()( 1 δ≤− +ii xyxy  where δ is a 

user’s specified (constant) factor, then .
)(1

i
ii xy

xx
′
δ

+=+   

The Numerical Algorithm 
The central idea of our algorithm is to integrate a linear 

problem obtained from (7) when ),( yxf  is locally 

approximated by yxf γ+µ+η=  (with γµη   , and  
constants) on an interval whose length is chosen according to 
an estimation o f  |,),(|/ yxfδ where 0>δ  is a  fixed 
parameter. In order to describe the first stage, we rewrite 
problem (7) in the fo llowing way:  

0 0 0 0 0

0 0 0 0

( ) ( , ) ( , )( )
( , )( ) ( , ),

x

y

y x f x u f x u x x
f x u y y r x
ε

ε
′ = + − +

− +
   (9) 

where 000 , yuax ≈=  and  
2

0 0
2

0 0 0

( , ) 1/ 2{ ( , )( )

2 ( , )( )( ) ( , )( ) },
xx
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− − + −
 

for some ).,(   ),( 0,0 yuxx ∈ξ∈λ   
Now if we integrate the linear part in (9) and impose that 

,)( 00 uxy =  we obtain the function u given by  

,0 if  ,]1[)()( 0
0

))(0(
000 ≠−+−+= y

xt fqexxpuxu
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000 uxffuxffuxff yyxx ===   
This function will approximate the exact solution of (7), 

),(xy  on the interval .],[ 010 Ixx =   
For any x  in kkk Ixx =+ ],[ 1  we consider the approximate 
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solution   
,0 if  ,]1[)()( ))(( ≠−+−+= k

yk
xktkkk fqexxpuxu
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Solution of the Outer Region Problem 
The solution of the reduced problem is considered as 

Outer solution. 

3. Numerical Examples 
To demonstrate the applicability of the method, we have 

applied it to two nonlinear singular perturbation problems 
with left-end boundary layer. These examples have been 
chosen because they have been widely discussed in literature 
and because accurate solutions are available for comparison. 

Example 1 : Consider the fo llowing singular perturbation 
problem from Bender and Orszag[1], page :463; equations: 
9.7.1;  

0e)x(y2)x(y )x(y =+′+′′ε ; with 
.0)1(y and  0)0(y ==  

We have chosen to use Bender and Orszag’s uniformly  
valid approximation (ref.[1], page: 463; equation: 9.7.6) for 
comparison.  

y(x)=loge(2/(1+x))-(loge2)e-2x/ε 
For this example, we have boundary layer of thickness O(ε) 

at x=0.(cf. Bender and Orszag [1]).  
The Maximum absolute error fo r Example 1 over a narrow 

region[0, 100ε] when δ=0.01is presented in Tab le 1 for 
ε=10-3 , ε=10-4 , ε=10-5 , ε=10-6 and ε=10-7 respectively. 
Piecewise solution error is shown in fig.1, fig.2 for ε=10-5 
and ε=10-7 respectively. 

Example 2: Now consider the following singular 
perturbation problem from Kevorkian and Cole[6], page:56; 
equations: 2.5.1;  

; with 
. 

We have chosen to use the Kivorkian and Cole’s 
uniformly valid approximat ion (Kevorkian and Cole[6]; 
pages 57 and 58; equations: 2.5.5, 2.5.11 and 2.5.14) for 
comparison. 

y(x)=x+c1tanh(c1(x/ε +c2)/2) Where c1=2.9995 and 
c2=(1/c1)loge[(c1-1)/(c1+1)] 

For this example also we have a boundary layer of width 
O(ε)at x=0.(cf. Kevorkian and Cole[6]). 

The Maximum absolute error fo r Example 2 over a narrow 
region[0, 100ε] when δ=0.01is also presented in Table 1 for 
ε=10-3 , ε=10-4 , ε=10-5 , ε=10-6 and ε=10-7 respectively. 
Piecewise solution error is shown in fig.3, fig.4 for ε=10-5 
and ε=10-7 respectively.

Table 1.  Maximum absolute error over a narrow region [0, 100ε] when δ=0.01 

ε 10-3 10-4 10-5 10-6 10-7 
Example 1 4.982948E-04 5.155802E-05 6.258488E-06 2.086163E-06 2.086163E-06 
Example 2 3.457069E-04 4.577637E-05 1.788139E-05 1.788139E-05 1.788139E-05 

 

Figure 1.  Error plot for Example 1 for 01.0,10 5 =δ=ε −  
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Figure 2.  Error plot for Example 1 for 01.0,10 7 =δ=ε −  

 

Figure 3.  Error plot for Example 2 for 01.0,10 5 =δ=ε −  

 

Figure 4.  Error plot for Example 2 for 01.0,10 7 =δ=ε −  
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4. Discussion and Conclusions 
In this art icle, we present a numerical method for solving a 

class of nonlinear singular perturbation problems using 
locally exact  integration. Using the theory of singular 
perturbations, the original problem is reduced to an 
asymptotically equivalent first order init ial value problem. 
This is significant from the computational point of view. In 
order to know the behaviour of the solution of the singular 
perturbation problems in the boundary layer region, it is 
always suggestive to divide the original problem into two 
problems namely the inner reg ion problem and the outer 
region problem and solve them separately. A variable step 
size in itial value algorithm is applied to solve this initial 
value problem in  a narrow reg ion containing the layer region. 
The algorithm is based on the exact integration of a locally 
linearized problem exhib iting uniform convergence in ε  for 
any x. Piecewise solution error is shown in figures for 
different value of ε. The solution of the reduced problem is 
considered as Outer solution. This method is very easy to 
implement on any computer with minimum problem 
preparation. To support the applicability o f the method we 
have implemented the present method on two non-linear 
examples with left-end boundary layer by taking different 
values of ε. Maximum absolute error in the inner reg ion is 
presented in tables. It can be observed from the results that 
the present method agrees with exact solution very well, 
which shows the efficiency of the method.  
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