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Abstract In this paper, a mathematical model is proposed to study the effect of exotic predator population on a system of
native prey-predator population. The model includes three state variables viz., density of native prey, density of native
predator and density of exotic predator. The stability analysis of all the feasible equilibria are carried out and also the
possibility of Hopf- bifurcation of the interior equilibrium point is investigated for the parameter a,; the predation rate of
exotic predator. By varying the parameter a,, a change in stability behaviour of the interior equilibrium is also observed.
The stability and direction of bifurcating periodic solution is discussed. Finally the analytical results are supported by

numerical simulation.
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1. Introduction

The prey predator relationship still continues to be one of
the main themes in mathematical ecology due to its complex
dynamic behavior. Many prey predator models have been
studied considering different types of functional responses
[1,2,3]. It is seen that the invasion or introduction of exotic
species in general disrupt the trophic dynamics of native
interacting prey-predator species systems.

Introduced predators usually have a dramatic effect on
native prey, usually the cause of native species extinction[4,
5, 6]. The harm caused by the introduced predators is broadly
known and control programs are largely identified as the best
way to restore ecosystems[7]. Many authors have studied
effect of exotic predator on native prey species[8,9,10].

Dynamical consequences of predator interference in a
tri-trophic model food chain is investigated by R K Naji et
al[11]. Three-species food-chain model with Beddington
DeAngelis type functional response has been studied by
Wang and Zhao[12].

Meng Fan et al.[9] investigated the dynamical interaction
among prey (bird), mesopredator (rat), and superpredator
(cat) and developed a prey-mesopredator-superpredator (i.e.
bird-rat-cat) BRC model, where the predator’s functional
response is derived based on classical Holling’s time budget
arguments. They have explored possible control strategies to
save or restore the bird by controlling or eliminating the rat
or the cat when the bird is endangered. They do not show
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under what conditions all the three species (BRC) will
coexist and global stability analysis of interior equilibrium
point is also not carried out.

In view of the above, the main purpose of this paper is to
construct a general model to study the effect of exotic
predator on a system consisting of a native prey population
and a native predator population by considering Holling type
two functional response with exotic predator interference for
native predator population and Beddington type functional
response for exotic predator population.

2. Basic Assumptions and Mathematical
Model

Let S(t) denotes the density of native prey population,
R(t) denotes the density of native predator population and
C(t) denotes the density of exotic predator population. We
assume that r and k are growth rate and carrying capacity
of native prey population respectively. d; and d, are
death rate of native predator population and exotic predator
population respectively. b is the interference due to exotic
predator population. a; is the predation rate of native prey
population by native predator population. by is the growth
rate of native predator population due to predation of native
prey population. a, is the predation rate of native predator
population by exotic predator population. b, is the growth
rate of exotic predator population due to predation of native
predator population. h is the half saturation constant of
native prey population. w is the wasting time to searching
native predator by exotic predator. h; is the handling time
to handle native predator by exotic predator. In view of
above, the resultant system dynamics is governed by the
following system of differential equations:
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Model 1 (With exotic s pecies)

as _ _SY _(uaS)(_E_
(zit - ri(l k) (h+5) (1+bC) (1
AR _ (baS\(_R ) _ _aRC
e (h+5) (1+bC) 1+aR +8C d,R 2
d_C __baRC _
dt  1+aR+BC d,C G)
With initial conditions S(0)=>0,R(0) >0 and
c() >o.
Where b,r,k,h,a:azhl,ﬁ: azw,al,az,bl,bz,dl and

d, are positive constants.

In the absence of exotic predator species the above
system (1) — (3) is govermned by the following system of
differential equations:

Model 2 ( Without exotic species)

T=rs(1-3)-(G%) O
w = G5) - ain o

With initial conditions S(0) > 0and R(0) = 0

3. Equillibria of the System

In this section, we analy ze the system of equation (4) — (5)
under the initial conditions. We find all the possible
equillibria of the system of equation (4) — (5). The system
has three feasible equillibria, namely

(i) Trivial equilibriumpoint E; = (0,0)

(ii) Axial equilibriumpoint E, = (k,0)

(iii) Positive interior equilibrium point E, = (S* R#)

where Y

# _ d,h w1 # < S_)
S —bl_dl,R —al(h+5)1 "

The positive equilibriumpoint E, existif b; > dy.

We now analyze the system of equation (1) — (3) under
the initial conditions. The system has four feasible
equilibria, namely

(i)Trivial equilibrium point E;, = (0,0,0)

(i)Axial equilibrium point E, = (k,0,0)

(iii)Boundary equilibrium point Ep = (S*,R*,0)

where
dih

= R#=L(h+5#)<1—5—#>
by—d;’ a, k

The boundary equilibriumpoint Eg existif by > d;.

(iv)Positive interior equilibrium point Ep = ($*,R*,C")

S#

where
* __ S1
=55 (6)
R == (1 +bC)h+5)(1-%) )
ai
C* = (by —ad)R* —d; 3)

d2B
S;=h@ +bCHa,C*+d,(1 +aR* + BCH},
S, =b,(1+aR*+ pC"),
S3=00 +bCHa,C*+d,(1+aR*+BC),
The Positive interior equilibrium point Ep exist if
S, >S5 and b,R* > d,(1+ aR").
Now, we will study the existence of positive interior
equilibrium point Ejp,
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Put value of R* fromequation (7) in equation (6)

we get,
X hH

5 - b1by(1+BC*)—H
where H = H;C* + H,C" + H;
H, = b(a,b, — aa,d, + Bb,d;)
H, =a,b, — aa,d, + Bb,d, + bb,d{,H; = b,d;
Putting value of R* from equation (7) and putting value
of §* from equation (9) in equation (8) we get
ByC* +B,C" +B,C” +B,C*+Bs =0
where B, = ka,d,H?;

B, = 2H,(H, — Bb,b,) + bhr b b, H, (b, — ad,)(k + h);
By = 2b,H, (b, — d,)(H, — Bbyb,)? + hrbyb, (b, —
ad2 i+ W+ 62— 64601 52;

B, = 2b,(b; — d)(Bb b, — Hy) — hrb, b, (b, —
ad2 kb1 026+ f— e+ 1062 d1+ A2;

Bs = b3 (b, — d)* — rbyb3h, (b, — ad,) kb, — kd; —
a1/1.

Therefore unique positive root C*> 0 if B, > 0,B; >
0, B,>0 and B; <0

©

4. Dynamic Behaviour of the System

The following results may be noted regarding the local
stability of the equilibria of the model 2 given by (4)-(5).

(1). Equilibrium point E; ofthe model is unstable in the
absence of exotic species.

(2). Equilibrium point E; of the model is stable when
there is no exotic species present in the system if % <dj.

(3). Interior equilibrium point Ep of the model is locally

asymptotically stable when there is no exotic species

d1(h+k)

present in the systemif o b, is satisfied.

The following results may be noted regarding the local
stability of the equilibria of the model 1 given by (1)-(4).

(1). Equilibrium point Ey  of the model is unstable in
the presence of exotic species.

(2). Equilibrium point E, of the model is stable when
exotic species is present in the systemif % <d;.

(3). Equilibrium point Ep of the model is stable when

. . . . . bzR#

exotic species is present in the system if D) <d, and

dq(h+k) .
ﬁ > b, are satisfied.

(4). For the sake of simplicity, the equilibrium points
(8*,R*,C*) of the system (1)-(3) is shifted to new points
(ny,ny,n3) through transformations n; =S —S*n, =
R—R'n;=C—-C"

In term of the new variables, the dynamical system (1)-(3)
can be written as in matrix formas

X=AX +B (10)
where dot cover X denotes the derivative with respect to
time. Here AX is the linear part of the system and B
represents the nonlinear part. Moreover,

m a1 Q1 A3
X=|m|,A=1021 ayp ay)|, (11)
n3 0 a3 as;
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By; + By, + B3 The eigen values of the matrix A help to understand the
B = |By1 + By + B3 (12)  stability of the system. The characteristic equation for the
B3y + B, variational matrix A is given by

where B+ A+ A,1+4;,=0 (13)
By = Lini + lymyng + lynyny + 1y nf + Isnyng, where
By, = lgmnf + I, ning + lgnf + lgnynyng + Lygniny, A, = —(ay; + ay, +ags),
Bis = Ly n + Ly mpng, Ay = ayy (agy + az3) + Ay 055 — Ap3a5, — 12051,
By = lyznyn, + Lyyné + Lisnyng +ljgnd + 1, yng, Ay = ay; (ay3a3; — Aypa33) + A10y; A33 — A13a3, Ayg,
By, = Ligni + LignynZ + lygynyng + Ly nén, + 1y, nj, Using the Routh-Hurwitz criteria, we derive that the
Bys = lysning + L,y nd + lys iyn? + lyyn?ng + 1, nd, equilibrium point Ep is locally asymptotically stable, if
Bsy = lpg g + lpgmyng + I3gnf + L3y 3 + U3 3, Ay >0,4, >0,4; >0 and A4, —A; >0 are being
By = lzning + lymyng, ap; = (_Tr +a;pipsR*)S”, satisfied.

Ay, = —a,p,psS*, ays = a by pyp2S°RY, Now, we are in a position 'to make an attempt to find out
= hb. D2 R* @ = aoapiR*C* the condition under which the system undergoes
az1 1P P3R5 Ay 20P; ) Hobfbifurcation[131. For thi h th
(ys = —(bblpzp_%S*R*+azpr*(1+aR*)), opf-bifurcation[ .]. or this purpose, we choose the
2 . _ 2 Dk parameter ‘a,’ as bifurcation parameter as it plays a crucial

a32 bzpl C (1 + ﬁC ), a33 —_ _bzﬁpl R C ) . . - .
(A +aR +BC) Lp, = (s S)T role to describe predation rate of native predator population
Zl —(1+bc) ! ik ’ by exotic predator population. We shall now apply the Liu’s
3 ' criteria[ 14] to obtain the conditions for small amplitude

=T 3 . S . periodic solution arising from Hopf-bifurcation. As the
I, = T +a;hpyps R l, = aybhp;ps R equilibrium population densities are function of ‘a,’, the
L= ey = e | eensfie st i (1) oo
Wi u .=
ls = aybp,piS° ls = —a,b*hp3pi R y . - s 1 -
A;(a, ) for i =1,2,3. Now noting that the quantities 4;’s
l, = —a,bhp3piR* lg = —a,hp;p;R* are smooth function of parameter ‘a,’, we first state for our
ly = a;bhp}p? Lo = a hp3p; case, the definition of a simple Hopf-bifurcation.
I — abo0iR'S" I — —a. b3S Ifacrucial value a; ofparameter ‘a,’ is found such that (i)
1= &b P l12 T Tho P a simple. pair of. complex .conjugate eigenvalues of
woin |Soapeaes | S 05 @R
lis - . Lis becomes purely imaginary at a, =a; , ie. 1,(a}) =
=a ‘1’%’1 R*(1 - 2fp, C") = R* (b, b*p,p3s* iy*,1,(a3) = —iy* with y(a;) = y* >0, whereas the
— 4pi (12+ f‘R ) +a,pp(1 + aR*)) other eigen value remain real and negative; and the
— bbypyps'S transversality condition (i) ((dRed;(ay)))/day| _ . =
Yy i\42
l,, = —bhb,p2p?R* l,s = —hb,p3psR" ( ) 2
7 17250 18~ 17250 (dx (ay)) /da, . # 0 is satisfied, then at a, = a}
lig e . - o
— azf)’pf‘R*(l +pC* L,y = —bhb,pZp?2 we have a simple Hopf—blfu.rcatlon. Without knowing elgen'
02 . L = —hb.p3 value[14] proved that (referring the result to the current case):
_“lfz + 2afR°C ) | L= —hbipips it 4, (ay),4;(ay),Aay) = 4,(a,)4, (@) — A5(a,) are
+bib7p,psS smooth function of the parameter ‘a,’ in an open interval
I L2 . containing a; € R, such that the following condition hold.
2 atpic (4 e | = OGP (1+ar ) (i) A (a) >d(k€43()a§) > 0,A(a}) = 0
— B2C* +2aBR*C* i) a, 40
L24 L5 = b2hbyp}pi R % aras
= —R*(a,8%p*(1 + aR*) 125 — bhb ;)321)23}?* Then (i,) and (ii,) are equivalent to conditions (i) and
+bb’p,pyS”) 2 e (i) for the occurrence of a simple Hopf-bifurcation at
loo = hb.pip.R* lyg a, = a;.Hence we can propose the following theorem:
27 = MD1P2 P3 = —ab,piC*(1+ BC*) Theorem 4.1 If a critical value a; of parameter ‘a,’ is
Ly found such that A;(a;) >0,4;(a;) > 0,A(a}) =0 and
=b,p?(1 + aR* + BC* l_30 b p R (1 + aR") further A'# 0 (where prime denotes differentiation with
+ 2aBR*C*) = = byfp; a respect to a, ) then system (1)-(3) undergoes
I I Hopf-bifurcation around Ep, (S*,R*,C™).
3; bya?pic (1 + BCY) :32 b,B2ptR* (1 + aR*) Next, we seek a transformation matrix P which reduces
7 7 the matrix A to the form
33 34 0 —v 0
= ab,pt(p?C” 1 = b,ppi(a’R” —1 PlaP=[v 0 0 (14)
— aR* — 2aBR*C*) — BC*—2aBR*C*) 0 0 -4
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Where the non-singular matrix P is given as

Py Py P
P=|Py Py P23] (15)
Py 0 Py
where, Py = ay,0335 — ay3a3, — V%, P, = vlay, +ass),
Py = (ay, + A1) ag3 + A)) — ay3a35, Py = —0y; ag3,
Py, = —vayy, Pz = —ay (‘133 +A1)' Py = ay a3,

P33 = ayias3,
To achieve the normal form of (10), we make another
change of variable, that is,

341
X = PY ,where Y = |V
Y3
Through some algebraic manipulation, (10) takes the form
Y=Qvr+F (16)
where = P~1AP and
F' 1, v2,93)
F=P7'f=|F*(y1,),,¥;) | f is given by
F* (1,92, ¥)
1,2, 93)
f=019,9) (17)

f3 01, Y2, 93)
where,
YO ye,y3) = Lhnf + Lymyng + Ly, + 1y nj
+ lsnyn; + g nlnf + 1 n12n3 + Ig n13
+ lgninyng + 1y nlznz + 1 n33
+ 1, n2n32;
2.y, ¥3) = Lizmyng + Ly nf + Lismyng + Lignf +
Linyng + Lignf + Ligmyng + Lyynymyng + Ly nin, +
Lop 3 + Lyangng + Ly nd + Lysyng + Lygning + Ly, ni;
2y, 95) = Lagng + Lo mpng + L3gng + I3 n +
l3pn3 + L3z ning + Lyymyni;
where,
ny = (ay; a3 — aya3, — vy + viay, +azs)y,
+((ay, + A (ags + A)) — aya3,)ys
N, = =@y A3y —Vay Y, — Gy (ag3 + Apys,
N3 =dp1a3,Y; t0a3103)3
Equation (16) is the normal form of (10) from which the
stability coefficient can be computed. In (10), on the right
hand side the first term is linear and second one is nonlinear
in y's. For evaluating the direction of bifurcating solution,
we can evaluate the following quantities at a, = a; and
origin

1 .
911 :Z(C11+1D11) (18)
1 ,
9oz =7 (Cop + iDyp) (19)
1 ,
920 =, (Cyo + iDyg) (20)
1
Gy = 5(621 +iDy;)
9*F!  0°F!
Co= =5 +—
11 aylz ayZZ
9*F?>  9%F?
+
11 ay; a 2
c ’F'  9°F! , 9% F?
7oyl ay; Toyoy,
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0 F? 9*F!

- +2

dy; " 0y, 0y,
9*F! 9% F?
- +2

a)’zz 0y, 9y,
0 F? 9*F!

D,y = - -2

27 oy oy oy oy,
PF' 93F? 93F? 3 F!
= + + +

ay? ~ dy;  0yfdy, 0y, 0y}
PF* 9°F'  9Ft 93 F?

= + + +
ays 0y232 dyidy, = 0y, 0y}
1/3*°F3 0°%F°
T\ e Ty )

1 2
. 1<62F3 92 F3 ) 62F3>
=- - —2i
2074\ oy ay? dy, 0y,
by P
AT A+ 204,

1 .
Gy1p = > (C110 + iDy50)

9% F?
~ay?
9*F!

Con =
20 aylz
9* F?

DOZ

CZl

DZl

Wi =

Gyp1 = i(c101 + iDyg;) (21)
c 02 Fl 62 F2
110 = +
dy, 0y 0y, 0y3
D 6} F? 65 F!
no 0y, 0y;  0y,0y3
c 9% F1 9% F?
o 0y, 0y;  0y,0y3
R 02 F2 aZ Fl
= +
1ot 0y, 0y;  0y,0y3
921 = Gy + (2Gy oWy + Gy wyp) (22)
Thus, we can determine gi1,902,920,921 from

(18),(19),(20), and (22), respectively. Thus, we can compute
the following values:
¢,(0) = — [920911 —lgl? . o2 17 +g£
2v pe () 3 2
Ly = % ,B, =2 Re C,(0)
(Im CKO) +u, ImA'(a3))

*
va,

(23)

T, =

which determine the qualities of bifurcation periodic solution
in the center manifold at the critical value a;.

Theorem 4.2: The parameter p, determine the direction
of the Hopf-bifurcation[15] if p, > 0 (u, < 0) , then the
Hopf-bifurcation is supercritical (subcritical) and the
bifurcation periodic solutions exist for a, > a} (a, < a}) ;
B, determine the stability of bifurcating periodic solution,
the bifurcation periodic solutions are orbitally
asymptotically stable (unstable) if 8, <0(f, >0); 1,
determine the period of the bifurcating periodic solution; the
period increase (decrease) if 7, > 0 (t, < 0).

5. Boundedness of the System

Lemma 5.1 All the solutions of system (4)-(5) with the
positive initial condition are uniformly bounded within the
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region (4
where
0, ={6R:0s5+2 LR <ﬂ,p min(r, d,)}

is a region of attraction.

Proof. Proof is obvious.

Lemma 5.2 All the solutions of system (1)-(3) with the
positive initial condition are uniformly bounded within the
region (),

where

, = {(s,R,0): 0<s+2 R+‘”“Zc<ﬂ 6 =

by by
minr,d1,d2

is a region of attraction.

Proof. We assume that the right hand sides of the system
(1)-(3) are smooth function of (S(t),R(t),C(t)) of
(t € R,). Let S(t),R(t) and C(t) be any solution with
positive initial condition (s(0),R(0), C(O)).

Fromequation (1), we obtain

ds S
=" (1 B k)
then by usual comparison theorem[16]
S<k
We consider a time dependent function

w@) =

bl

The time derivative of W (t) along the solution of the

system (1)-(3) is
daw

S\ ad a;a,d
_=r5<1 __)_gR_&
dt k b, bib,
Since S < K, the above expression reduces to
aw a;dq a,a,d,
— < 2rk — ——C~—71§
dt by bib,
Taking = mini{r, (Cill, d,) , we get
—+ 0W < 2rk
dt

Applying comparison tlllceorem[ 17] we obtain
2r
0<wW(S,RC)< -5t w(5(0), R(0),C(0))e?

and for t — oo,

0<W(s,R, c)<2”‘

Therefore all the solutlons of system (1)-(3) initiated at
s (O) R(0),C(0)) enter into the region

a,a, 2rk
S,R,C)0<S R -

9 = mln(r,dl,dz)},for any € > 0.

Thus all the solutions of system (1)-(3) are uniformly
bounded at (S(0),R(0), C(0)).
This completes the proof of the lemma.

6. Global Stability Analysis of the
Interior Equilibrium Point

Theorem 6.1: The positive interior equilibrium point Ep
ofthe model 2 is globally asymptotically stable in absence of

exotic predator species if % > aqR” is satisfied.

Effect of Exotic Species on a System of Native Prey-Predator Populations : A Model
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Proof: Proof is obvious.
Theorem 6.2: Ifthe following in(equal)ities hold
_r _aiR*+bc”
R == TR VrI 0 (24)

_ by h(1+bC™)
Hpp = dy = 1+aR*+4C* +1, >0

H3; — HyyHy3 <0

(25)
(26)
where
H23 - LZ +L3 +L4
a,C*
(h+ 0+ 59 (1 +557) @ +bC)
F b;bS*R*(h + k)
27 14 aR*+BC*
2rkFa,(1 +aR")
oh +k)(h + S*)(l + 2brk)(l + bC*)
F,b,(1 + BC*)

h+ 10+ 50 (1 + 225
F, b, BR”
(h+K)(h+57) (1 + Zbrk) (1+bC)
Ep, is globally asymptotically stable with respect to

2brk

Ly =

) +bC)

solutions initiating in the interior of the positive orthant.
Proof: Consider the following positive definite function

S\ F
V(S,R,C) = (s - s*m;) + ?1 (R — R*)?

F(C C*—C"l C)
+2 - - nC*

where F;,E, are positive constants to be chosen
appropriately.

Differentiatin V with respect to t, we get

. ds dR (c-cHdc
V=— +F R —R)— F,——————
s art c dt

Substituting values of S,R and C from the system of
equations (1)-(3) in the above equation and after doing some
algebraic manipulation, we get

V=-[C;(5§=5)+Cp,(R—RD*+C35(C-C")+
C12.5— 5% R— Rx+ C135— 5% C— Cx+ C23R— i~ C*

where
r aR*(1+bC) F,b,BR*
Cll = E_—*' 33 = *T'
sz — F (dl b1(1+bCT)(h+S) a,C (1+[>’C)

M

_a;(h 4590 +bC) _Fb, h,R(1 +bC )

2= ’
a;bR*(h + 5)
G ===y

M=@1+4aR +BC)A + aR* + BC*),
N=((+9h+5)A+b0)1 +bC),
Then a sufficient conditions[18] for V to be negative
definite is that

€1 >0 27)
Cpp> 0 (28)
Ciy—C11C <0 (29)
Cf—C1C33<0 (30)
C35— CpC33 <0 @31
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hold.
Choosing F; and F, such a way

51%2 < Hy Hy, (32)
Hi3; < H;1H3; (33)
where
a;(h+5)A +bC*) 2rkF b;h;(1 +bC*)
= +
12 1+ aR* + BC* 6(1 + aR*+ SC*)

a,bR*(h + k)
BT 14+aR +pC*
conditions (32) and (33) hold. However (32) implies (29)
and (33) implies (30). Then above sufficient conditions
reduce into the following inequalities.

€, >0 (34)
Cpp> 0 (35)
Ci3— CppC33 <0 (36)

However (24) implies (34), (25) implies (35) and (26)
implies (36). Hence V is negative definite and so V is a
Liapunov function with respect to Ep_, proving the theorem.

7. Simulation Analysis

We have gained analytical understanding of possible
dynamics of the native prey-predator, exotic predator model.
We now perform some simulation work for the model 2 with
set of parameters.

r=0.5k=16;a;, = 0.4;b;, = 0.36;d; =0.15,h = 9.

For this choice of parameters we get a unique co-existing
equilibrium point Ep (6.4247,11.5357) of Model 2 along
with By >0,B,>0 and hence Ep, is locally
asymptotically stable (see Figure 1(a), 1(b)). We now
perform simulation work for the model 1 with set of
parameters.

r=05k =16;a = 0.2, = 0.45;b = 0.1;a, = 0.9;
a, = 0.138; b; = 0.2; b, = 0.051,d; = 0.00015,h = 5.5,
d, = 0.05;

For this choice of parameters we get a unique co-existing
equilibrium EPE(12.9901,2.3193,2.0040) of Model 1
along with A; > 0,4, > 0,43 > 0,4;4;, —A; >0 and
hence Ep, is locally asymptotically stable (see Figure 4(a),
4(b)). Now, we discuss the dynamical behaviour of the
model 1 by varying the parameter a, taking the above set
of parametric values. For this, we find out the positive roots
of'the equation A;4, — A; = 0 and we obtain three positive
roots of this equation i.e.a;(1) = 0.003955,a;(2) =
0.01949,a;(3) = 0.1726 (See Figure 7(a), 7(b), 7(c)). At
a,, one pair of eigen values of the characteristic equation (13)
are of the form A,, = +iv, where v is a positive real
number and hence the system (1)-(3) undergoes a
Hopf-bifurcation at a3(1) = 0.003955 < a, < a;(2) =
0.01949 . Fora;(1) =0.003955, we get C,(0) =

—5.79886 x 10~? — 1.56886 x 10~ 7i, u (a;(1)) =
1.96078. From these values,_it follows from (23) that
U, >0 and B, <0 showing that the bifurcation takes
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place when a, crosses a;(1) to the right (a;(1) < a, <
a;(2)) and the corresponding periodic orbits are orbitally
asymptotically stable (See Figure 5(a) and 5(b) for a, =
0.0041 ). For a;(2) =0.01949, we get C,(0) =
2.96735 x 1078 + 7.46404 x 1079, u'(a;(2)) =
1.76203. From these values, it follows from (23) that
U, < 0 and S, > 0 showing that the bifurcation takes when
a, crosses a;(2) to the left (a5(1) < a, < a3(2)) and the
corresponding periodic orbits are orbitally asymptotically
unstable. The system (1)-(3) undergoes a Hopf-bifurcation at
a,>a;(3) . For a;(3)=0.1726 we get C,(0) =
—2.11192 x 10711 — 8.89601 x 10711i,  u'(a;(3)) =
1.96078. Fromthese values, it follow from (23) that u, >0
and B, < 0 showing that the bifurcation takes when a,
crosses a;(3) to the right a, >a;(3) , and the
corresponding periodic orbits are orbitally asymptotically
stable (See Figure 6(a) and 6(b) a, = 0.2).
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Bifurcation Diagram
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Figure 8(c¢).
8. Conclusions

In this paper, a mathematical model is proposed to study
the effect of exotic predator population on a native
prey-predator species system. The local stability analyses of
all the feasible equilibria are carried out. We observed that if
the axial equilibrium point E, of model 2 is stable then
interior equilibrium point E, does not exist and if interior
equilbrium point Ep, of model 2  exists then axial
equilibrium point E; is unstable. From the stability of axial
equilibrium point Ex[see figure 2], it may be concluded that
native prey population will survive and native and exotic
population may go to extinction. From the stability of
boundary equilibrium point Eg[see figure 3], it is observed
that the exotic predator population will not survive and
consequently native prey-predator population will coexist.
The global stability analysis of both the models 1 and 2 are

Bifurcation diagram of the exotic predator species with respect to predation rate a,

carried out, and the possibility of Hopf- bifurcation of the
interior equilibrium point is investigated. We observed that
the positive interior equilibrium point Ep is stable for
0< a, <a;(1) and a;(2) < a, <a;(3) (see figure
8(a), 8(b), 8(c)). The switching in stability behaviour based
on predation rate of exotic predator; a, is also observed (see
figure 8(a), 8(b), 8(c)). We also determine the stability and
direction of periodic bifurcation from the positive
equilibrium at the critical point. Finally we conclude that
invasion ofexotic predator is harmfulto native prey-predator
system. We also clear that exotic predator is harmful to
native predator and helpful to native prey. The predation rate
of exotic predator creates complex phenomena in the system.
The present work may be extended by considering the
migration of the population.
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