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Generalised Differential Quadrature Method in the Study
of Free Vibration Analysis of Monoclinic Rectangular
Plates

Prag Singhal’,Garima Bindal

Department of Applied Sciences and Humanities, ABES Engineering College, Ghaziabad

Abstract Vibration characteristics of monoclinic rectangular plate of exponentially varying thickness resting on elastic
foundation have been studied on the basis of classical plate theory. Following Lévy approach i.e. two parallel edges (y =0
and b) are assumed to be simp ly-supported while the othertwo edges (x =0 and @) may have either ofthree combinations C-C,
C-S or C-F, where C, S and F stand for clamped, simply supported and free edge, respectively. Assuming the transverse
displacement w to vary as sin (p 77 y/b), the partial differential equation which governs the motion of equation is reduced to an
ordinary differential equation in x with variable coefficients. The resulting ordinary differential equation has been solved by
Generalised Differential Quadrature Method (GDQM) for all the boundary conditions considered here. The effect of various
plate parameters has been studied on the natural frequencies for the first three modes of vibration. Convergence studies have
been carried out for four decimal exactitude. Mode shapes for all the three plates have been presented. The efficiency of
generalized differential quadrature method for the natural frequencies of vibration of monoclinic rectangular plates has been

examined.
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1. Introduction

Free vibration analysis of plate structure is one of the main
vital tasks for an engineer to accomplish in the engineering
design. Such type of free vibration problems are generally
described by a linear partial differential equation associated
with a set of related boundary conditions, whose closed form
solution is not possible. As a result, the various numerical
methods such as the finite difference method[1], Galerkin’s
method[2],Rayleigh-Ritz method[3],quintic splines
method[4], finite-element method[5], Chebyshev collocation
method[6], and Differential quadrature method[7-10] have
been employed to study the vibrational characteristics of
plates of various geometries.

Differential quadrature method (DQM) is a collocation
scheme and was first introduced by Bellman etal.[11]. Malik
and Civan[12] have presented comprehensive results
showing that the DQM stands out in numerical accuracy as
well as computational efficiency over the finite difference
and finite element methods. The application of DQM covers
almost all the areas of structural and vibration analysis of
shells, beams and plates etc. The DQM is used to determine
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the weighting coefficients for the first order derivative
approximation, in which the derivative of a function with
respect to a spatial variable at a given discrete point can be
expressed as a weighted linear sum of the function values at
all the discrete points in the computational domain. Bellman
et al.[13] proposed two methods to compute the weighting
coefficients. In the first method, weighting coefficients are
determined by solving a system of algebraic equations, in
which the coordinate of the grid points to be chosen arbitrary.
But, in this method, it is very difficult to obtain the weighting
coefficients for a large number of grid points as it results to
an ill-conditioned matrix since the corresponding differential
matrix becomes increasingly large [14]. In the second
method, the weighting coefficients are determined by a
simple algebraic formula and the grid points are chosen as
the roots of shifted Legendre polynomial. Shu et al.[15]
proposed the generalized differential quadrature (GDQ)
method in which Lagrange interpolation polynomial is used
as the basis function. An algebraic expression is presented to
compute the weighting coefficients of the first order
derivative approximation and the recurrence formula is used
to compute the weighting coefficients for higher order
derivatives without restriction on the choice of the grid
points.

The advantages of the GDQ method included no
restriction on the number of grid points used for the
approximation and the weighted coefficients are determined
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using simple recurrence relation instead of solving a set of
linear algebraic equations as in other version of differential
quadrature method. A more in depth analysis of the merits of
the GDQ method can be found in Du. etal.[16]. Recently, the
GDQ method has been applied to solve fluid dynamics and
buckling of composite structure problems [17,18].

The plates of variable thickness have significantly greater
efficiency for vibration as compared to the plates of uniform
thickness and also provide the advantage of reduction in
weight and size. Notable contribution made thereafter
dealing with rectangular plates with uniform / non-uniform
thickness with various boundary conditions are given in the
refs. [19-23].

The analysis of structures on elastic foundations is of
considerable interest and widely used in several engineering
fields, such as foundation, pavement and railroad, pipeline
and some aero-space structures applications. The different
foundation models (Vlasov, Winkler and Pasternak etc.)
have been proposed in the literature [24] to approximate the
foundation characteristics. Numerous studies dealing with
Winkler foundation are available in the literature and are
reported in the refs. [25, 26].

The free vibration analysis of homogeneous monoclinic
rectangular plates with exponentially varying thickness
resting on Winkler foundation has been solved by
Generalized Differential Quadrature method (GDQM).
Frequencies and mode shapes for different boundary
conditions (C-C, C-S and C-F) for the first three modes of
vibration are computed. The present work and the results
may be an orientation to the future research work.

2. Mathematical Formulation

Consider a rectangular monoclinic plate of length a,
breadth b, thickness h, density p and resting on a
Winkler-type foundation with foundation modulus &
referred to rectangular Cartesian co-ordinates system. The
differential equation goveming the free transverse vibration
of monoclinic rectangular plate is given by

n otw h3 o*w nootw
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6 W Ow 0
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where W(x,y,t) is the transverse deflection, t the time, p the
mass density, cij, Ci2, ¢, € and cg are the material
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constants.

Let us assume that two opposite edges of the plate given
by y = 0 and y = b are simply-supported and that the
thickness is independent of y i.e., h = h(x). For harmonic
vibrations, the deflection function w (Levy approach) is
assumed to be

w(x, y,t) = w(x)sin(pry/b)e”  (2)

where ‘p’ is the positive integer and @ the circular
frequency in radians.

By substituting (2) in (1) and introducing the following
non-dimensional variables

X:x/a , Y:y/b R Z:h/a ) w:;)/a
The equation (1) reduces to
W (X)+6h hw (X)+{6hh +3h h —

) (CIZ +¢y +C66) 1223} W"(X)—6 (CIZ +¢y +Ces)
¢y =
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where A% = pzizﬂ and primes denote the differentiation

wr.t. X,
We assume that the thickness and density of the plate are
varying exponentially along the X-direction and are given by

ZZhoeaX and p =poeﬂX , Where ha and p, are the

thickness and density of the plate respectively at the end X=0,
a and f are the taper and density parameters respectively.
With these notations, equation (3) reduces to

AW (X)+A4w (X)+4,w (X)+4,w (X)
+A4,w(X)=0

where
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The solution of equation (4) together with the boundary
conditions at the edges X = 0 and X = 1 gives rise to a
two-point boundary value problem with variable coefficients
whose closed form solution is not possible. An appro ximate
solution is obtained by employing generalised differential
quadrature method.

3. Method of solution: Generalised
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Differential Quadrature Method

The GDQ approximates a partial derivative of a function
with respect to a variable at any discrete point as a weighted
sum of'the function values at all the discrete points chosen in
the overall domain of that variable and approximates
continuous function with a higher-order polynomial in the
overall variable domain. The n™ order derivative of wW(X)
w.r.t. X can be expressed discretely at the point X; as

n i
w = Z (")W(X )., ¥
ax” =
n=1,2,3,4andi=1,2,...,m
where m is the total number of grid points employs to

discretize the plate, Ci(j")

associated with the nth order derivative of W(X) w. r. t. X at
discrete point X;. In the generalized differential quadrature
(GDQ) method [16, 17], the global Lagrange interpolation
polynomial is used as the test function

_ M(X) .
g]-(X) = (X—Xj)M(])(Xj)’J:

are the weighting coefficients

L2,..,m (6

where

M(X)= ﬁl (X~ X,)
L

(7
MVx = 1‘[ (X,-X;)
o

where M (X) is the first derivative of M(X). Thus, the

weighting coefficients Ci(;) (i,j=1, 2,..., m) can be obtained

analytically from the differentiation of equation (6) to obtain

o MUX)
T X )MY(X)

J=1 2, m i) (3)
¢ = Zc(") i=1,2..,m;

ﬂét

The weighting coefficients for higher order derivatives
can be obtained in the same manner. Actually, a recurrence
relationship has been found for the nth order weighting

(n)
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Discretizing equation (4) at grid points X;, i =3, 4,..., m-2,

it reduces to,
A WX )+A W"(X)+ A, W'(X,)+
' ’ ' (11)
A W'(X)+ A, W(X,)=0.

Substituting for MX) and its derivatives at the i grid
point in the equation (11) and using relations (5) to (10), the
equation (11) becomes

YAy + 4,0+ A, + A, W (X)) +

Lig 3,70
= ’ ’ (12)
A, W(X)=0.
Fori=3,4,...,(m-2), one obtains a set of (m-4) equations

in terms of unknowns Wj (= W(Xj))’ j=12,--, m,

which can be written in the matrix form as
[BI[W*] =[0] (13)
where B and W* are matrices oforder (m-4) x mand (m x 1)
respectively.
Here, the (m-2) internal grid points chosen for collocation,
are the zeros of shifted Chebyshev polynomial of order (m-2)
with orthogonality range[0, 1] given by

1 2k-1rx
Xk+1=2[1+c os( 2—)] k=1,2,.

am-2 (14)

4. Boundary Conditions and Frequency
Equations

The three different combinations of boundary conditions
namely, C-C, C-S and C-F have been considered here, where
C, S, F stand for clamped, simply supported and free edge,
respectively and first symbol denotes the condition at the
edge X=0 and second symbol at the edge X=1.By satisfying
the relations

w=""_o
dX :
d*w
W=W—CI’IA,2W=O 5
and
3 .
AW _ o - 0= (G, gy 2 W
ax’ ax’ ‘¢, ¢, dX
‘1

6
C—) for clamped, simply supported
11
and free edge conditions, respectively, a set of four
homogeneous equations in terms of unknown W, are
obtained. These equations together with field equation (13)
give a complete set of m homogeneous equations in m
unknowns. For C-C plate this set of equations can be written

as e [0

where BCis a matrix of order 4xm.

where €;, = (

(15)
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For a non-trivial solution of equation (15), the frequency
determinant must vanish and hence,

B
B = (16)
Similarly for C-S and C-F plates, the frequency

determinants can be written as

B
=0 and

B =0 respectively (17,18)

BCF

5. Numerical Results and Discussion

The frequency equations (16-18) have been solved
numerically to compute the values of the frequency
parameter Q for various values of plate parameters. The
effect of foundation parameter, density parameter, taper
parameter and aspect ratio on frequency parameter Q has
been analysed for C-C, C-S and C-F plates vibrating in first
three modes of vibration. The elastic constants for the plate
material (rock gypsum)[Haussuhl] are taken as

¢, =7.859x10%erg/cm’ ,c,, =c,, = 4.1x10% erg/cm’

cy, =6.287x10° erg/em’ ,co, =1.044x10% erg/cm’,
given by Haussuhl,1965 (rock gypsum) as monoclinic
material. This is obtained by taking p = 1 and thickness /1,
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= 0.1 at the edge X= 0.

To choose the appropriate number of collocation points m,
convergence studies have been carried out for various sets of
parameters for all the three plates. Convergence graphs are

shown in the figures 1(a-c) fora/b=1.0,K =0.02, a = 0.5
and g = 0.5 for C-C, C-S and C-F plates respectively. For
these data the maximum deviation were observed. In all the
computations, m = 20 has been fixed for all the boundary
conditions in the first three modes since further increase in
m does not improve the results even in the fourth place of
decimal.

The behaviour of frequency parameter Q with density
parameter S for the first mode of vibration for C-C, C-S and
C-F plates for two different values of foundation parameter
K =10.0, 0.02, taper parameter o = -0.5, 0.5 and aspect ratio
a/b =1 is shown in figure 2(a). It is found that the frequency
parameter Q decreases with increasing values of density
parameter S keeping other plate parameters fixed. The rate of
decrease in frequency parameter QQ with £ increases with the
increase in the values of foundation parameter K and taper

parameter a. This rate of decrease is higher in the order C-C >
C-S > C-F plates. A similar behavior is observed for the
second and third modes of vibration as shown in figures 2(b)
and 2(c). The rate of decrease in Q with £ is higher in third

mode as compared to second and first modes for all the
plates.
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Figure 3(a) depicts the plots of frequency parameter Q
versus taper parameter o for two different values of K = 0.0,
0.02, 5 =-0.5, 0.5and a/b =1 for the first mode of vibration.
Fromthe graphs, it is observed that the frequency parameter
Q increases with the increasing values of taper parameter a
in the absence of foundation parameter for all the three plates
irrespective of other plate parameters. However, in the
presence of foundation i.e. K = 0.02, the behaviour for C-C
and C-S plates remain same but in case of C-F plate for K =
0.02,a/b=1and f=-0.5, 0.5 the frequency parameter Q first
decreases and then increases with the increasing values of

taper parameter a. In particular for a C-F plate for K = 0.02,
a/b =1 and g = -0.5, 0.5 it is found that there is a local
minima in the vicinity of @ = 0.4. In case of second and third
mode of vibration figures 3(b) & 3(c), the frequency
parameter Q increases with increasing values of taper
parameter a for all the boundary conditions. The rate of
increase for C-S plate is higher as compared to C-F plate but
smaller than that of C-C plate. This rate of increase in second
mode of vibration is smaller as compared to third mode but
greater than that of first mode for all the boundary
conditions.
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The behavior of the aspect ratio a/b on the frequency
parameter Q for the first mode of vibration for two different
values of K= 0.0, 0.02, a =-0.5, 0.5and = 0.5 is shown in
the figure 4(a). It is found that the frequency parameter Q
increases with the increasing values ofthe aspect ratio a/b for
all the three plates. The rate of increase of frequency
parameter Q with aspect ratio a/b decreases with the
increasing values of foundation parameter K while increases
with the increasing values of taper parameter a. A similar
inference can be drawn from figures 4(b) & 4(c) showing the
plots for second and third modes of vibration. This rate of
increase is higher in C-S plate as compared to C-C and C-F
plate in the first three modes. This rate of increase in second
mode of vibration is greater as compared to first mode but
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smaller than that of third mode for all the boundary
conditions.

Figures 5(a) — 5(c) shows the plots of the frequency
parameter Q versus foundation parameter K for density
parameter £ =-0.5, 0.5, aspect ratio a/b = 0.5, 1.0 and taper
parameter o 0.5. Tt is observed that the frequency
parameter Q increases with the increasing values of K for all
the three boundary conditions. The rate of increase in
frequency parameter Q with foundation parameter K is
higher in case of C-S plate as compared to C-C plate but
smaller than that of C-F plate for the same set of values of
other plate parameters. The rate of increase goes on
decreasing with the increase in the order of modes.
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(a) (b) (c)
«15 15 15
Figure 6. Normal displacements: (a) C-Cplate, (b) C-Splate, (¢c) C-Cplate, forabh =10, £=05,K=0.02, , firt mode; ——-—-- , second mode;—

———, third mode; m,a =-05; A, a=0.5

Figures 6(a) — 6(c) shows the plots for normalized
transverse displacements for a square plate i.e a/b = 1.0 and
K=10.02 =05, a =-0.5 0.5 for the first three mode of
vibration for clamped, simply supported and free plate,
respectively. The nodal lines are found to shift towards the
edge X =1 as a increases from— 0.5 to 0.5 i.e as the plate
becomes thicker at outer edge.

6. Conclusions

The effects of Winkler foundation on natural frequencies
of rectangular plates composed by a monoclinic material
with exponentially varying thickness have been studied on
the basis of classical plate theory. It is observed that
frequency parameter Q increases with the increase in
foundation parameter K and aspect ratio a/b while decreases
with the increasing value of density parameter f keeping all
other plate parameters fixed for all the three boundary
conditions. However, the behaviour with taper parameter a is
not monotonous.

The implementation of the GDQ method is relatively
easier and the efforts needed for solving the problem with
GDQM is also relatively less in comparison to the other
numerical methods. The limitations of the proposed method
are that the accuracy does not meet in case of complicated
geometries.

The present study is of great significance to design
engineers in obtaining the desired frequency by a proper
choice of one or more parameters considered here.
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