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Abstract  Vibrat ion characteristics of monoclinic rectangular plate of exponentially varying thickness resting on elastic 
foundation have been studied on the basis of classical plate theory.  Following Lévy approach i.e. two parallel edges (y = 0 
and b) are assumed to be simply-supported while the other two  edges (x = 0 and a) may have either of three combinations C-C, 
C-S or C-F, where C, S and F stand for clamped, simply supported and free edge, respectively. Assuming the transverse 
displacement w  to vary as sin (p y/b), the part ial differential equation which governs the motion of equation is reduced to an 
ordinary differential equation in x  with variab le coefficients. The resulting ordinary differential equation has been solved by 
Generalised Differential Quadrature Method (GDQM) for all the boundary conditions considered here. The effect of various 
plate parameters has been studied on the natural frequencies for the first three modes of vibration. Convergence studies have 
been carried out for four decimal exactitude. Mode shapes for all the three plates have been presented. The efficiency of 
generalized differential quadrature method for the natural frequencies of vibrat ion of monoclin ic rectangular p lates has been 
examined. 
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1. Introduction 
Free vibration analysis of plate structure is one of the main  

vital tasks for an engineer to accomplish in the engineering 
design. Such type of free vibration problems are generally 
described by a linear partial differential equation associated 
with a set of related boundary conditions, whose closed form 
solution is not possible. As a result, the various numerical 
methods such as the finite difference method[1], Galerkin’s 
method[2],Rayleigh-Ritz method[3],quintic splines 
method[4], finite-element method[5], Chebyshev collocation 
method[6], and Differential quadrature method[7-10] have 
been employed to study the vibrational characteristics of 
plates of various geometries. 

Differential quadrature method (DQM) is a co llocat ion 
scheme and was first introduced by Bellman  et al.[11]. Malik 
and  Civan[12] have p res ented  comprehens ive resu lts 
showing that the DQM stands out in numerical accuracy as 
well as computational efficiency over the fin ite difference 
and finite element methods. The application of DQM covers 
almost all the areas of structural and vibration analysis of 
shells, beams and plates etc. The DQM is used to determine  
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the weighting coefficients for the first order derivative 
approximation, in which the derivative of a function with 
respect to a spatial variable at a given discrete point can be 
expressed as a weighted linear sum of the function values at 
all the discrete points in the computational domain. Bellman 
et al.[13] proposed two methods to compute the weighting 
coefficients. In the first method, weighting coefficients are 
determined by solving a system of algebraic equations, in 
which the coordinate of the grid points to be chosen arbitrary. 
But, in  this method, it  is very difficult  to obtain the weighting 
coefficients for a large number of grid points as it results to 
an ill-conditioned matrix since the corresponding differential 
matrix becomes increasingly large [14]. In the second 
method, the weighting coefficients are determined by a 
simple algebraic formula and the grid  points are chosen as 
the roots of shifted Legendre polynomial. Shu et al.[15] 
proposed the generalized differential quadrature (GDQ) 
method in which Lagrange interpolation polynomial is used 
as the basis function. An algebraic expression is presented to 
compute the weighting coefficients of the first order 
derivative approximation and the recurrence formula is used 
to compute the weighting coefficients for higher order 
derivatives without restriction on the choice of the grid 
points. 

The advantages of the GDQ method included no 
restriction on the number o f grid points used for the 
approximation and the weighted coefficients are determined 

π
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using simple recurrence relat ion instead of solving a set of 
linear algebraic equations as in other version of differential 
quadrature method. A more in depth analysis of the merits of 
the GDQ method can be found in  Du. et al.[16]. Recently, the 
GDQ method has been applied to solve fluid dynamics and 
buckling of composite structure problems [17,18]. 

The plates of variab le thickness have significantly greater 
efficiency for vibration as compared to the plates of uniform 
thickness and also provide the advantage of reduction in 
weight and size. Notable contribution made thereafter 
dealing with rectangular plates with uniform / non-uniform 
thickness with various boundary conditions are given in the 
refs. [19-23]. 

The analysis of structures on elastic foundations is of 
considerable interest and widely used in several engineering 
fields, such as foundation, pavement and railroad, pipeline 
and some aero-space structures applications. The different 
foundation models (Vlasov, Winkler and Pasternak etc.) 
have been proposed in the literature [24] to approximate the 
foundation characteristics. Numerous studies dealing with 
Winkler foundation are available in the literature and are 
reported in the refs. [25, 26]. 

The free vibrat ion analysis of homogeneous monoclinic 
rectangular plates with exponentially varying thickness 
resting on Winkler foundation has been solved by 
Generalized Differential Quadrature method (GDQM). 
Frequencies and mode shapes for different boundary 
conditions (C-C, C-S and C-F) for the first three modes of 
vibration are computed. The present work and the results 
may be an orientation to the future research work. 

2. Mathematical Formulation 
Consider a rectangular monoclinic plate of length a, 

breadth b, thickness h, density ρ and resting on a 
Winkler-type foundation with foundation modulus kf 
referred to rectangular Cartesian co-ordinates system. The 
differential equation governing the free transverse vibration 
of monoclin ic rectangular plate is given by 

(1) 

where w(x,y,t) is the transverse deflection, t the time, ρ the 
mass density, c11, c12, c21, c22 and c66 are the material 

constants. 
Let us assume that two opposite edges of the plate given 

by y = 0 and y = b are simply -supported and that the 
thickness is independent of y i.e., h = h (x). For harmonic 
vibrations, the deflection function w (Levy approach) is 
assumed to be 

   (2) 
where ‘p’ is the positive integer and ω the circular 

frequency in radians. 
By substituting (2) in (1) and introducing the following 

non-dimensional variables 
 

The equation (1) reduces to  

(3) 

where  and primes denote the differentiation  

w.r.t. ‘X’. 
We assume that the thickness and density of the p late are 

varying exponentially along the X-direction and are given by  
 and , where  and  are the 

thickness and density of the plate respectively at the end X=0, 
α and β are the taper and density parameters respectively. 

With these notations, equation (3) reduces to 

 (4) 
where 

 

The solution of equation (4) together with the boundary 
conditions at the edges X = 0 and X = 1 gives rise to a 
two-point boundary value problem with variable coefficients 
whose closed form solution is not possible. An approximate 
solution is obtained by employing generalised differential 
quadrature method. 

3. Method of solution: Generalised 
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Differential Quadrature Method 
The GDQ approximates a partial derivative of a function 

with respect to a variable at any discrete point as a weighted 
sum of the function values at all the discrete points chosen in 
the overall domain of that variable and approximates 
continuous function with a higher-order polynomial in the 
overall variable domain. The nth order derivative o f W(X) 
w.r.t. X  can be expressed discretely at the point Xi as 

,   (5) 

n = 1, 2, 3, 4 and i = 1, 2,…, m 
where m is the total number of grid  points employs to 

discretize the plate,  are the weighting coefficients 
associated with the nth order derivative of W(X) w. r. t. X  at 
discrete point Xi. In the generalized differential quadrature 
(GDQ) method [16, 17], the global Lagrange interpolation 
polynomial is used as the test function 

, j = 1, 2,…, m;     (6) 

where 

    (7) 

where is the first derivative of M(X). Thus, the 

weighting coefficients (i, j = 1, 2,…, m) can be obtained 
analytically from the differentiation of equation (6) to obtain 

 
i, j = 1, 2,…, m ; i ≠ j               (8) 

, i = 1, 2,…, m ;  

The weighting coefficients for higher order derivatives 
can be obtained in the same manner. Actually, a recurrence 
relationship has been found for the nth order weighting 

coefficients . 

   (9) 

  (10) 

Discretizing equation (4) at grid points Xi, i = 3, 4,…, m-2, 

it reduces to, 

 (11) 

Substituting for W(X) and its derivatives at the ith grid 
point in the equation (11) and using relations (5) to (10), the 
equation (11) becomes 

(12) 

For i = 3, 4,…, (m-2), one obtains a set of (m-4) equations 
in terms of unknowns  

which can be written in the matrix form as 
[B][W*] =[0]               (13) 

where B  and W*  are matrices of order (m-4) x m and (m x 1) 
respectively. 

Here, the (m-2) internal grid points chosen for collocation, 
are the zeros of shifted Chebyshev polynomial of order (m-2) 
with orthogonality range[0, 1] given by  

 ,k = 1, 2,…, m-2  (14) 

4. Boundary Conditions and Frequency 
Equations 

The three different combinations of boundary conditions 
namely, C-C, C-S and C-F have been considered here, where 
C, S, F stand for clamped, simply supported and free edge, 
respectively and first symbol denotes the condition at the 
edge X=0 and second symbol at the edge X=1.By satisfying 
the relations  

 ; 

 

and 

 

where  for clamped, simply supported 

and free edge conditions, respectively, a set of four 
homogeneous equations in terms of unknown Wj are 
obtained. These equations together with field equation (13) 
give a complete set of m homogeneous equations in m 
unknowns. For C-C plate this set of equations can be written 
as  

              (15) 

where BCC is a matrix of order 4×m. 
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For a non-trivial solution of equation (15), the frequency 
determinant must vanish and hence, 

               (16) 

Similarly fo r C-S and C-F p lates, the frequency 
determinants can be written as 

 and  respectively (17,18) 

5. Numerical Results and Discussion 
The frequency equations (16-18) have been solved 

numerically to compute the values of the frequency 
parameter Ω  for various values of plate parameters. The 
effect of foundation parameter, density parameter, taper 
parameter and aspect ratio on frequency parameter Ω  has 
been analysed for C-C, C-S and C-F plates vibrat ing in first 
three modes of vibration. The elastic constants for the plate 
material (rock gypsum)[Haussuhl] are taken as  

 
given by Haussuhl,1965 (rock gypsum) as monoclin ic 
material. This is obtained by taking  p = 1 and thickness  

= 0.1 at the edge X = 0.  
To choose the appropriate number of collocation points m, 

convergence studies have been carried out for various sets of 
parameters for all the three plates. Convergence graphs are  

shown in the figures 1(a-c) for a/b = 1.0, K = 0.02, α = 0.5 
and β = 0.5 for C-C, C-S and C-F p lates respectively. For 
these data the maximum deviat ion were observed. In all the 
computations, m = 20 has been fixed for all the boundary 
conditions in the first three modes since  further increase in 
m does not improve the results even in the fourth place of 
decimal. 

The behaviour of frequency parameter Ω  with density 
parameter β for the first mode of vibrat ion for C-C, C-S and 
C-F plates for two different values of foundation parameter 
K = 0.0, 0.02, taper parameter α = -0.5, 0.5 and aspect ratio 
a/b = 1 is shown in figure 2(a). It is found that the frequency 
parameter Ω  decreases with increasing values of density 
parameter β keep ing other plate parameters fixed. The rate of 
decrease in frequency parameter Ω  with β increases with the 
increase in the values of foundation parameter K and taper 
parameter α . Th is rate of decrease is higher in the order C-C > 
C-S > C-F plates. A similar behavior is observed for the 
second and third modes of vibration as shown in figures 2(b) 
and 2(c). The rate of decrease in Ω with β is higher in third 
mode as compared to second and first modes for all the 
plates. 

 
Figure 1.  Percentage error in frequency parameter Ω; (a) C-C plate, (b) C-S plate and (c) C-F plate, for a/b= 1.0, K= 0.02, β= 0.5, α = 0.5, —–—–, first 
mode,-------, second mode, – – – – –  , third mode. %error =[(Ωm –Ω20)/ Ω20] × 100 
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Figure 3(a) depicts the plots of frequency parameter Ω 
versus taper parameter α fo r two  different values of K = 0.0, 
0.02, β = -0.5, 0.5 and a/b = 1 fo r the first mode of vibrat ion. 
From the graphs, it is observed that the frequency parameter 
Ω increases with the increasing values of taper parameter α 
in the absence of foundation parameter for all the three plates 
irrespective of other plate parameters. However, in the 
presence of foundation i.e. K = 0.02, the behaviour for C-C 
and C-S p lates remain  same but in case of C-F plate for K = 
0.02, a/b = 1 and β = -0.5, 0.5 the frequency parameter Ω first 
decreases and then increases with the increasing values of 

taper parameter α . In particu lar for a C-F plate fo r K = 0.02, 
a/b = 1 and β = -0.5, 0.5 it is found that there is a local 
minima in the vicinity of α  = 0.4. In case of second and third 
mode of v ibration figures 3(b) & 3(c), the frequency 
parameter Ω increases with increasing values of taper 
parameter α for all the boundary conditions. The rate of 
increase for C-S plate is higher as compared to C-F p late but 
smaller than that of C-C plate. Th is rate of increase in second 
mode of vibration is smaller as compared to third mode but 
greater than that of first mode for all the boundary 
conditions.  

 
Figure 2.  Frequency parameter for C-C and C-S plates:  (a) First Mode, (b) Second mode, (c) Third Mode, for a/b = 1.0, , C-C; ------, C-S; – – –,C-F 
plates; , α = -0.5, K=0.0, , α = 0.5, K=0.0, ♦, α = -0.5, K=0.02, ◊, α = 0.5, K= 0.02 

 
Figure 3.  Frequency parameter for C-C and C-S plates: (a) First Mode, (b) Second mode, (c) Third Mode, for a/b =1.0, , C-C; ------, C-S; – – –,C-F 
plates; , β = -0.5, K=0.0, , β = 0.5, K=0.0, ♦, β = -0.5, K=0.02, ◊, β = 0.5, K= 0.02 
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The behavior of the aspect ratio a/b on the frequency 
parameter Ω for the first mode of v ibration for two  different 
values of K = 0.0, 0.02, α = -0.5, 0.5 and β = 0.5 is shown in 
the figure 4(a). It is found that the frequency parameter Ω 
increases with the increasing values of the aspect ratio a/b for 
all the three plates. The rate of increase of frequency 
parameter Ω with aspect ratio a/b decreases with the 
increasing values of foundation parameter K  while increases 
with the increasing values of taper parameter α. A similar 
inference can be drawn from figures 4(b) & 4(c) showing the 
plots for second and third modes of vibrat ion. Th is rate of 
increase is higher in C-S plate as compared to C-C and C-F 
plate in the first three modes. This rate of increase in second 
mode of vibrat ion is greater as compared to first mode but 

smaller than that of third mode for all the boundary 
conditions. 

Figures 5(a) – 5(c) shows the plots of the frequency 
parameter Ω versus foundation parameter K for density 
parameter β = -0.5, 0.5, aspect ratio a/b = 0.5, 1.0 and taper 
parameter α = 0.5. It is observed that the frequency 
parameter Ω increases with the increasing values of K for all 
the three boundary conditions. The rate of increase in 
frequency parameter Ω with foundation parameter K  is 
higher in case of C-S plate as compared to C-C p late but 
smaller than that of C-F plate for the same set of values of 
other plate parameters. The rate of increase goes on 
decreasing with the increase in the order of modes. 

 
Figure 4.  Frequency parameter for C-C and C-S plates:  (a) First  Mode, (b) Second mode, (c) Third Mode, for β  = 0.5, , C-C; - - - -, C-S;– – –,C-F 
plates; , α = -0.5, K=0.0, , α = 0.5, K=0.0, ♦, α = -0.5, K=0.02, ◊, α = 0.5, K= 0.02 

 
Figure 5.  Frequency parameter for C-C and C-S plates:  (a) First  Mode, (b) Second mode, (c) Third Mode, for α = 0.5, , C-C; ------, C-S; ;– – –,C-F 
plates; , a/b = -0.5, β=-0.5, , a/b  = -0.5, β =0.5, ♦, a/b  = 1.0, β =-0.5, ◊, a/b  = 1.0, β = 0.5 
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Figure 6.  Normal displacements: (a) C-C plate, (b) C-S plate, (c) C-C plate, for a/b = 1.0,  β = 0.5, K = 0.02,       , first  mode; -------- , second mode; – 
– – –, third mode; ■, α = -0.5; ▲, α = 0.5 

Figures 6(a) – 6(c) shows the plots for normalized 
transverse displacements for a square plate i.e  a/b = 1.0 and 
K = 0.02, β = 0.5, α = -0.5, 0.5 for the first three mode of 
vibration for clamped, simply supported and free plate, 
respectively. The nodal lines are found to shift towards the 
edge X = 1 as α increases from – 0.5 to 0.5 i.e as the plate 
becomes thicker at outer edge.  

6. Conclusions 

The effects of Winkler foundation on natural frequencies 
of rectangular plates composed by a monoclin ic material 
with  exponentially  varying th ickness have been studied on 
the basis of classical plate theory. It is observed that 
frequency parameter Ω increases with the increase in 
foundation parameter K and aspect ratio a/b while decreases 
with the increasing value of density parameter β keeping all 
other plate parameters fixed  for all the three boundary 
conditions. However, the behaviour with taper parameter α  is 
not monotonous.  

The implementation of the GDQ method is relatively  
easier and the efforts needed for solving the problem with 
GDQM is also relat ively less in comparison to the other 
numerical methods. The limitations of the proposed method 
are that the accuracy does not meet in case of complicated 
geometries. 

The present study is of great significance to design 
engineers in obtaining the desired frequency by a proper 
choice of one or more parameters considered here.  
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