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Abstract  Th is paper presents the stability analysis of equilibrium po ints of a model involving competition between three 

species subject to a strong Allee effect which occurs at low population density . By using the software of MAPLE 10, we 

prove that, under certain conditions, the model has at most twenty seven nonnegative equilibrium points and, via Lyapunov 

function, we derive criteria for the asymptotical  stability of the unique positive equilibrium point. 
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1. Introduction 

The Allee model of growth has been widely and  

successfully used as a simple, yet adequate descriptor of the 

dynamics of small populations or critical depensation 

model[1], and many theoretical studies  (e.g.[2],[3]) have 

been achieved. The Allee effect refers to reduced fitness or 

decline in  population growth at low population densities. In  

population models, the Allee effect is often modeled as a 

threshold, below which there is population ext inction. 

In the present paper, we consider the Allee effect within  

the context of the symmetric model of three competing 

species. We wish to point out that an model of two  

competing species with Allee effect was proposed and 

studied in[2-4], and some papers dealing with experiments, 

simulations, or combinations of these competitive systems 

among others are described in[5-6]. In Section 2, we 

introduce the symmetric model of three competing  species 

subject to the Allee effects. The main  analytical results on 

stability analysis of the equilibrium points, are presented in 

Section 3. Section 4 is devoted to a discussion, in the 

context of numerical simulat ion, of the analytical results 

obtained in this paper. Concluding remarks on the paper are  

made at the end. 

2. A three-species Competitive System 
Subject to the Allee Effects 

In the three-species Lotka-Volterra compet ition models 

(e.g.[7-11]), it is possible for one- or two species extinction,  
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or global stability of a positive three-species equilibrium, 

periodic solutions or a stable heteroclinic orb it (e.g.[12-14]).  

Here, we shall propose a new three-competit ive model that 

specifically predicts Allee growth of species 𝑥, 𝑦 , and 𝑧, 
respectively. Keeping this in mind, the model is described 

as follows: 

𝑥 ′ = 𝑥   𝑥 − 𝑎  1 − 𝑥 − 𝛼𝑦 − 𝛽𝑧 = 𝑥𝑓(𝑥, 𝑦,𝑧), 
𝑦 ′ = 𝑦   𝑦 − 𝑏  1 − 𝑦 − 𝛽𝑥 − 𝛼𝑧 = 𝑦𝑔(𝑥, 𝑦, 𝑧),(2.1) 

𝑧 ′ = 𝑧   𝑧 − 𝑐  1 − 𝑧 − 𝛼𝑥 − 𝛽𝑦 = 𝑧𝑕 𝑥, 𝑦, 𝑧 , 
𝑥 0 ≥ 0, 𝑦 0 ≥ 0, 𝑧(0) ≥ 0, 

where   𝑥, 𝑦 and  𝑧  are the population densities,  𝑥 −
𝑎1−𝑥,  𝑦−𝑏1−𝑦 and 𝑧 −𝑐1−𝑧 are the quadratic intrinsic 

growth rates at intermediate densities , 0 < 𝑎 < 1, 0 < 𝑏 <
1, and  0 < 𝑐 < 1 are the lower threshold of the population 

densities 𝑥, 𝑦, and 𝑧 , respectively, α and 𝛽  are the 

coefficients of interspecies competition, and („= 𝑑/𝑑𝑡) . 

Throughout this paper we assume that  0 < 𝛼 <
1/4   and 0 < 𝛽 < 1/4. 

In our model we consider that the intrinsic growth  rates 

are quadratic and we prove that, under certain conditions, 

system (2.1) has at most twenty seven nonnegative 

equilibria. By using the software of MAPLE 10, a 

numerical example is provided to illustrate the behavior of 

the system (2.1) for a bio logically reasonable range of 

parameters with only one asymptotically stable equilibrium 

point and seven unstable equilibrium points in 𝑅+
3 . We 

believe that this  is the first time that the three-species 

competition system (2.1) has been formulated and analyzed 

in the literature. 

2.1. Boundedness of the Solutions 

Consider the system (2.1). Obviously the functions 

𝑓, 𝑔, and 𝑕 are continuous and Lipschitzian  with respect to 

all independent variables  on 𝑅+
3 = { 𝑥, 𝑦, 𝑧 /𝑥 ≥ 0, 𝑦 ≥

0, 𝑧 ≥ 0}. Therefore, a solution of the system (2.1) with 



160 Helmar Nunes Moreira:  The Existence of at most Twenty Seven Nonnegative Equilibrium Points in a  

Class of 3-D Competitive Cubic Systems 

 

nonnegative initial conditions exists and is unique. The 

basic existence and uniqueness theorem for differential 

equations ensures that 

Lemma 2.1. The positive cone Int  𝑅+
3  is invariant for 

system (2.1). 

Lemma 2.2. The solutions 𝑥 𝑡 , 𝑦 𝑡 , and 𝑧(𝑡) of system 

(2.1) with positive init ial conditions are bounded for all 

𝑡 ≥ 0. 
Proof. Since 𝑥 ′ ≤ 𝑥   𝑥 − 𝑎  1 − 𝑥  , then 

𝑙𝑖𝑚𝑠𝑢𝑝𝑡 →+∞𝑥(𝑡) ≤ 1. Here, we consider the case of strong 

Allee effect : 

𝑥 ′ = 𝑓 𝑥 =  𝑥 𝑥 − 𝑎 (1 − 𝑥), 

where 0 < 𝑎 < 1  is the survival threshold. There are 

three equilibrium points 𝑥𝑜 = 0, and 0 < 𝑥+
1 = 𝑎 < 𝑥+

2 = 1. 

The relative extrema of the function 𝑓 𝑥  are 

𝑥∗
2 ,1 =

  𝑎 + 1 ±  𝑎2 − 𝑎 + 1  

3
, 

which g ive the points of inflection of the graph of 𝑥  

versus t. The solutions are increasing and concave down 

when 𝑥∗
2 < 𝑥 < 1 ; increasing and concave up when 

𝐾𝑜 < 𝑥 <  𝑥∗
2;  decreasing and concave down when 

𝑥∗
1 < 𝑥 < 𝐾𝑜  ; decreasing and concave up when  0 = 𝑥𝑜 <

𝑥 < 𝑥∗
1 or 𝑥 > 1. We conclude that 𝑥𝑜 = 0 and 𝑥+

2 = 1 are 

sinks; and 𝑥+
1 = 𝑎 is a source. Then if the initial population 

size is below  𝑎, the population 𝑥 = 𝑥(𝑡) will d ie out. 

Similarly to 𝑦 and 𝑧, respectively. 

3. Existence and Stability of 
Equilibrium Points 

Computations of the boundary equilibria and the analysis 

of the existence of positive equilibrium po ints and their 

stability for system (2.1), provide the information needed to 

determine the coexistence or ext inction of species. To do so, 

we compute the Jacobian matrix 𝐽 𝐸  of (2.1). The signs of 

the real parts of the eigenvalues of 𝐽 𝐸   evaluated at a  

given equilibrium po int 𝐸 = (𝑥, 𝑦, 𝑧) determine its stability. 

Here 

 

 

 

 

1 2

1 2

1 2

a x x f x x

J E y b y y g y

z z c z z h

 

 

 

     
 

      
      

    (3.1) 

where 𝑓, 𝑔, and  𝑕 are as in (2.1),  𝑎 < 1, 𝑏 < 1, 𝑐 < 1, 

𝛼 <
1

4
and   𝛽 <

1

4
, and all the parameters are pos itive. 

System (2.1) has at most twenty seven non-negative 

equilibria: 

𝐸000 = (0,0,0) , with eigenvalues 𝐽 𝐸000
 = {– 𝑎 <

0, −𝑏 < 0, −𝑐 < 0}.  Thus, 𝐸000   is locally  asymptotically 

stable; 

𝐸𝑎00 = (𝑎, 0,0) , with eigenvalues 𝐽 𝐸𝑎00
 = {−𝑏 −

𝛽𝑎 < 0, −𝑐 − 𝛼𝑎 < 0, 𝑎 1 − 𝑎 > 0}.  This implies that 

𝐸𝑎00  is unstable; 

𝐸100 = (1,0,0) , where eigenvalues 𝐽 𝐸100
 = {𝑎 − 1 <

0, −𝑏 − 𝛽 < 0, −𝑐 − 𝛼 < 0} . Thus, 𝐸100  is locally 

asymptotically stable; 

𝐸0𝑏0 = (0, 𝑏, 0) , where eigenvalues 𝐽 𝐸0𝑏0
 = {𝑏(1 −

𝑏)  > 0, −𝑎 − 𝛼𝑏 < 0,−𝑐 − 𝛽𝑏 < 0} .   This implies that 

𝐸0𝑏0  is unstable; 

𝐸010 = (0,1,0), with eigenvalues 𝐽 𝐸010
 = {− 𝑎 − 𝛼 <

0, 𝑏 − 1 < 0, −c − β < 0} . Thus, 𝐸010  is locally  

asymptotically stable; 

𝐸00𝑐 = (0,0, 𝑐) , where eigenvalues 𝐽 𝐸00𝑐
 = {𝑐(1 −

𝑐) > 0,−𝑎 − 𝛽𝑐 < 0, −𝑏 − 𝛼𝑐 < 0}. This implies that 𝐸00𝑐  

is unstable; 

𝐸001 =  0,0,1 ,  with eigenvalues 𝐽 𝐸001
 = {−𝑎 − 𝛽 <

0, − 𝑏 − 𝛼 < 0, c − 1 < 0}.  Thus ,  𝐸001  is locally 

asymptotically stable; 

Now we establish criteria for the existence and stability  

of the equilibrium 𝐸++0 = (𝑥∗,𝑦 ∗, 0). For this case, one of 

the three competitors goes to ext inction depending on the 

initial values and the coexistence of three competing 

species described by (2.1) is not possible. Thus the 

exclusion principle holds[10].  

When system (2.1) is restricted to 𝑅𝑥𝑦
2 , we obtain the 

following subsystem: 

𝑥 ′ = 𝑥   𝑥 − 𝑎  1 − 𝑥 − 𝛼𝑦 = 𝑥𝑓(𝑥, 𝑦, 0), 
𝑦 ′ = 𝑦   𝑦 − 𝑏  1 − 𝑦 − 𝛽𝑥 = 𝑦𝑔 𝑥, 𝑦, 0 .     (3.2) 

An interior planar equilibrium 𝐸++0 = (𝑥∗, 𝑦∗, 0) 

occurring in the 𝑥 − 𝑦  plane exists if and only if the 

algebraic system 𝑓 𝑥∗, 𝑦∗, 0 = 0,  𝑔 𝑥∗ ,𝑦∗ ,0 = 0 has a 

positive solution. A routine computation yields  

𝑦∗ =
 𝑥∗ − 𝑎  1 − 𝑥∗  

𝛼
   

and   𝑝 𝑥∗ = 0, where 

  4 3 2

14 13 12 11 10 ,p x x x x x        
        (3.3) 
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Using the rule of signs of Descartes it follows: (a) There 

are four sign changes in 𝑝(𝑥), so there are 4, 2 or 0 positive 

roots; (b) There are no sign changes at 𝑝(−𝑥), so there are 

no negative roots. Hence, at most four positive equilibrium 

points are possible in the 𝑥 − 𝑦 plane[15]. 

Under certain conditions on the parameters we have the 

following geometric interpretation (see Fig.3.1): 

Proposition 3.1. Let 𝐸++0 = (𝑥∗, 𝑦∗ ,0)  denote an 

interior equilibrium in  the 𝑥 − 𝑦 plane. Then 𝐸++0  is the 

intersection of ellipses 𝐸1  and 𝐸2  defined by 

𝐸1 : 𝑥 = 𝐴 + 𝐵 cos  𝑡  , 𝑦 = 𝐶 sin  𝑡  ,                  (3.4) 

𝐸2: 𝑥 = 𝐸 cos  𝑡  , 𝑦 = 𝐷 + 𝐹 sin  𝑡  , − 𝜋 ≤ 𝑡 ≤ 𝜋. 
where 
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Proposition 3.2. Consider the system (2.1). Suppose that 

there are four interior equilibria 𝐸++0
𝑖 =  𝑥∗ ,𝑦∗ ,0 , 𝑖 =

1,2,3,4,  in the 𝑥 − 𝑦  plane; that is, 

A, B, C and D, respectively . Then only one equilibrium C of 

coexisting populations is locally stable and its basin of 

attraction is bounded by the stable separatrices of the 

saddles B and D, both coming from the unstable node A. 

 

 

Figure 3.1.  Intersection between two ellipses 𝐸1 , 𝐸2 . The 

equilibrium points are: 𝐴 = 𝐸++0
1 is an unstable node;  

𝐵 = 𝐸++0
2 is a saddle point; 𝐶 = 𝐸++0

3 is locally 

asymptotically stable; 𝐷 = 𝐸++0
4 is a saddle point. Here  𝑎 =

0.1,𝑏 = 0.2, 𝑐 = 0.15, 𝛼 =
1

16
, 𝛽 =

1

25
 (see  Section 4) 

Similar results for the existence and stability of the 

equilibrium points 𝐸+0+ = (𝑥∗,0, 𝑧∗ )  and 𝐸0 ++ =
(0, 𝑦∗, 𝑧∗ ) are obtained from (2.1). 

3.1. Existence, Stability and Linearization of Positive 

Equilibrium Points 

Let 𝐸 =  𝑥∗ ,𝑦∗ ,𝑧∗   denote an interior equilibrium point  

of 𝑅+
3 , if it exists. It  fo llows from d irect  substitution and 

algebraic manipulation: 

Proposition 3.3. System (2.1) has at most eight 

equilibrium po ints in the interior of 𝑅+
3 . Their equilibrium 

values 𝑥∗ ,𝑦∗  and 𝑧∗ are given by 

*
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Corollary 3.1. Suppose that 𝐷6 < 0, 𝐷5 > 0, 𝐷4 <
0, 𝐷3 > 0,𝐷2 < 0, 𝐷1 > 0, and 𝐷0 < 0. Then 𝐹(𝑦) has 8, 6, 

4, 2 or 0 positive roots. 

Corollary 3.2. Suppose  𝐷0 > 0. Then 𝐹(𝑦) has at least 

one positive root. 

Proof. Clearly, 𝐹 0 = 𝐷0 > 0,  and lim𝑦→∞ 𝐹(𝑦) =
−∞. Hence, there exists a 𝑦∗є(0, ∞)  so that 𝐹 𝑦∗ = 0. 
This completes the proof.  

Remark 3.1 Using the software MAPLE, we obtain the 

following numerical examples:(i)  𝑎 = 0.5, 𝑏 = 0.25, 𝑐 =

0.2,𝛼 =
1

16
, 𝛽 =

1

9
=> none positive equilib rium; (ii) 

𝑎 = 0.4, 𝑏 = 0.25, 𝑐 = 0.3, 𝛼 =
1

16
, 𝛽 =

1

9
=>  two positive 

equilibriums with eigenvalues (-,+,+),(+,+,+); (iii)  𝑎 =

0.4,𝑏 = 0.25, 𝑐 = 0.2, 𝛼 =
1

16
, 𝛽 =

1

9
=>  two positive 

equilibriums with eigenvalues  (-,+,+),(+,α± iβ), α> 0; (iv) 

 𝑎 = 0.4, 𝑏 = 0.25, 𝑐 = 0.1, 𝛼 =
1

16
, 𝛽 =

1

9
 =>  four 

positive equilibriums with eigenvalues (+,+,+),(+, -,+),(-,-

,+),(-,+,+). 

It is always informative to draw the set of positive 

equilibrium points of the system (2.1) in 𝑅+
3 . Here the set is 

defined by the intersection of the surfaces:  

     , , 0, , , 0, , , 0f x y z g x y z h x y z    (3.6) 
Under certain conditions on the parameters of the system 

(2.1), we obtain  (see Fig 3.2): 

 

Figure 3.2.  Intersection between ellipsoids 𝑆1, 𝑆2,.and 𝑆3. There are 8 

equilibrium points in 𝑅+
3 . Here 𝑎 = 0.1, 𝑏 = 0.2, 𝑐 = 0.15, 𝛼 =

1

16
, 𝛽 =

1

25
. 

Proposition 3.4. Let 𝐸 = (𝑥∗, 𝑦∗, 𝑧∗) denote the interior 

equilibrium of the system (2.1), if it exists. Then 𝐸 is the 

intersection of three ellipsoids  𝑆1 ,𝑆2  and 𝑆3 : 

   

   

 

11 11

12
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1: sin sin coscos ,

sin sin sin sin ,
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S x s t y

s t z

s
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 

 

 

   

   

 

21

22 22

23

2 : sin sin cos cos ,

sin sin sin sin ,

cos cos ,

S x s t y

s t z

s

 

  

 

 

   

   

 

31

32

33 33

3: sin sin coscos ,

sin sin sin sin ,

coscos ,

S x s t y

s t z

s

 

 

  

 

0 ,0 2s t     ; 
2 4 0; 1,2,3.ii iA i                       (3.7) 

where 
2

2 11 1
11 11 2

11 11
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2 211 1 11 1
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4
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,
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A
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A A

A A A
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  

   
 


 






 

  11

1
det 1 1 0,

1

b
A b c

c






  
      

  

 

  2

12 det 1 0,
1

A c
c

 
 



  
      

  

 

2

13 det ( 1) 0,
1

A b
b

 
 



  
     

  

 

  2

21 det 1 0,
1

A c
c

 
 



  
      

  
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1
det 1 1 0,

1

a
A a c

c





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      

  

 

  2

23

1
det 1 0,

a
A a


 

 

  
      

  

 

2

31

1
det ( 1) 0,

b
A b


 

 

  
     

  

 

  2

32

1
det 1 0,

a
A a


 

 

  
      

  

 

  33

1
det 1 1 0,

1

a
A a b

b






  
      
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1

1

det 1 ,

1

det 1 ,

1

a

b

c

a

b b

c c

 

 

 

 





   
 

     
 
    

  
 

  
 
     

2

1

det ,

1

a a

b

c c



 



  
 

   
 
   

 

3

1

det 1

a a

b b

c





 

  
 

   
 
    . 

To determine the stability of a positive equilib rium point  

of (2.1), we will use the direct method of Lyapunov: 

3.2. Direct Method of Lyapunov 

Next let us consider the local stability of a  positive 

equilibrium point  𝐸 = (𝑥∗,𝑦 ∗, 𝑧∗) є 𝛺 ⊂ 𝑅+
3 , where 𝛺  is a  

neighborhood of 𝐸 to be determined. Based on the “direct 

method” of  Lyapunov, we construct a continuous function 

  * * * *

1 2* *

* *

3 *

, , ln ln ln ln

ln ln

x y
V x y z x x x y y y

x y

z
z z z

z

 



    
          

     

  
    

  

  (3.8) 

where 𝛿𝑖  (i=1,2,3) are positive constant numbers which 

are yet unspecified, satisfying the following properties: 
 𝑎  𝑉 𝐸 = 0, 

(b) 𝑉 𝑥, 𝑦, 𝑧 > 0 for 𝛺 ∖ {𝐸} , that is, the equilibrium 

point 𝐸 is an isolated min imum of 𝑉. In fact, 

      0,x y zV E V E V E    

 
*

1 2

1 2 * *

0;det
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yx yy

V Vx
V E

V Vx

x y



 

 
   

 

 
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xx xy xz
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zx zy zz
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  

 
 
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 
 

 

where the partial derivatives are calculated at 𝐸.  

(c) The function 𝑉 is continuously differentiable on the 

neighborhood 𝛺 ∖ {𝐸} , and, on this set, 𝑉′ (𝑥, 𝑦, 𝑧) < 0 . 

Here, 

      

    
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1

*

2

*

3

( ), ( ), ( ) 1

1

[ 1 .

V x t y t z t x x x x a y z

y y y y b x z

z z z z c x y
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      
Since, 𝐸 = (𝑥∗ ,𝑦∗ ,𝑧∗ ) is a positive equilibrium point of 

system (2.1), 𝑉′  satisfies 
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]
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]
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x x x a x x
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 (3.9) 

If we prove that 𝐸 = (𝑥∗ ,𝑦∗ ,𝑧∗ ) is an isolated maximum 

of  𝑉′  𝑥, 𝑦, 𝑧 = 𝐿 𝑥, 𝑦, 𝑧 , then (c) follows easily, that is: 

(c1) We note that 𝐸  is a crit ical point of the function 

𝐿 𝑥, 𝑦, 𝑧 , that is 
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implies 𝐿𝑥
 𝐸 = 𝐿𝑦

 𝐸 = 𝐿𝑧
 𝐸 = 0.  

(c2) The equilibrium point  𝐸  is a maximum point of 

𝐿 𝑥, 𝑦, 𝑧 <=> 

           1' 0; ' 0; ' 0xxi L E ii H E iii H E   (3.10) 
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    
 
     

 

Letting  𝛿1 = 𝛿2 = 1/2, we can rewrite (3.10) as 

 

2

1 1 2

2 3

1 2 3 1 2 3

0; 0;

2 0,

   

       

  

    

 
.

2

 



                  (3.11) 

Thus, 𝐸 = (𝑥∗ ,𝑦∗ ,𝑧∗ )  is a isolated maximum of 

𝑉′  𝑥, 𝑦, 𝑧 , i.e ., there is a neighborhood 𝛺  of 𝐸  such that 
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𝑉′ (𝑥, 𝑦, 𝑧) < 0, on this set . The pertinent result, which we 

prove, is the following (see Fig.3.3):. 

Proposition 3.5. Consider the Lyapunov function (3.8) 

defined in the neighborhood 𝛺 ⊂ 𝑅+
3 of a positive 

equilibrium point 𝐸 of the competitive system (2.1). If (3.11) 

occurs, then  𝐸 = (𝑥∗ ,𝑦∗ , 𝑧 ∗)  is locally asymptotically  

stable . 

 

Figure 3.3.  Each graph depicts a three-dimensional 𝑥, 𝑦, 𝑧 population 

evolution in the state space for system (2.1). The initial conditions are 

(0,0,0),(0.9,0.9,0.9),(0.8,0.8,0.8),(0.7,0.7,0.7),(0.6,0.6,0.6),(1.0,0.9,0.9) .Th

e equilibrium point  𝐸+ ++
5 is locally asymptotically stable. Here 𝑎 =

0.1, 𝑏 = 0.2, 𝑐 = 0.15, 𝛼 =
1

16
, 𝛽 =

1

25
 

 
Figure 3.4.  Each graph depicts one-dimensional 𝑥, 𝑦, 𝑧  population 
changes with respect to time for system (2.1). Each trajectory starts at a 

point (0.8,0.8,0.8) near the equilibrium 𝐸++ +
5  locally asymptotically stable: 

green−𝑥 , red−𝑦, black−𝑧. Here 𝑎 = 0.1, 𝑏 = 0.2,𝑐 = 0.15,𝛼 =
1

16
, 𝛽 =

1

25
 

4. Numerical example  

By using the software of MAPLE 10, a numerical 

example has been provided to illustrate the behavior of the 

system (2.1) for a bio logically reasonable range of 

parameters. Choosing the following set of values for the 

parameters in (2.1): 

0.1, 0.2, 0.15, 1/16, 1/ 25,a b c        
we find that the inequalities given by (3.11) hold for a  

unique positive equilibrium point and we observe that there 

are 27 equilibrium points given by 

     000 00 1000,0,0 , 0.1,0,0 , 1,0,0 ,aE E E    

 0 0 0,0.2,0 ,bE 

     010 00 0010,1,0 , 0,0,0.15 , 0,0,1 ,cE E E  
 

 1

0 0.1145238077,0.2057677744,0 ,E   

 2

0 0.982105439,0.2525582316,0E  , 

 3

0 0.9282751363,0.9505267387,0 ,E   

 4

0 0.1750956168,0.9911472553,0 ,E   

 1

0 0.1145238077,0,0.1070755147 ,E    

 2

0 0.9896422935,0,0.2303663443 ,E    

 3

0 0.9569355368,0,0.9225867215 ,E    

 4

0 0.1463466549,0,0.9890994253 ,E    

 1

0 0,0.2127122137,0.1601307297 ,E    

 2

0 0,0.2863822446,0.98863024559 ,E    

 3

0 0,0.9167794511,0.9544124694 ,E    

 4

0 0,0.9841260905,0.1991543450 ,E    

 1 0.1234346734,0.2199416141,0.1698917819 ,E 

 2 0.9689920329,0.2745078943,0.2447233248 ,E 

 3 0.1690910317,0.2959630865,0.9727666239 ,E 

 4 0.9306479263,0.3426568704,0.9047775459 ,E 

 5 0.8868214327,0.8641473928,0.8760527607 ,E 

 6 0.2205803755,0.9043799491,0.9364741050 ,E   

 7 0.9152759525,0.9253052261,0.2810475482 ,E   

 8 0.1851565751,0.9730979666,0.2142663096 .E 

The 𝑦 − coordinate  of the positive equilibrium points 

𝐸+++
𝑖

 (i=1…8) are roots of (3.5), that is 𝐹 𝑦 = 0, where 

  8 7
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3 2
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 
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 

  
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In the equilibrium point 𝐸+++
5 , the characteristic equation 

(4.11) of 𝐽( 𝐸+++
5 ) reduces to 

𝑝 𝜆 = 𝜆3 + 1.581401696 𝜆2 + 0.8228981025 𝜆 +
0.1410366097 , with roots 

−0.6392646908 , −0.5068784588 , −0.4352585464 . 

This implies that 𝐸+++
5 is a locally asymptotically stable 

equilibrium point. Here, we observe that the equilibrium 

points  𝐸+++
𝑖  (𝑖 ≠ 5) are unstable. 

In the absence of a competitor, we have: (a) 𝐸++0
3  is a  

locally asymptotically stable equilibrium point, with 

eigenvalues -0.7346114284, -0.6340454548 and -

0.2460382656. The equilibrium points 𝐸++0
𝑗

(𝑗 ≠ 3)  are 

unstable. (b )  𝐸+0+
3  is a locally asymptotically stable 

equilibrium point, with eigenvalues  -0.7933441170, -

0.6268358235, -0.2959390916. The equilibrium po ints 

𝐸+0+
𝑗

(𝑗 ≠ 3)  are unstable. (c)  𝐸0 ++
3  is a  locally  

asymptotically stable equilib rium point, with eigenvalues  -

0.7381379376, -0.5669278285, -0.1954752145. The 

equilibrium points 𝐸0 ++
𝑗

(𝑗 ≠ 3) are unstable. 
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In the absence of two competitors, we have: (d ) 𝐸100  is a 

locally asymptotically stable equilibrium point, with 

eigenvalues −0.9, −0.24,−0.2125 . The equilibrium 

𝐸𝑎00 = (0.1,0,0)  is unstable. (e)  𝐸010  is a locally  

asymptotically stable equilibrium point, with eigenvalues 

−0.8, −0.14, −0.2625. The equilibrium 𝐸0𝑏0 = (0,0.2,0) is 

unstable. (f)  𝐸001  is a locally  asymptotically  stable 

equilibrium point, with eigenvalues 

−0.85, −0.241625 , −0.19 . The equilibrium 𝐸00𝑐 =
(0,0,0.15) is unstable. 

Clearly 𝐸000 =  0,0,0  is a locally asymptotically stable 

equilibrium point, with eigenvalues -0.1, -0.2, -0.15, 

respectively.  

The 𝑥 − coordinate  of the equilibrium points 𝐸++0
𝑖  

(i=1…4) are roots of (3.3) 𝑝 𝑥 = 256𝑥4 − 563 .2𝑥3 +
380.16𝑥2 − 77.4𝑥 + 4.68 . Intersection between two 

ellipses: 

 1 : (0.5489583333 0.436965199coscos ,

1.914685571sin sin( ))

E t

t



 

 
The 𝑥 − coordinate  of the equilibrium points . 𝐸+0+

𝑖  

(i=1…4) are roots of 𝑞 𝑥 = 625𝑥4 − 1375𝑥3 + 910𝑥2 −
169.0625𝑥 + 9.275. Intersection between two ellipses: 

3 : (0.5489130435 0.4428184030cos( ),

2.374349167sin sin( ));

E t

t



 

 
The equilibrium points are: 𝐸+0+

1 is an unstable node; 

𝐸+0+
2 is a saddle point; 𝐸+0+

3 is locally asymptotically stable; 

𝐸+0+
4 is a saddle point. 

The 𝑦 − coordinate  of the equilibrium points 𝐸0 ++
𝑖  

(i=1…4) are roots of the polynomial: 𝑟 𝑦 = 256𝑦4 −
614.4𝑦3 + 489.44𝑦2 − 144.92𝑦 + 14.070 . Intersection 

between two ellipses: 

 5 : (0.5989130435 0.3880008501coscos ,

1.664338228sin sin( ))

E t

t


 

 
The equilibrium points are: 𝐸0 ++

1 is an unstable node; 

𝐸0 ++
2 is a saddle point; 𝐸0 ++

3 is locally asymptotically stable; 

𝐸0 ++
4 is a saddle point. 

6. Concluding Remarks 

In this paper, a mathemat ical model o f competition  

between three populations with lower threshold sizes has 

been proposed and investigated. The main  focus was to 

analyze the question of existence and stability of 

nonnegative equilibria. Our results show that there exist at 

most twenty-seven equilibrium points for the system under 

consideration and, by using the software of MAPLE 10, a 

numerical example has been provided to illustrate the 

behavior of the system (2.1) for a bio logically reasonable 

range of parameters with only one positive equilibrium 

asymptotically stable and 7 positive unstable equilibrium 

points.  
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