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The Existence of at most Twenty Seven Nonnegative
Equilibrium Points in a Class of 3-D Competitive Cubic
Systems
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Abstract This paper presents the stability analysis of equilibriumpoints of a model involving competition between three
species subject to a strong Allee effect which occurs at low population density. By using the software of MAPLE 10, we
prove that, under certain conditions, the model has at most twenty seven nonnegative equilibrium points and, via Lyapunov
function, we derive criteria for the asymptotical stability of the unique positive equilibrium point.
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1. Introduction

The Allee model of growth has been widely and
successfully used as a simple, yet adequate descriptor of the
dynamics of small populations or critical depensation
model[1], and many theoretical studies (e.g.[2],[3]) have
been achieved. The Allee effect refers to reduced fitness or
decline in population growth at low population densities. In
population models, the Allee effect is often modeled as a
threshold, below which there is population extinction.

In the present paper, we consider the Allee effect within
the context of the symmetric model of three competing
species. We wish to point out that an model of two
competing species with Allee effect was proposed and
studied in[2-4], and some papers dealing with experiments,
simu lations, or combinations of these competitive systems
among others are described in[5-6]. In Section 2, we
introduce the symmetric model of three competing species
subject to the Allee effects. The main analytical results on
stability analysis of the equilibrium points, are presented in
Section 3. Section 4 is devoted to a discussion, in the
context of numerical simulation, of the analytical results
obtained in this paper. Concluding remarks on the paper are
made at the end.

2. A three-species Competitive System
Subject to the Allee Effects

In the three-species Lotka-Volterra competition models
(e.g.[7-11]), it is possible for one- or two species extinction,
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or global stability of a positive three-species equilibrium,
periodic solutions or a stable heteroclinic orbit (e.g.[12-14]).
Here, we shall propose a new three-competitive model that
specifically predicts Allee growth of species x,y, and z,
respectively. Keeping this in mind, the model is described
as follows:

x =x[x—a)d —x) —ay— Bzl = xf(x,y,2),

y =yl -bA -y) - Bx—azl = yg(x,v,2),2.1)
z=z[G-c)U-2) —ax— ,By] = zh(x,y,z),
x(0) =0, y(0) >0, z(0) =0,

where x,y and z are the population densities, (x —
al—x, y—b1—y and z —cI—zare the quadratic intrinsic
growth rates at intermediate densities,0 < a<1,0< b <
1,and 0 < ¢ < 1 are the lower threshold of the population
densities x,y,and z , respectively, o and [ are the
coefficients of interspecies competition, and (‘= d/dt) .
Throughout this paper we assume that 0<a<
1/4 and 0 < < 1/4.

In our model we consider that the intrinsic growth rates
are quadratic and we prove that, under certain conditions,
system (2.1) has at most twenty seven nonnegative
equilibria. By using the software of MAPLE 10, a
numerical example is provided to illustrate the behavior of
the system (2.1) for a biologically reasonable range of
parameters with only one asymptotically stable equilibrium
point and seven unstable equilibrium points in R3. We
believe that this is the first time that the three-species
competition system (2.1) has been formulated and analyzed
in the literature.

2.1. Boundedness of the Solutions

Consider the system (2.1). Obviously the functions
f,g,and h are continuous and Lipschitzian with respect to
all independent variables on R3 ={(x,y,z)/x >0,y >
0,z = 0}. Therefore, a solution of the system (2.1) with
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nonnegative initial conditions exists and is unique. The
basic existence and uniqueness theorem for differential
equations ensures that

Lemma 2.1. The positive cone Int R? is invariant for
system (2.1).

Lemma 2.2. The solutions x(¢), y(¢), and z(t) of system
(2.1) with positive initial conditions are bounded for all
t>0.

Proof. Since x <x[(x-a@-x] , then
limsup, | ;,x(t) < 1. Here, we consider the case of strong
Allee effect :

x' =fl) = x(x —a)(1-x),

where 0 < a < 1 is the survival threshold. There are
three equilibrium points x, = 0,and 0 < x} = a <x% = 1.
The relative extrema of the function f(x) are

- [@+D+VaZ—a+1]
x2t = :
3

*

which give the points of inflection of the graph of x
versus t. The solutions are increasing and concave down
when x? <x <1 increasing and concave up when
K, < x < x%; decreasing and concave down when
x! < x < K, ; decreasing and concave up when 0 = x, <
x < xlorx > 1. We conclude that x, = 0 and x2 = 1 are
sinks; and x1 = ais a source. Then if the initial population
size is below a, the population x = x(t) will die out.

Similarly to y and z, respectively.

3. Existence and Stability of
Equilibrium Points

Computations of the boundary equilibria and the analysis
of the existence of positive equilibrium points and their
stability for system (2.1), provide the information needed to
determine the coexistence or extinction of species. To do so,
we compute the Jacobian matrix J(E) of (2.1). The signs of
the real parts of the eigenvalues of J(E) evaluated at a
given equilibriumpoint E = (x, y, z) determine its stability.
Here

(a+1-2x)x+f —ax -pBx
J(E)= By (b+1-2y)y+g -ay (3.1)
-az -p1 (c+1-2z)z+h

where f,g,and hare as in (2.1), a<1, b<1, c<1,
a <iand B <i, and all the parameters are positive.

System (2.1) has at most twenty seven non-negative
equilibria:

Epoo = (0,0,0) , with eigenvalues J(Ey,,) = {-a <
0,—b < 0,—c <0}. Thus, Eyy, is locally asymptotically
stable;

E,o0 = (a,0,0) , with eigenvalues J(E,q,) = {—b —
Ba <0,—c—aa<0,all —a) > 0}. This implies that
E, oo i1s unstable;

Eipo = (1,0,0), where eigenvalues J(E;o0) = {a — 1 <
0,—-b—pB<0,—c—a<0} . Thus, E;, is locally
asymptotically stable;

Eppo = (0,b,0), where eigenvalues J(Ey,,) = {b(1 —
b) >0,—a—ab < 0,—c —Bb < 0}. This implies that

Eyp0 is unstable;

Ep1o = (0,1,0), with eigenvalues J(Ey;,) = {—~a—a <
0,b—1<0,-c—B<0} Thus, Ey, is locally
asymptotically stable;

Epo. = (0,0,c) , where eigenvalues J(Ey.) = {c(1—
¢)>0,—a—Bc<0,—b—ac <0} This implies that Ey,,
is unstable;

Ey; = (0,0,1), with eigenvalues J(Eyy,) = {—a —f <
0,—b—a<0,c—1<0}. Thus , Ey,; is locally
asymptotically stable;

Now we establish criteria for the existence and stability
of the equilibrium E,_,, = (x,y",0). For this case, one of
the three competitors goes to extinction depending on the
initial values and the coexistence of three competing
species described by (2.1) is not possible. Thus the
exclusion principle holds[10].

When system (2.1) is restricted to R, ,
following subsystem:

x =x[lx =)@ —x) — ayl =xf(x,y,0),
y =y[G=bA -y) —Bx]l =yg(x,y,0). (3.2)

An interior planar equilibrium E, . ., = (x",y%0)
occurring in the x —y plane exists if and only if the
algebraic system f(x*,¥*,0) =0, gx*,y*,0) = 0 has a
positive solution. A routine computation yields

. - -x7)
y =
and p(x*) =0, where
p(x) = ﬂ14x4 +213X3 Jr2-12)(2 + A X+ Ay,

we obtain the

a

(3.3)
P S 1 (D
o o
2 a (b
a, =|:(a+1) +2a2+ ( +1):| o
jﬂ:[aZﬁ—a(a+1)(bz+1)—2a(a+1)J<O’
a
. [0{2b+a2 +2aa(b+1)] -
o

Using the rule of signs of Descartes it follows: (a) There
are four sign changes in p(x), so there are 4, 2 or 0 positive
roots; (b) There are no sign changes at p(—x), so there are
no negative roots. Hence, at most four positive equilibrium
points are possible in the x — y plane[15].

Under certain conditions on the parameters we have the
following geometric interpretation (see Fig.3.1):

Proposition 3.1. Let E, ,= (x",¥",0) denote an
interior equilibrium in the x — y plane. Then E, , is the
intersection of ellipses E; and E, defined by

E;:x =A+Bcos(t),y =Csin(t), (3.4)
E,;x=Ecos(t),y=D+Fsin(t),—nm<t<m.
where

A=(a+1)(b+1)—af >0 A=—2 A

2(b+1)' " " 2(ax1)’

A? —4(b+1)[a(b+1)+ab] sz[w]Bz
4(b+1)° ' '

Az74(a+1)[b(az+1)+,6’a]'E2 =[a+1jF2.
4(a-+1)

B? =
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Proposition 3.2. Consider the system (2.1). Suppose that
there are four interior equilibria Ei,, = (x*,y",0),i=
1,2,3,4, in the x—y plane; that is,
A, B, C and D, respectively. Then only one equilibrium C of
coexisting populations is locally stable and its basin of
attraction is bounded by the stable separatrices of the
saddles B and D, both coming from the unstable node A.

1.5

L Tl

02 040608 1 12
x(t)

Figure 3.1. Intersection between two ellipses E,, E,. The
equilibrium points are: A= E!,,is an unstable node;
B=E2,, is a saddle point; C=E3,, is locally
asymptotically stable; D = E%_,is a saddle point. Here a =
0.1,b =0.2,c = 0.15,a = i,ﬁ = i(see Section 4)

Similar results for the existence and stability of the
equilibrium  points  E,,,. = (x%,0, z*) and E;,, =
(0,y*, z*) are obtained from (2.1).

3.1. Existence, Stahility and Linearization of Positive
Equilibrium Points

Let E = (x*,y*,z*) denote an interior equilibrium point
of R3, if it exists. It follows from direct substitution and
algebraic manipulation:

Proposition 3.3. System (2.1) has at most eight
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equilibrium points in the interior of R3. Their equilibrium
values x*,y* and z* are given by

X*ZA1+A2\/A711
2" =B, + B,\/A,,

and y* is a positive root of

F(y)=Dyy’+D,y +D;y° +D,y* + D,y + Dy’ + D,y +Dy+D,  (3.5)

where
D, =—-R* <0,D, =—4P,R* >0,
D, = 2M,C/R? + 2N,CZR’ —(4R,R° + 6R*F7),
D; =2C/ (2M,RP, +M,R?)+2C} (2N,RP, + N,P? ) - (4RP} +12P,R,R?)
D, =2M,N,C’C? —M/C'—NC, +
2C7 (M,P] +2M,RP, +2M,PP, + M P? )+
2C7 (N,P +2N,PP, + 2N PP, + N;R*) —
(6P°P’ +12P,RP + ')
D, =2C/CZ(M,N, + M,N,)
—2M,;M,C,' —2N,N,C3 +
2C7 (2M,P,P, + M, P} +2M,P,P, + 2M PP, ) +
2C3 (2N,P,P, + N, P + 2N, PP, + 2N PP, ) -
(4R,P} +12RR,P’),
D, =2C/CZ (M;N; + M,N, + M;N, ) —
C} (M3 +2MM,)—CJ (N +2N,N; )+
2C7 (MR} +2M,P,P, + M P} +2M PR, ) +
2C7 (N,P? +2N,P,P, + NP + 2N, PP, ) —
(6P7PS +4RP})
D, = 2C’CZ (M,N, + M;N, ) —
2M,M,C' —2N,N,C; +
2C7 (M,P7 +2M PP, ) +
2C2 (NP’ + 2N,P,P, ) — 4P,P},

D, = B + 2MN,CCJ — (P —M,C7)? — (P’ — N,CJ)?,
_a+1  p* I _c+1 &? 1
A= oo T BT +2/3" 2 257

Ay =My? + M,y + My,
A, =Ny? + N,y + N,
M, =N, =428 > 0,M, = —4cf(b+1) S+ a?1<0,
M, =[(a+1)a+,32]2+4a(bﬂ—aa)
= p* +2(a+1l)ap? +4bap +(a-1)° @? >0,
N, =—4p[(b+1)a+ B?]1<0,
N, =[(c+1) B+’ +48(ba—cp)
=a* +2(c+1) fa? +4baf +(c-1)° % >0,
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2 S1l:x=A,, +V,,sinsin(s)coscos(t),
C1=(a+1)A2—2A1A2=—’B—2<O,C2:—,882:—1, X _ 1%+ 11_I -I (s) (t).y
a 2 =V, sinsin(s)sinsin(t),z
=V,;c0scos(s),
_ 2_ P _ 2 _ (b+1)p B
R=MA =—>0PR=a+M,A =——"—<0, S2:x =V,sinsin(s)coscos(t),y
P=A—(a+1)A +M;A] + BB, +a =A,, +Vy,sinsin(s)sinsin(t),z
4 2 2 —
_ ,32+(a+1)ﬂ +(E+C+1]ﬁ+a—>o. =V, coscos(s),
2a 2c a 2 2 S3:x=Vysinsin(s)coscos(t),y
Corollary 3.1. Suppose that Dy <0,Ds >0,D, < =V, sinsin(s)sinsin(t), z

0,D; > 0,D, <0,D; > 0,and D, < 0.Then F(y) has 8, 6,
4, 2 or 0 positive roots.
Corollary 3.2. Suppose D, > 0. Then F(y) has at least 0<s<70<t<L2r,

one positive root. A>—4A V. >0i=12,3 3.7
Proof. Clearly, F(0) =D, >0, and lim,_, F(y) = AV >0 T o0

= Ay + V35 €05c0s(s),

—oo. Hence, there exists a y*e(0,00) so that F(y*) = 0. Where
This completes the proof. A — A . AP—4A LV,
Remark 3.1 Using the software MAPLE, we obtain the - 2A, M N 4N2 ;
following numerical examples:(i) a = 0.5,b = 0.25,c = 5 5
0.2,a =i,[)’ =2=> none positive equilibrium;  (ii) V2 :ﬂ \VeS :ﬂ
16 9 : 1 12 4A1 AL v V13 4/6& A& 1
a=0.4b=0.25c=03,a=—,=-=> two positive 12 s
T ; ; 1 ’ A A*—4A,V
equilibriums with eigenvalues (-,+,+),(+,++); (iii) a= A =—— 2 2 T TT2V2
1 1 . 22 2 ’ 21 4 ’
0.4,b =0.25,c=0.2,a = E’B =5=> two  positive Az As Ay
equilibriums with eigenvalues (-++).(+.a%ip), o> 0; (iv) vz AT ARV, e AT -AALY,
a=04,b=025c=01a= i,ﬁ =§ => four 22 4N 2 4A,,A,,
positive equilibriums with eigenvalues (+,+,+),(+,-,+),(-,- A - A2—4A33V3
), (-++). Agy = 2A, Vo = TaALA,
It is always informative to draw the set of positive 3 37 st
equilibrium points of the system (2.1) in R3.Here the set is v2 _ A —4A,V, v2 _ A? —4A.V,
defined by the intersection of the surfaces: &2 AN A, s AN ’

3 2 3
f(x.y,2)=0,9(x,y,2)=0,h(x,y,2)=0 (3.6) el T et ;
Under certain conditions on the parameters of the system Ay =de -3 c+1 _( + )(C+ )—a,B >

(2.1), we obtain (see Fig 3.2): e -
A_Lzz—det__ﬂ c+1_:(c+1)a+ﬁ2>o’
-a -pB
A, |:b+1 —a:| a” +( ) >
"5 a] ]
= —det =(c+1)ps+ >0,
Por | —a C+1] ( )P+
a+l -—-p
= det =(a+1)(c+1)— >0,
e P wen o
fa+1 —p]
= —det =(a+1l)a+pB*>0,
A @y
— b+1
A31=det[ s Jz(b+1)a+,82>0,
Figure 3.2. Intersection between ellipsoids S1,52,and S3. There are 8 -a —=pf
P . . 1 1 _ |
equilibrium points inR3. Herea = 0.1,b = 0.2,¢ = 0.15,a = ;,ﬁ = — _det a+l —« —(a+1 fa?>0,
As « -p s

Proposition 3.4. Let E = (x*,y", z") denote the interior

equilibrium of the system (2.1), if it exists. Then E is the A,, = det a+l -a :(a+1)(b+1)—aﬁ -0
intersection of three ellipsoids S;,5, and S5 : S - b+1 ’
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a+l -ao -p
A=det| - b+l —-a ||V,
- —f c+l1
a -a -p
=det|b b+1 -« |,
c B c+1
fa+1 a —-p ]
V,=det| -8 b -« |,
| —a Cc c+1]
fa+l -a a
V,=det| - b+1 b
|-« -8 c

To determine the stability of a positive equilibrium point
of (2.1), we will use the direct method of Lyapunov:

3.2. Direct Method of Lyapunov

Next let us consider the local stability of a positive
equilibrium point E = (x*,y*,z*) e c R3, where 2 is a
neighborhood of E to be determined. Based on the “direct
method” of Lyapunov, we construct a continuous function

V(x, y,z):51{x—x*—x* In In(;ﬂ+§{y—y*—y*lnln[}ﬂ+
5{2—2*—2* In In(zﬂ
z

where §; (i=1,2,3) are positive constant numbers which
are yet unspecified, satisfying the following properties:

(@ V(E) =0,

(b) V(x,y,z) >0 for 2 \ {E}, that is, the equilibrium
point E is an isolated minimum of V. In fact,

V,(E)=V, (E)=V, (E)=0,

- V, V.
V, (E)= 51% > O;det{vxx ny}

(3:8)

yx yy
1
1%2 X y
VXX ny VXZ 1
det|\ Vi, Vyy Vy, | =86,6; e >0
VZX sz VZZ

where the partial derivatives are calculated at E.

(c) The function V is continuously differentiable on the
neighborhood 02 \ {E}, and, on this set, V' (x,y,2) < 0.
Here,

VI (x(®), y@),2(t) =5, (x—x")[(1-x)(x—a)—ay - Bz ]+
& (y—-y)[@-y)(y-b)-px—az]+
53(2—2*)[(1—z)(z—c)—ax—ﬂy.

Since, E = (x*,y*,z*) is a positive equilibrium point of
system(2.1), V' satisfies
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v (x(1).y (1), 2(1)) -
51[—(x—x*)3+(—2x*+a+1)(x—x* .
a(x=x")(y-y")-B(x=x")(z-2")1+
SI-(y-y) + 2y +b+1)(y—y') -
Bx=x)(y=y")=a(y=-y)(z=2" )1+
53[—(2—z*)3+(—22*+c+1)(z—z*)2—
a(x=x)(z=2")=B(y-y")(z=2)I-
a(x=x)(z=2")=B(y=y)(z=2)]
If we prove that E = (x*,y*,z")is an isolated maximum
of V' (x,y,2) = L(x,y,2), then (c) follows easily, that is:

(cl) We note that E is a critical point of the function
L(x,y,2), that is

L (X y,2)=-36,(x—x")*+
26,0, (x=X") = (ad,+ BS) (y-Y")-
(ﬂ§1 +a53)(z - Z*)Ly (X1 y1 Z)
=-35,(y-Y )’ +28,0,(y-Y")-
(s, + B3,) (x —X")—(ad, + B5;)(z—12")
L, (% Y,2)=-35,(2—2)* +28,p,(2—2")—
(8BS, +ady) (x—X")—(ad, + Sy —Y")
implies L, (E) =L,(E) =L,(E) = 0.
(c2) The equilibrium point E is a maximum point of
L(x,y,2) <=>
(i L« (E) <O;(ii*)H, (E) > 0;(iii ) H (E) < 0 (3.10)
Here

(3.9)

L (E) =20,p,,

H (E):[LXX(E) ny(E)J:[ 20, _agl_ﬁ52j
! L,(E) L,(E) —ad, — 6, 20,p,

Lo (E) Ly(E) L.(E)
H(E)=|Ly(E) L,(E) L,(E)
L.(E) L,(E) L,(E)

26,0, —ad, — 6, —fo,—ad,

=| —ad, — o, 25,p, —asd, — 36,

—pé6, —ad; —ad,— o, 2554

Letting 6, = 6, = 1/2, we can rewrite (3.10) as
P <0 pp, —7° > 0;
PPs = (Pt Py + py) T8 +27° <0,
(a+pB)

2
Thus, E = (x",y",z") is a isolated maximum of
V' (x,y,2), ie., there is a neighborhood 2 of E such that

. (3.11)
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14 (x,y_, z) <0, on.this set . The pertinent result, which we ++o — (0 9282751363,0.9505267387,0),
prove, is the following (see Fig.3.3)..
Proposition 3.5. Consider the Lyapunov function (3.8) ++0 = (0 1750956168,0.9911472553, 0),
defined in the neighborhood 2 c R3 of a positive
equilibrium point E of the competitive sys+tem (2.1). If (3.11) +0+ = (O 1145238077,0, 0'1070755147)’
occurs, then E = (x",y",z"*) is locally asymptotically 0 =(O 9896422935.0.0 2303663443)
stable . Elor T '
+0+ = (0 9569355368, 0, 0.9225867215),
E%,, =(0.1463466549,0,0.9890994253),
Eé++ = (O, 0.2127122137, 0.1601307297),
E02++ (O, 0.2863822446, 0.98863024559) ,
E§++ (0,0.9167794511,0.9544124694),
Figure 3.3. Each gaph depicts a three-dimensional x, y, z population 0++ (O 0. 9841260905 0. 1991543450)
lution in the dat f gem (2.1). The initial diti
?(‘)’% ‘(’))'0(8 9'”0 9 8 9, (8 8sp(>)a§e0 g))r (83’7 g"; 0706 oee 'g 6')a( fé’% g 'é’g)s T""Le E. = (O 1234346734,0.2199416141, 0. 1698917819) ,
e equilibrium point E3,, IS IocaIIy asymptotically stable. Here a = EC.. :(0 9689920329, 0.2745078943, 0_2447233248),
0.1,b =0.2, c_015a=— B =
Coox tonse v fime E’ . = (0 1690910317, 0.2959630865, 0.9727666239),
oo E' . = (0 9306479263,0.3426568704, 0.9047775459),
E . = (0 8868214327,0.8641473928, 0.8760527607),
0.85
E L. = (O 2205803755,0.9043799491, 0.9364741050),
e E7, = (o 9152759525,0.9253052261,0.2810475482),
n.&2 El. = (0 1851565751,0.9730979666, 0. 2142663096)
ne The y — coordinate of the positive equilibrium points
0 20 0 & & 100 EL., (i=1...8)are roots of (3.5), thatis F(y) = 0, where

t
Figure 34. Each graph depicts one-dimensional x,y,z population _ 65536 8 7
changes with respect to time for sysem (2.1). Each trajectory starts at a F( )_ _(390625 y" +0.8053063680y" —
point (0.8,0.8,0.8) near the equilibrium E3, , locally asymptotically stable:

green—x, red—y, black—z. Here a = 0.1,b =0.2,c = 0.15,a = 1—16,5 = 1.622650388Yy° +1.78271132y° —1.162155201y" +
= 0.4589826936y° —0.1073327879y” +0.01363187734y —
. 0.0007228687716
4. Numerical example In the equilibrium point E2,,, the characteristic equation
(4.11) of JCEZ ., ) reduces to

By using the software of MAPLE 10, a numerical - 3y’ 33 4 1 581401696 22 + 0.8228981025 4 +
example has been provided to illustrate the behavior of the 0.1410366097 with roots

system (2.1) for.a biologicall_y reasonable range of —0.6392646908 , —0.5068784588, —0.4352585464
parameters. Choosing the following set of values for the This implies that ES, , is a locally asymptotically stable

parameters in (2.1): equilibrium point. Here, we observe that the equilibrium

a=0.1 b= 0.2,c=0.15« =1/16,ﬁ =1/ 25, points E—f—++ (i #5)are unstable.
we find that the inequalities given by (3.11) hold for a In the absence of a competitor, we have: () E3,, is a
unique positive equilibrium point and we observe that there locally asymptotically stable equilibrium point, with
are 27 equilibrium points given by eigenvalues -0.7346114284, -0.6340454548 and -

By = (o 0, 0) E..o0 (o 1,0, o) B = (10 o) 0.2460382656. The equilibrium points Eiw(j;t 3) are
unstable. (b) E3,, is a locally asymptotically stable

Ego =(0,0.2,0), equilibrium point, with eigenvalues -0.7933441170, -

_ 0.6268358235, -0.2959390916. The equilibrium points
Eoio = (0 L 0) Eooe _(O’ 0’0'15)’ Eoo = (0 0, 1) El,,(#3) are unstable. (c) E§, is a locally
El

0= (0 1145238077,0.2057677744, 0) asymptotically stable equilibrium point, with eigenvalues -
- 0.7381379376, -0.5669278285,  -0.1954752145. The
++o (O 982105439, 0.2525582316, O) equilibrium points Ej ., (j # 3) are unstable.
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In the absence of two competitors, we have: (d) E;q IS a

locally asymptotically stable equilibrium point, with
eigenvalues —0.9,—0.24,-0.2125 The equilibrium
E o0 = (0.1,0,0) is wunstable. () Ey,, is a locally

asymptotically stable equilibrium point, with eigenvalues
—0.8,—0.14,—0.2625. The equilibrium Ey,, = (0,0.2,0) is

unstable. (f) E,,; is a locally asymptotically stable
equilibrium point, with eigenvalues
—0.85,—-0.241625,-0.19 The equilibrium Ey,. =

(0,0,0.15) is unstable.

Clearly Eyy, = (0,0,0) is a locally asymptotically stable
equilibrium point, with eigenvalues -0.1, -0.2, -0.15,
respectively.

The x — coordinate of the equilibrium points Ef,,
(i=1...4) are roots of (3.3) p(x) = 256x* — 563.2x> +
380.16x% — 77.4x + 4.68 Intersection between two
ellipses:

E, : (0.5489583333+0.436965199 coscos(t),

1.914685571sinsin(t))
E,: (206459089 2cos (£),0.5988636364 +
0.3937020336 sin (N t=0.2n. '

The x — coordinate of the equilibrium points. Ei,,
(i=1...4) are roots of q(x) = 625x* —1375x3 + 910x? —
169.0625x + 9.275. Intersection between two ellipses:

E, :(0.5489130435 + 0.4428184030 cos(t),
2.374349167 sinsin(t));
E,:(1.748148381cos (),
0.37388636644+04166985181 sin (£))t=0...2x.

The equilibrium points are: E1,,is an unstable node;
EZ2,,is a saddle point; E2,is locally asymptotically stable;
E%,,is a saddle point.

The y — coordinate of the equilibrium points Ef,,
(i=1...4) are roots of the polynomial: r(y) = 256y* —
614.4y3 + 489.44y% — 144.92y + 14.070 . Intersection
between two ellipses:

E. :(0.5989130435+0.3880008501cos cos (t),

1.664338228sinsin(t))
E,:(2.276586272cos (£), 0.5739583333 +
0415645883 sin (£)): t=0__2x.
The equilibrium points are: Eq,,is an unstable node;
EZ, ,is a saddle point; E¢, ,is locally asymptotically stable;
Ey, ,is a saddle point.

6. Concluding Remarks

In this paper, a mathematical model of competition
between three populations with lower threshold sizes has
been proposed and investigated. The main focus was to
analyze the question of existence and stability of
nonnegative equilibria. Our results show that there exist at
most twenty-seven equilibrium points for the system under
consideration and, by using the software of MAPLE 10, a
numerical example has been provided to illustrate the
behavior of the system (2.1) for a biologically reasonable

range of parameters with only one positive equilibrium
asymptotically stable and 7 positive unstable equilibrium
points.
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