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Abstract The (G'/G)-expansion method is used for determining the exact traveling wave solutions of the Burgers-KdV
and generalization of Huxley equations. The obtained solutions are compared with the solutions found by Wazwaz[18]. The
(G'/G)-method is very powerful and easy tool for solving non-linear partial differential equations
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1. Introduction

Nonlinear equations in mathematical physics appear in
various areas, such as fluid dynamics, plasma physics, op-
tical fibers, solid state physics and other applications. A
variety of powerful methods have been used to study the
nonlinear equations such as the homotopy perturbation
method[1], the variational iteration method[2], Hirotas bi-
linear methods[3], the sine-cosine function method[4-5],
Jacobi elliptic method[6], the standard tanh and extended
tanh methods[7-11], the exp-function method[12-13], the
inverse scattering method[14] and so on. One of the most
powerful and direct methods for constructing solutions of
non-linear equations is the (G'/G)-expansion method[15-
17]. This method was first introduced by Wang et al.[15]
and it has been widely used for finding various exact solu-
tions of non-linear partial differential equations. The com-
puter symbolic systems such as Maple and Mathematica
allow us to perform complicated and tedious calculations
The parameter m plays an important role in the (G'/G)-
expansion method; it should be a positive integer to derive a
closed form analytic solution. However, for non-integer
values of m, we usually apply a transformation formula to
overcome this difficulty.

We begin our study by examining the Burgers-KdV and
generalization of Huxley equation [18]
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where the dependent variable # is the function of space
variable X and time variable#; a, b are the non-zero
arbitrary constants. Finding exact traveling wave solutions
for the above non-linear partial differential equations, by
using (G'/G)-expansion method, is our goal here.

2 Analysis of the (G'/G)-expansion
method

The (G'/G)-expansion method ([15-17]) is a powerful
solution method for the computation of exact traveling
wave solutions of partial differential equations (PDEs).

We consider non-linear PDE for 4 (x, ¢)in the form:

P(u,u,u_u_,u,u,,..)=0, ()
where 4 (x, ¢) is the unknown function depending on space
variable X and time variable f, P is a polynomial in
u(x,r) and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. To ob-
tain the traveling wave solution of PDE (2), we introduce
the variable & = x — @r so that 4 (x,7r) =U (&), where
@ 1is a constant. We use the following change of partial
derivatives

o0_ ,4 o0_4d @& &

ot d&’ ox  dE o dE
and so on for the other derivatives. Thus PDE (2) reduces to
an ordinary differential equation (ODE)

o, UU,U",..)=0, 3)
where the primes denote the derivative with respect to &.
Equation (3) is then integrated as long as all the terms con-
tain derivatives, where integration constants are considered
to be zero.

Now, we assume that the solution of the ODE (3) can be
expressed by a polynomial in (G'/G) as follows:
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=3y ra, % *0, (4)

where G = G(&) satisfies the second order linear ODE in the
form

G +AG +uG=0, %)
2
where G’ :d_G, G = d°G ,and a,, #0,
dg d&’
a,,a,,A and y are real constants which are to be deter-
mined.
Using (4) and (5), we obtain
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Using the general solution of (5), we have for A* —4u >0,
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Also for 2> —44u =0,

(G /G)Y=—-A/2.

To determine U explicitly, we take the following four
steps:

Step 1. Determine the integer m by substituting (4)
along with (5) into (3), and balancing the highest order
nonlinear term(s) and the highest order partial derivative.
Step 2. By substituting (4) and (5) into (3) with the value of
m obtained in Step 1, and collecting all term(s) with the
same order of (G'/G)together, the left-hand side of (3)
converts into polynomial in (G'/G). Then setting the
coefficients of (&' /)’ (i =0, 1, 2) to zero, we obtain a
set of algebraic equations in «,, e, w, A and g

Step 3. Solve the system of algebraic equations obtained in
step 2 for ¢, ¢, and g by use of Mathematica.

Step 4. By substituting the results obtained in the above
steps, we can obtain exact traveling wave solutions of (2).

3. Applications

In this section, we apply the (G'/G)-expansion method to
construct the traveling wave solution of Burgers-KdV and
generalization of Huxley equations.

3.1. The Burgers-Kdv equation

The Burgers-Kdv equation is given by
(10)

Using the transformation u(x, t)=U (&), where & =x— ot ,
the PDE is reduced to an ODE

—oU +a(U") =b(U)+U =0, (11)
where the primes denote the derivative with respect to ¢.

Integrating once with respect to ¢ and taking constant of
integration to be zero, (11) reduces to

n
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Balancing U" and U",

2 2
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Using the transformation

2
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equation (12) converts to

—o(n=1V?>+an-1)°V*=2b(n-1)Vv’ (15)
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Now balancing »7" with r*ie. m+m+ 2 = 4m, we
obtain m =1. Therefore, we assume the solution of (15) in
the form

V:a0+al(£j, a, #0. (16)
G
Using (6), (7) and (16), we obtain
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Now using (16)-(20) in (15) and equating the coefficients
of [i] (i —0.1,2.3.4) tozero, we obtain a system of
G

algebraic equations in «,,a,,®,4 and g as follows:
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Solving the system of equations (21)-(25) by using

MATHEMATICA, we obtain the following two sets of so-
lutions for n =2
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Now, using U=Vn1 =2,
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When A2 — 4u > 0, we obtain hyperbolic function solu-
tion of the Burgers-KdV equation (10) as

J6q+sba) J—b
Wb Na
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when A2 — 4p <0, we obtain the trigonometric function
solution of the Burgers-KdV equation (10) as
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If weset ¢, =0,C, =0 in(28), we obtain
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Similarly for Set 2:
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for C;=0, C,=#0.

3.2. Generalization of Huxley equation

Consider a generalization of the Huxley equation
—u(k—u")(W” -1)=0 n>1.(35)
Proceeding as earlier, equation (35) is converted to the
ODE
—oU —aU —(k+DU™ + kU +U>" =0.
Now, balancing {72"*' and U’, we find

m=1
n o1

Using the transformation U = V7 in (36), we obtain
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Now again balancing »”* with pp" ie. m+m+2=
4m, we obtain m =1. Therefore, V' assumes the same form
as in (16). Now, putting the different values of p/, ', "
etc. from (16)-(20) in (37) and setting the coefficients of

u, —au,.,
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equations in a,a,, o, A and 4 as follows:
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N4
(%] :2anal —a(l-n)al +n*a =0.  (42)

Fixing k=1, n=2anda =1, and then solving the
system of equations (38)-(42) by MATHEMATICA, we
obtain two sets of solutions:

Set 1:
S S L VN o Y SR ]
\/57 H 12 s 0 4 s 1 2

Set 2:
o2 A3’ 24\ B
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Therefore, the solution of the generalization of the Huxley

equation  (35) corresponding to Set 1 using
U=Vv"=vr2z,
1
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for ¢;=0, C,=0.

4. Conclusions

(G'/G)-expansion method is used to obtain the exact so-
lutions of the Burgers-KdV and generalization of Huxley
equations. The solution method is very simple and effective.
The solutions are expressed in the form of hyperbolic func-
tions and the trigonometric functions. It is shown that this
method is a good tool for handling non-linear partial dif-
ferential equations. The solutions are compared with the
solutions obtained by Wazwaz[18], and it is found that the
solutions obtained are exactly same as determined by
Wazwaz[18].
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