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Abstract  New four-point derivative-free sixteenth-order iterative methods for solving nonlinear equations are con-
structed. It is proved that these methods have the convergence order of sixteen requiring only five function evaluations per 
iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung 
and Traub conjectured that the multipoint iteration methods, without memory based on n evaluations, could achieve optimal 
convergence order 12 .n−  Thus, we present new derivative-free methods which agree with the Kung and Traub conjecture for 

5.n =  Numerical comparisons are made with other existing methods to show the performance of the presented methods. 
Keywords  Derivative-Free Methods, Nonlinear Equations, Optimal Order of Convergence, Computational Efficiency, 
Kung-Traub Conjecture 

1. Introduction 
Multipoint iterative methods for solving nonlinear equa-

tions are of great practical importance since they overcome 
theoretical limits of one-point methods concerning the con-
vergence order and computational efficiency. The new it-
erative methods are applied to find a simple root α  of the 
nonlinear equation 

( ) 0,f x =                  (1) 
where :f D ⊂ →   is a scalar function on an open interval 
D and it is sufficiently smooth in a neighbourhood of .α  In 
this paper, a new family of four-point derivative-free meth-
ods of the optimal order eight are constructed by combining 
optimal two-step fourth-order methods and three-step 
eighth-order methods. In order to obtain these new sixteen 
order derivative-free methods, we replace derivatives with 
suitable approximations based on divided difference. In fact, 
it is well known that the various methods have been used in 
order to approximate the derivatives[1,2,12,16,17]. 

The prime motive of this study is to develop a class of very 
efficient four-step derivative-free methods for solving 
nonlinear equations. The sixteenth-order methods presented 
in this paper is derivative-free and only uses five evaluations 
of the function per iteration. In fact, we have obtained the 
optimal order of convergence which supports the Kung and 
Traub conjecture. Kung and Traub conjectured that the 
multipoint iteration methods, without memory based on n 
evaluations, could achieve optimal convergence order 2n-1  
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Thus, we present new derivative-free methods which agree 
with the Kung and Traub conjecture for 5.n =  In addition, 
these new sixteenth-order derivative-free methods have an 
equivalent efficiency index to the recently established 
methods presented in[5,6]. Furthermore, the new six-
teenth-order derivative-free methods have a better efficiency 
index than existing the two-step and three-step order de-
rivative-free methods presented in[2,3,7,8,10-14,16,17,20] 
and, in view of this fact, the new methods are significantly 
better when compared with the established methods. Also, 
we have found that there is a typo error in[16], hence we 
shall show and use these eight order derivative-free methods 
to construct sixteen order methods. It should be noted that 
the eighth-order derivative-free methods presented in[16] are 
of optimal order and their order of convergence have been 
proved and shown in many examples. However, the typo 
errors actually occur in the weight functions of the 
eighth-order derivative-free methods in (2.27) and 
(2.32),[16]. Since these eighth-order derivative-free methods 
have been proved to converge of the order eight, we shall 
therefore use and simplify various expressions given in[16]. 
Consequently, we have found that the new sixteenth-order 
derivative-free methods are efficient and robust. 

The paper is organized as follow. A new family of 
four-point derivative-free methods of optimal order sixteenth 
are constructed in the next section by combining two-point 
fourth-order methods and three-point eighth-order methods. 
The purpose of this paper is to obtain a suitable approxima-
tion of the derivatives of a function f in order to reduce the 
number of function evaluations. The total number of func-
tion evaluations of the proposed four-point derivative-free 
methods is five and according to the Kung-Traub conjecture 
is of the optimal order[9,18]. In section 3, we shall compare 



 American Journal of Computational and Applied Mathematics 2012, 2(3): 112-118 113 
 

 

the effectiveness of the new methods with the recently in-
troduced sixteenth-order methods[5,6]. Finally, in section 4, 
some computational aspects of the proposed four-point de-
rivative-free methods and comparison with existing methods 
are also given. 

2. Derivation of the Methods and  
Convergence Analysis 

In this section we shall define new sixteenth-order de-
rivative methods. In order to establish the order of conver-
gence of these new derivative-free methods we state the 
three essential definitions. 

Definition 1 Let ( )f x  be a real function with a simple 
root α  and let { }nx  be a sequence of real numbers that 
converge towards .α  The order of convergence m is given 
by 

( )
1lim 0n

mn
n

x

x

α
ρ

α
+

→∞

−
= ≠

−
           (2) 

where ρ  is the asymptotic error constant and .m +∈   
Definition 2 Let λ  be the number of function evaluations 

of the new method. The efficiency of the new method is 
measured by the concept of efficiency index[4,18] and de-
fined as 

1/λµ                    (3) 
where µ  is the order of the method. 

Definition 3 Suppose that 1,n nx x−  and 1nx +  are three 
successive iterations closer to the root α  of (1). Then, the 
computational order of convergence[19], may be approxi-
mated by  

( )( )

( )( )

1
1

1
1

ln
COC

ln

n n

n n

x x

x x

α α

α α

−
+

−
−

− −
≈

− −
         (4) 

where .n∈  

2.1. The four-point derivative-free methods 

Consider the following iteration scheme  
( )
( )
( )
( )
( )
( )
( )
( )1

n
n n

n

n
n n

n

n
n n

n

n
n n

n

f x
y x

f x

f y
z y

f y

f z
a z

f z

f a
x a

f a+

 
= −   ′  


  = −    ′  


  = −    ′  

 = −   ′ 

              (5) 

This scheme consists of four steps in which the Newton 
method is repeated. It is clear that the formula (5) requires 
eight evaluations per iteration and using (3) the efficiency 

index of (5) is 
1
816 1.414,=  which is same as the classical 

Newton method. In fact, scheme (5) does not increase the 

computational efficiency. The purpose of this paper is to 
establish new derivative-free methods with optimal order; 
hence we reduce the number of evaluations to five by using 
some suitable approximation of the derivatives. To derive a 
higher efficiency index, we consider approximating the 
derivatives by divided difference method. Therefore, the 
derivatives in (5) are replaced by 

( ) [ ] ( ) ( )
, ,n n

n n n
n n

f w f x
f x f w x

w x
−

′ ≈ =
−

        (6) 

( ) [ ] ( ) ( )
, ,n n

n n n
n n

f x f y
f y f x y

x y
−

′ ≈ =
−

        (7) 

( ) [ ] [ ] [ ], , , ,n n n n n n nf z f y z f x y f x z′ ≈ − +        (8) 

( ) [ ] [ ]
[ ]

, ,
.

,
n n n n

n
n n

f y a f z a
f a

f y z
′ ≈           (9) 

Substituting (6)-(9) into (5), we get 
( )
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f x
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f w x
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f z
a z

f y z f x y f x z
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f y a f z a+
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

  = −    
  

  = −      
  = −    − +  
 
= −      

     (10) 

The first step of the formula (10) is the classical Steffensen 
second-order method[15] and the second step is the im-
provement of the first step. Furthermore, we have found that 
the second third and fourth step does not produce an optimal 
order four, eight and sixteenth, respectively. Therefore, we 
have introduced weight functions in the second, third and 
fourth step in order to achieve the desired optimal order of 
convergence. First we shall denote the following functions 
as, 

( )
( )

( )
( )

( )
( )

( )
( )
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( )

( )
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

     (11) 

In order to achieve the fourth-order convergence in the 
second step we have found that there are three different 
forms of weight functions, which are expressed as 

( ) 1
1 41 ,uφ −= −                 (12) 

( )2
2 4 41 ,u uφ = + +                (13) 

[ ] [ ] 1
3 , , ,n n n nf x w f y wφ −=           (14) 

and to achieve the eighth-order convergence in the third step 
the weight functions are expressed as 

( ) ( )
1 12

3 4 21 2 1u u uη
− −= + −            (15) 

Furthermore, to achieve the sixteenth-order of conver-
gence in the fourth step, the weight function is expressed as 

( ) [ ]

2 2
1 2 1 3 4 5 6 1 4

12 2 2 2
2 3 1 4 3 4

1

3 , .n n

u u u u u u u u u

u u u u u u f x y

σ
−

= + − + + + +

+ −
       (16) 
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Then the iteration scheme (5) in its final form is given as 
( )
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(17) 

where ,n k ∈ , 3, ,φ η σ  are given by (14), (15), (16), re-
spectively and provided that the denominators in (17) are not 
equal to zero. Thus the scheme (17) defines a new multipoint 
method with suitable weight functions. To obtain the solu-
tion of (1) by the new sixteenth order derivative-free meth-
ods, we must set a particular initial approximation 0x , ide-
ally close to the simple root. In numerical mathematics it is 
very useful and essential to know the behaviour of an ap-
proximate method. Therefore, we shall prove the order of 
convergence of the new sixteenth-order method.  
Theorem 1 

Let Dα ∈  be a simple root of a sufficiently differentiable 
function :f D ⊂ →   in an open interval D. If 0x  is suf-
ficiently close to ,α  then the order of convergence of the 
new derivative-free method defined by (17) is sixteen. 
Proof  

Let α  be a simple root of ( )f x , i.e. ( ) 0f α =  and 
( ) 0f α′ ≠ , and the error is expressed as  

e x α= −                  (18) 
Using the Taylor expansion, we have 

( ) ( ) ( )
( ) ( )
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Taking ( ) 0f α =  and simplifying, expression (19) be-
comes 

( ) 2 3 4
1 2 3 4n n n n nf x c e c e c e c e= + + + +       (20) 

where n∈  and  
( ) ( )
( )!

k
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f

c
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α

= for 1, 2,3, 4,k =           (21) 

Expanding the Taylor series of ( )nf w  and substituting 
( )nf x  given by (20), we have  

( ) ( ) ( )2 2
1 1 1 2 1 2 21 3 .n n nf w c c e c c c c c e= + + + + +

   
(22) 

Substituting (20) and (22) in the first step of the expression 
(17), we obtain 
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The expansion of ( )nf y  about α  is given as 

( ) ( ) 2
2 1
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The expansion of the particular terms used in (17) are 
given as 
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( )
1 2 1 2

2 2 2
3 1 3 1 3 2

, 2

3 3

n n
n n n

n n

n

f w f x
f w x c c c c e

w x

c c c c c c e

 −
= = + +  − 

+ + + + +

     (25) 
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Based on the particular weight function 3,φ  and substi-
tuting appropriate expressions in the second step of (17), we 
obtain 
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,
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The Taylor series expansion of ( )nf z  about α  is given 
as 

( ) (
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In order to evaluate the essential terms of (17), we expand 
term by term 
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Collecting the above terms  
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Substituting appropriate expressions in (17), we obtain 
( ) ,n n na z f zα α ψωξ− = − −            (36) 

Simplifying (36), we obtain the error equation of eighth- 
order convergence 

( ) ( )
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(37) 

The error equation (37) is a simplified version of the 
eighth-order derivative-free method established in[16]. 

The Taylor series expansion of ( )nf z  about α  is given 
as 

( ) ( ) ( )
(
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We progress to expand the terms used in the fourth-step of 
(17),  
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( )1 ,n n ne a f aα σν+ = − −             (44) 
Collecting and Simplifying the appropriate terms used in 

(17), we obtain the error equation 
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( 4 4 2 3 3 2 3 2
1 2 4 1 3 1 2 4 1 3 1 2 35 2 10 3 14c c c c c c c c c c c c c+ + + −  

2 2 2 2 2 2 4 2
1 2 4 1 3 1 2 3 1 2 1 2 35 27 6 13c c c c c c c c c c c c c+ + − + −  

)4 4 16
1 2 211 9 nc c c e+ +               (45) 

The expression (45) establishes the asymptotic error con-
stant for the sixteen order of convergence for the new de-
rivative-free method defined by (17). 

2.2 Method 2: (Liu1) 

Recently we have introduced three-step eighth-order de-
rivative-free methods[16], and one of them was constructed 
by using the two-step fourth-order method presented by Liu 
et al.[7] and the third-step was developed to achieve the 
eighth-order. It appears that the formula of the eighth-order 
derivative-free method based on Liu et al. method given by 
(2.27) in[16] has a typo error. This error actually occurs in 
the weight function of the third step of the eighth-order de-
rivative-free method. We observe that the third step is cor-
rected and simplified in the following sixteenth-order 
method given below 
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 
= −  
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( )1 1n n nx z l f zν+ = − ,            (48) 
where 
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,n nw y  are given in (17), ν  is given by (43), 0x  is the initial 
approximation and provided that the denominators of 
(46)-(49) are not equal to zero. 
Theorem 2 

Let Dα ∈  be a simple root of a sufficiently differentiable 
function :f D ⊂ →   in an open interval D. If 0x  is suf-
ficiently close to ,α  then the order of convergence of the 
new derivative-free method defined by (48) is sixteen. 
Proof 

Using appropriate expressions in the proof of the theorem 
1 and substituting them into (48), we obtain the asymptotic 
error constant 

( ) ( ) (
)

2515 4 2 3 2
1 1 2 1 1 3 2 1 4 1 2 3

2 3 3
1 4 1 2 3 1 2 2

1 2

2 3

ne c c c c c c c c c c c

c c c c c c c c

−
+ = − + − −

+ − − − ×
 

( 4 4 4 4 2 3
1 2 3 1 2 4 1 3 1 2 4

3 2 3 2 2 2 2
1 3 1 2 3 1 2 4 1 3

5 2 10

3 22 5

c c c c c c c c c c c

c c c c c c c c c c

− − −

− + − −
 

)
2 2 3 4 2 4
1 2 3 1 2 1 2
2 4 4 16

1 2 3 1 2 2

37 4 34

16 60 31 n

c c c c c c c

c c c c c c e

+ − − +

− −
       (50) 

The expression (50) establishes the asymptotic error con-
stant for the sixteen order of convergence for the new de-
rivative-free method defined by (48). 

2.3. Method 3: (Liu2) 

Another three-step eighth-order derivative-free method 
recently introduced in[16] , and one of them was constructed 
by using the two-step fourth-order method presented by Liu 
et al.[10] and the third-step was developed to achieve the 
eighth-order. It appears that the formula of the eighth-order 
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derivative-free method based on Liu et al. method given by 
(2.32) in[16] has a typo error. Here also the error actually 
occurs in the weight function of the third step of the 
eighth-order derivative-free method. We observe that the 
third step given by (52) is corrected and simplified in the 
following sixteenth-order method given below 

( ) [ ] [ ] [ ]( )
[ ]( )2

, , ,

,

n n n n n n n
n n

n n

f y f x y f w y f w x
z y

f x y

 − + = −
 
 

        (51) 

[ ]

( )
[ ] [ ] [ ]( )

11 3 2
2 4 3 41 1 1

, , ,

n n

n

n n n n n n

a z u u u u

f z
f y z f x y f x z

−−    = − − − + ×   
 
 

− +  

         (52) 

( )1 2n n nx z l f zν+ = −              (53) 
where 

( )

[ ] [ ]( ) ( )

3
2 1 2 1 4 5 6
2 2 2 2
1 4 2 3 3 4 1 2

2 12
4

1

2 2

2 , , ,n n n n

l u u u u u u

u u u u u u u u

z u f x y f a y f x −

= + − + + +

+ + + −

−

       (54) 

,n nw y  is given in (17), ν  is given by (43), 0x  is the ini-
tial approximation and provided that the denominators of 
(51)-(54) are not equal to zero. It is well established that the 
eighth-order derivative-free method given by (52) converges 
to order eight, see[16]. However, we progress to establish the 
sixteenth-order method given by (53). 
Theorem 3 

Let Dα ∈  be a simple root of a sufficiently differentiable 
function :f D ⊂ →   in an open interval D. If 0x  is suf-
ficiently close to ,α  then the order of convergence of the 
new derivative-free method defined by (53) is sixteen. 
Proof 

Using appropriate expressions in the proof of the theorem 
1 and substituting them into (53), we obtain the asymptotic 
error constant 

( ) ( ) (
)

2515 4 2 2 2 3
1 1 2 1 1 3 1 2 1 3 2 1 4
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2 2 4
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2 4 4 16
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+ − − +

− −
         (55) 

The expression (55) establishes the asymptotic error con-
stant for the sixteenth-order of convergence for the new 
derivative-free method defined by (53). 

3. Kim and Guem Sixteenth Order 
Methods 

For the purpose of comparison, we consider two six-
teenth-order methods presented recently in[5,6]. Since these 
methods are well established, we shall state the essential 
expressions used in order to calculate the approximate solu-
tion of the given nonlinear equations and thus compare the 

effectiveness of the new sixteen order derivative-free 
methods.  

The first of the Kim et al. method[6] is given as 
( )
( )

( ) ( )
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where 
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( ) ( )1 2 2
, , ,

1
n n

f n n n
n n

u w
H u v w

v w
σ

σ
+ + +

=
− +

          (58) 

( ) ( )
( )

( )

1 2 2
, , ,

1 2 2 1

, ,

n n n
f n n n n

n n n n n

n n

u v w
W u v w t

v w t v w

G u w

σ
σ

+ + +
=

− − − + +

+

     (59) 
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There are many versions of ( ), ,n nG u w  see[6], for the pur-
pose of this paper we shall consider the following  

( ) ( ){
}

21
2

3 2
1 2

, 6 12 24 11

4

n n n n n n
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2
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( )2
2 2 2 9 4 6b
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2, 2.β σ= = −              (64) 
Another sixteenth-order methods introduced by Kim et al. 

is given in[5] and is expressed as 
( )
( )

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )1

    

  

, ,

, , ,

n
n n

n

n
n n f n

n

n
n n f n n n

n

n
n n f n n n n

n

f x
y x

f x

f y
z y K u

f x

f z
s z H u v w

f x

f s
x s W u v w t

f x+


= − ′ 


= −

′ 

= − ′



= − 
′ 

    (65) 
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As before we shall consider the particular weight function 
( ),n nG u w  used in (68), which is given as 

( )

( )
3 4 2244

11
2 3 2

, , 6 6

2 4 2

n n n n n n n n

n n n n n

G u v w u v u w w

u v v w w
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24 , 2.
11

β σ= = −               (71) 

where 0x  is the initial approximation and provided that the 
denominators of (65) are not equal to zero. In addition, fur-
ther details and expressions of the recently introduced six-
teenth-order method are given[5]. 

4. Application of the New Sixteenth- 
Order Derivative-Free Iterative 
Methods 

The present sixteenth-order methods given by (17), (48), 
(53), are employed to solve nonlinear equations and compare 
with the Kim et al type 1 and type 2 methods (56) and (65). 
To demonstrate the performance of the new sixteenth-order 
methods, we use ten particular nonlinear equations. We shall 
determine the consistency and stability of results by exam-
ining the convergence of the new derivative-free iterative 
methods. The findings are generalised by illustrating the 
effectiveness of the sixteenth-order methods for determining 
the simple root of a nonlinear equation. Consequently, we 
shall give estimates of the approximate solution produced by 
the sixteenth-order methods and list the errors obtained by 
each of the methods. The numerical computations listed in 
the tables were performed on an algebraic system called 

Maple. In fact, the errors displayed are of absolute value and 
insignificant approximations by the various methods have 
been omitted in the following tables. 
Remark 1 

The new four-step derivative-free methods require five 
function evaluations and have the order of convergence 
sixteen. Therefore, these new methods are of optimal order 
and support the Kung-Traub conjecture[9]. To determine the 
efficiency index of these new derivative-free methods, we 
shall use the definition 2. Hence, the efficiency index of the 
sixteenth-order derivative-free methods given is 5 16 1.741,≈  
which are better than the other two and three point deriva-
tive-free methods given in[2,3,7,8,10-14,16, 17,20]. 
Remark 2 

The test functions and their exact root α  are displayed in 
table 1. The difference between the root α  and the ap-
proximation nx  for test functions with initial approximation 

0x  are displayed in Table 2. In fact, nx  is calculated by 
using the same total number of function evaluations (TNFE) 
for all methods. In the calculations, 15 TNFE are used by 
each method. Furthermore, the computational order of con-
vergence (COC) is displayed in Table 3. 

Table 1.  Test functions and their roots 

Functions Roots 

( ) ( ) ( ) ( )2
1 exp sin ln 1f x x x x= + +  0α =  

( ) ( ) 12
2 1 1f x x

−
= − −  2α =  

( ) ( ) ( ) ( )10
3 2 1 exp 1f x x x x x= − + + − −  2α =  

( ) ( ) ( )( ) ( )( )2
4 1 exp sin exp cos 1f x x x x x= + − −  0α =  

( ) 2 2
5 sin( ) 1f x x x= − +  1.40449165...α =  

( ) ( ) ( )6 exp cos ,f x x x= − −  0.666273126...α = −  

( ) ( )2
7 ln 2 1f x x x x= + + − +  4.15259074...α =  

( ) 10 3
8 2 1f x x x x= − − +  0.591448093...α =  

( ) ( )2 1
9 cos 5f x x x−= −  1.08598268...α =  

( ) ( ) 1
10 sin 2f x x x−= −  0α =  

Table 2.  Comparison of various four-point iterative methods 

Methods (17) (48) (53) (56) (65) 

( )1 0, 0.25f x x =  0.498e-1891 0.155e-2041 0.222e-1957 0.237e-2132 0.890e-1878 

( )2 0, 1.1f x x =  0.790e-2540 0.157e-937 0.201e-778 0.501e-1528 0.206e-934 

( )3 0, 2.1f x x =  0.621e-630 0.222e-355 0.197e-354 - - 

( )4 0, 0.5f x x = −  0.899e-2683 0.216e-2695 0.114e-2698 0.241e-2455 0.516e-2071 

( )5 0, 0.25f x x =  0.578e-3751 0.415e-1372 0.715e-1389 0.405e-4079 0.454e-3694 

( )6 0, 1.2f x x =  0.138e-2583 0.604e-2827 0.228e-1878 0.288e-2 0.187e-13 

( )7 0, 2f x x =  0.165e-4088 0.257e-1532 0.513e-1440 0.155e-2750 0.132e-2373 

( )8 0, 0.25f x x =  0.820e-3411 0.515e-1165 0.126e-1192 0.126e-3033 0.243e-2764 

( )9 0, 1.7f x x =  0.928e-3388 0.259e-1265 0.790e-1301 0.510e-2235 0.517e-2129 

( )10 0, 4.4f x x =  0.709e-6146 0.250e-6392 0.148e-6140 0.129e-6390 0.127e-5912 
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Table 3.  COC of various iterative methods 

Methods (17) (48) (53) (56) (65) 
( )1 0, 0.25f x x =  15.998 15.998 15.998 15.998 16.000 
( )2 0, 1.1f x x =  16.000 10.997 11.000 16.000 16.000 
( )3 0, 2.1f x x =  15.977 10.979 10.979 - - 
( )4 0, 0.5f x x = −  16.000 15.999 15.999 16.000 16.000 
( )5 0, 0.25f x x =  16.000 11.000 10.999 15.999 16.000 
( )6 0, 1.2f x x =  21.000 21.000 18.996 6.3529 8.2749 
( )7 0, 2f x x =  16.000 10.999 11.000 16.000 16.000 

( )8 0, 0.25f x x =  16.000 11.000 11.000 16.000 16.000 
( )9 0, 1.7f x x =  16.000 11.000 10.998 15.998 15.998 
( )10 0, 4.4f x x =  21.000 21.000 21.000 21.000 20.999 

5. Conclusions 
In this study, we have constructed new sixteenth-order 

derivative-free methods for solving nonlinear equations. 
Convergence analysis proves that these new derivative-free 
methods preserve their order of convergence. From the re-
sults in the tables, based on a number of numerical experi-
ments, it can be concluded that the convergence of the new 
multipoint method of the sixteenth-order is remarkably fast. 
Furthermore, we have found that the new four-point methods 
(17) produced identical results with all three types of weight 
function, given by (12)-(14), used in the second step of (17). 
After an extensive experimentation we were not able to 
designate a specific iterative method which always produces 
the best results for all tested nonlinear equations.  

There are two major advantages of the higher order de-
rivative-free methods. Firstly, we do not have to evaluate the 
derivative of the functions; therefore they are especially 
efficient where the computational cost of the derivative is 
expensive, and secondly we have established a higher order 
of convergence method than the existing derivative-free 
methods[2,3,7,8,10-14,16,17,20]. We have examined the 
effectiveness of the new derivative-free methods by showing 
the accuracy of the simple root of a nonlinear equation. The 
main purpose of demonstrating the new sixteenth-order 
derivative-free methods for many different types of nonlin-
ear equations was purely to illustrate the accuracy of the 
approximate solution, the stability of the convergence, the 
consistency of the results and to determine the efficiency of 
the new iterative methods. Finally, we conclude that the new 
four-point methods may be considered a very good alterna-
tive to the classical methods. 

 

REFERENCES 
[1] S. D. Conte, Carl de Boor, Elementary Numerical Analysis, 

An Algorithmic Approach, McGraw-Hill, 1981 

[2] A. Cordero, J. L. Hueso, E. Martinez, J. R. Torregrosa, Stef-

fensen type methods for solving nonlinear equations, Comput. 
Appl. Math. (2010) doi:10.1016/jcam2010.08.043. 

[3] M. Dehghan, M. Hajarian, Some derivative free quadratic and 
cubic convergence iterative formulas for solving nonlinear 
equations, J. Comput. Appl. Math. 29 (2010) 19-30. 

[4] W. Gautschi, Numerical Analysis: an Introduction, Birk-
hauser, 1997. 

[5] Y. H. Geum, Y. I. Kim, A family of optimal sixteenth-order 
multipoint methods with a linear fraction plus a trivariate 
polynomial as the fourth-step weighting function, Comp. 
Math, Appl. 61 (2011) 3278-3287. 

[6] Y. H. Geum, Y. I. Kim, A biparamtric family of optimally 
convergent sixteenth-order multipoint methods with their 
fourth-step weighting function as a sum of a rational and a 
generic two-variable function, Comput. Appl. Math. 235 
(2011) 3178-3188. 

[7] S. K. Khattri, R. P. Agarwal, Derivative-free optimal iterative 
methods, Comput. Met. Appl. Math. 10 (2010) 368-375. 

[8] S. K. Khattri, I. K. Argyros, Sixth order derivative free family 
of iterative methods, Appl. Math. Comput. (2011), 
doi:10.1016/jamc 2010.12.021. 

[9] H. Kung, J. F. Traub, Optimal order of one-point and multi-
point iteration, J. Assoc. Comput. Math. 21 (1974) 643-651. 

[10] Z. Liu, Q. Zheng, P. Zho, A variant of Steffensen’s method of 
fourth-order convergence and its applications, Appl. Math. 
Comput. 216 (2010) 1978-1983. 

[11] Y. Peng, H. Feng, Q. Li, X. Zhang, A fourth-order deriva-
tive-free algorithm for nonlinear equations, J. Comput. Appl. 
Math. 235 (2011) 2551-2559. 

[12] M. S. Petkovic, S Ilic, J. Dzunic, Derivative free two-point 
methods with and without memory for solving nonlinear eq-
uations, Appl.2 Math. Comput. 217 (2010) 1887-1895.  

[13] F. Soleymani, S. K. Vanani, Optimal Steffensen-type me-
thods with eighth order convergence, Comp. Math. Appl. 62 
(2012) 4619-4626. 

[14] F. Soleymani, S. K. Vanani, M. J. Paghaleh, A class of 
three-step derivative-free root solvers with optimal conver-
gence order, ISRN Appl. Math. In press (2012). 

[15] J. F. Steffensen, Remark on iteration, Skand. Aktuar Tidsr. 16 
(1933) 64-72. 

[16] R. Thukral, Eighth-order iterative methods without deriva-
tives for solving nonlinear equations, J. Appl. Math. (2011) 
1-11. 

[17] R. Thukral, New family of higher order Steffensen-type 
methods for solving nonlinear equations, J. Mod. Meth. 
Numer. Math. 3 (2012) 1-10. 

[18] J. F. Traub, Iterative Methods for solution of equations, 
Chelsea publishing company, New York 1977. 

[19] S. Weerakoon, T. G. I. Fernando, A variant of Newton’s 
method with accelerated third-order convergence, Appl. Math. 
Lett. 13 (2000) 87-93. 

[20] Q. Zheng, J. Li, F. Huang, An optimal Steffensen-type family 
for solving nonlinear equations, Appl. Math. Comput. 217 
(2011) 9592-9597

 


	1. Introduction
	2. Derivation of the Methods and  Convergence Analysis
	2.1. The four-point derivative-free methods
	2.2 Method 2: (Liu1)
	2.3. Method 3: (Liu2)

	3. Kim and Guem Sixteenth Order Methods
	4. Application of the New Sixteenth- Order Derivative-Free Iterative Methods
	5. Conclusions

