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Solving Partial Integro-Differential Equations Using 
Laplace Transform Method 
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Abstract  Partialintegro-differential equations (PIDE) occur naturally in various fields of science, engineering and social 
sciences. In this article, we propose a most general form of a linear PIDE with a convolution kernel. We convert the proposed 
PIDE to an ordinary differential equation (ODE) using a Laplace transform (LT). Solving this ODE and applying inverse LT 
an exact solution of the problem is obtained. It is observed that the LT is a simple and reliable technique for solving such 
equations. A variety of numerical examples are presented to show the performance and accuracy of the proposed method. 
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1. Introduction 
Real life phenomena are often modelled by ordi-

nary/partial differential equations. Due to the local nature of 
ordinary differential operator(ODO), the models containing 
merely ODOs do not help in modelling memory and he-
reditary properties. One of the best remedies to overcome 
this drawback is the introduction of integral term in the 
model. The ordinary/partial differential equation along with 
the weighted integral of unknown function gives rise to an 
integro-differential equation (IDE) or a partial inte-
gro-differential equation (PIDE) respectively. Analysis of 
such equations can be found in[1-4]. 

Applications of PIDEs can be found in various fields. 
Dehghan and shakeri[5] have used variational iteration 
method (VIM) to solve PIDEs arising in heat conduction of 
materials with memory. Various numerical schemes are 
proposed by Dehghan[6] to solve PIDEs arising in viscoe-
lasticity. Nonlinear PIDEs arising in nuclear reactor dy-
namics are solved by Pao[7] and Pachapatte[8]. PIDEs have 
been used in jump-diffusion models for pricing of deriva-
tives in finance[9]. Abergel[10] used a nonlinear PIDE in 
financial modelling. Hepperger[11] proposed a PIDE in the 
model of electricity swaptions. A PIDE governing biofluid 
flow in fractured biomaterials is proposed by Zadeh in[12]. 

The most promising tool for solving linear equations is 
the Laplace transform (LT) method[13,14]. LT is used in[16] 
for calculations of water flow and heat transfer in fractured 
rocks. Alquran et al.[17] used LT to solve non 
-homogeneous partial differential equations. Merdan et al.  
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[18] proposed a new method for nonlinear oscillatory sys-
tems using LT. 

Stiff systems of ODEs are solved by Aminikhah[19] us-
ing a combined LT and HPM. Kexue and Jiger[20] have 
utilized LT to solve problems arising in fractional differen-
tial equations. 

In this article we propose a most general form of a linear 
PIDE in two independent variables with a convolution ker-
nel. In Section 2 we provide some preliminaries regarding 
LT. Section 3 is devoted to the proposed method and Sec-
tion 4 provides an ample number of examples of various 
types. 

2. Preliminaries 
2.1. Laplace Transform method: 

Definition: TheLaplace transform of a function f(x), is 
defined by 

𝑓𝑓�(𝑝𝑝) =  ℒ{ f(x)} =  ∫ 𝑒𝑒−𝑝𝑝𝑝𝑝𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 ;  𝑥𝑥 ≥ 0𝑡𝑡
0 , 

(whenever integral on RHS exists) 
where, x ≥0, p is real and ℒis the Laplace transform opera-
tor. 
Convolution Theorem: 

If 𝑓𝑓(̅𝑝𝑝) =  ℒ{ f(t)}and 𝑔̅𝑔(𝑝𝑝) =  ℒ{ g(𝑡𝑡)}then 

ℒ{ f(t) ∗ 𝑔𝑔(𝑡𝑡)} =  ℒ{ f(𝑡𝑡)}ℒ{ g(𝑡𝑡)}= 𝑓𝑓(̅𝑝𝑝)𝑔̅𝑔(𝑝𝑝), 

where, f(t) ∗ 𝑔𝑔(𝑡𝑡) =  ∫ 𝑓𝑓(𝑥𝑥 − 𝑡𝑡)𝑔𝑔(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡
0 . 

3. Solving PIDEs using Laplace  
Transform Method 

Consider PIDE, 
∑ 𝑎𝑎𝑖𝑖

𝜕𝜕𝑖𝑖 𝑢𝑢
𝜕𝜕𝑡𝑡 𝑖𝑖

𝑚𝑚
𝑖𝑖=0 + ∑ 𝑏𝑏𝑖𝑖

𝜕𝜕𝑖𝑖𝑢𝑢
𝜕𝜕𝑥𝑥 𝑖𝑖 + 𝑐𝑐𝑐𝑐 +  ∑ 𝑑𝑑𝑖𝑖

𝑟𝑟
𝑖𝑖=0 ∫ 𝑘𝑘𝑖𝑖(𝑡𝑡 −𝑡𝑡

0
𝑛𝑛
𝑖𝑖=0
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 𝑠𝑠) 𝜕𝜕𝑖𝑖 𝑢𝑢(𝑥𝑥,𝑠𝑠)
𝜕𝜕𝑥𝑥 𝑖𝑖 𝑑𝑑𝑑𝑑 +  𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 0,                 ( * ) 

(with prescribed conditions) 
where 𝑓𝑓(𝑥𝑥, 𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘𝑖𝑖(𝑡𝑡, 𝑠𝑠)  are known functions. 

𝑎𝑎𝑖𝑖′𝑠𝑠 , 𝑏𝑏𝑖𝑖 ’s, 𝑑𝑑𝑖𝑖′𝑠𝑠 and c are constants or the functions of 𝑥𝑥. 
Taking Laplace transform on both sides of PIDE (*) with 

respect to t we get, 

� 𝑎𝑎𝑖𝑖 ℒ { 
𝜕𝜕𝑖𝑖𝑢𝑢
𝜕𝜕𝑡𝑡𝑖𝑖  }

𝑚𝑚

𝑖𝑖=0

 + � 𝑏𝑏𝑖𝑖ℒ �
𝜕𝜕𝑖𝑖𝑢𝑢
𝜕𝜕𝑥𝑥𝑖𝑖 � + 𝑐𝑐ℒ{𝑢𝑢}

𝑛𝑛

𝑖𝑖=0

+  � 𝑑𝑑𝑖𝑖

𝑟𝑟

𝑖𝑖=0

ℒ �𝑘𝑘𝑖𝑖(𝑡𝑡) ∗
𝜕𝜕𝑖𝑖𝑢𝑢(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑥𝑥𝑖𝑖 �

+ ℒ {f(x, t)} = 0 , 
Using convolution theorem for Laplace transform we get, 

∑ 𝑎𝑎𝑖𝑖 ( 𝑝𝑝𝑖𝑖 𝑢𝑢�(𝑥𝑥, 𝑝𝑝) − ∑ (𝑝𝑝𝑗𝑗 −1𝑢𝑢(𝑖𝑖−𝑗𝑗 )(𝑥𝑥, 0))𝑖𝑖
𝑗𝑗 =1

𝑚𝑚
𝑖𝑖=0  ) +

 ∑ 𝑏𝑏𝑖𝑖
𝑑𝑑𝑖𝑖 𝑢𝑢�  (𝑥𝑥,𝑝𝑝)

𝑑𝑑𝑥𝑥 𝑖𝑖 + 𝑐𝑐 𝑢𝑢�(𝑥𝑥, 𝑝𝑝) +  ∑ 𝑑𝑑𝑖𝑖
𝑟𝑟
𝑖𝑖=0 𝑘𝑘𝑖𝑖� (𝑝𝑝) 𝑑𝑑𝑖𝑖 𝑢𝑢� (𝑥𝑥,𝑝𝑝)

𝑑𝑑𝑥𝑥 𝑖𝑖 +𝑛𝑛
𝑖𝑖=0

 𝑓𝑓(𝑥𝑥,𝑝𝑝)=0 ,                 (**)  

where, 𝑢𝑢�(𝑥𝑥, 𝑝𝑝) = ℒ {𝑢𝑢(𝑥𝑥, 𝑡𝑡) }, 

𝑓𝑓(𝑥𝑥, 𝑝𝑝) = ℒ {f (x, t)} 

And 𝑘𝑘𝑖𝑖� (𝑝𝑝)= ℒ{𝑘𝑘𝑖𝑖(𝑡𝑡)}. 
Equation (**) is an ordinary differential equation in  𝑢𝑢�  

(𝑥𝑥, 𝑝𝑝). Solving this ordinary differential equation and taking 
inverse Laplace transform of 𝑢𝑢�  (𝑥𝑥 , 𝑝𝑝), we get a solution 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) of (*). 

4. Illustrative examples 

 
Fig. 1.Solution of (1.1)𝑢𝑢(𝑥𝑥, 𝑡𝑡)=𝑥𝑥𝑥𝑥. 

Example 1. Consider the PIDE 
𝑥𝑥𝑢𝑢𝑥𝑥  = 𝑢𝑢𝑡𝑡𝑡𝑡  +  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡 − 𝑠𝑠)𝑢𝑢(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑,𝑡𝑡

0    (1) 
with initial conditions 

𝑢𝑢(𝑥𝑥, 0) = 0, ut(x, 0) = 𝑥𝑥,                (2) 
and boundary condition 

𝑢𝑢(1, 𝑡𝑡) = t.                  (3) 
Taking Laplace transform with respect to t on both sides of 

(1), 
𝑥𝑥 𝑑𝑑ū

𝑑𝑑𝑑𝑑
= 𝑝𝑝2𝑢𝑢� (𝑥𝑥,𝑝𝑝) – 𝑝𝑝𝑝𝑝(𝑥𝑥, 0) −  𝑢𝑢𝑡𝑡 (𝑥𝑥, 0) 

 + 𝑥𝑥
𝑝𝑝2+1

 + 1
𝑝𝑝2+1

𝑢𝑢� . 

➾
𝑑𝑑ū
𝑑𝑑𝑑𝑑

+ −1
𝑥𝑥

(𝑝𝑝2+ 1
𝑝𝑝2+1

)𝑢𝑢�  = −𝑝𝑝2

𝑝𝑝2+1
.             (4) 

Solution of (1) is 

𝑢𝑢�  (𝑥𝑥,𝑝𝑝)= 1
𝑝𝑝2 𝑥𝑥 + C 𝑥𝑥(𝑝𝑝2+ 1

𝑝𝑝 2+1
)
.             (5) 

Where, C is a constant to be determined.  
From (3), 

𝑢𝑢�(1, 𝑝𝑝) =
1

𝑝𝑝2. 

From (4)           C = 0. 
∴𝑢𝑢�  (𝑥𝑥,𝑝𝑝)= 1

𝑝𝑝2 𝑥𝑥 .               (6) 
Taking inverse Laplace transform on both the sides of (6), 

we get 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥𝑥𝑥. 

The solution of (1) is plotted in the Fig.1. 
Example 2. Consider the PIDE 

𝑢𝑢tt =𝑢𝑢𝑥𝑥+ 2 ∫ (𝑡𝑡 − 𝑠𝑠)𝑢𝑢(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 – 2𝑒𝑒𝑥𝑥 ,     (7) 

with initial condition 
𝑢𝑢(𝑥𝑥, 0) =𝑒𝑒𝑥𝑥 , 𝑢𝑢t (𝑥𝑥, 0)= 0,             (8) 

and boundary condition 
𝑢𝑢(0, 𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.              (9) 

Taking Laplace transform w.r.t. t on both sides of (7), 
   𝑝𝑝2𝑢𝑢�(𝑥𝑥,𝑝𝑝)- 𝑝𝑝𝑝𝑝(𝑥𝑥, 0)-𝑢𝑢𝑡𝑡 (𝑥𝑥, 0) = 𝑑𝑑ū

𝑑𝑑𝑑𝑑
 + 2 ( 1

𝑝𝑝²
) ū– 2𝑒𝑒𝑥𝑥(1

𝑝𝑝
). 

∴   𝑑𝑑ū
𝑑𝑑𝑑𝑑

 + ( 2
𝑝𝑝2 −  𝑝𝑝2)𝑢𝑢� =2

𝑝𝑝
− 𝑝𝑝.              (10) 

𝑢𝑢�  (𝑥𝑥,𝑝𝑝) = 1

𝑒𝑒
∫( 2

𝑝𝑝 2− 𝑝𝑝 2)𝑑𝑑𝑑𝑑
[∫ 𝑒𝑒∫( 2

𝑝𝑝 2− 𝑝𝑝2)𝑑𝑑𝑑𝑑
(2

𝑝𝑝
− 𝑝𝑝)𝑑𝑑𝑑𝑑 + C ]. 

Therefore the solution of (10) is 

𝑢𝑢�  (𝑥𝑥,𝑝𝑝) = ( 𝑝𝑝
𝑝𝑝2+1

) 𝑒𝑒𝑥𝑥+ C𝑒𝑒(𝑝𝑝2− 2
𝑝𝑝 2)𝑥𝑥

.              (11) 
From the boundary condition (9) 

𝑢𝑢�  (0,𝑝𝑝) = 𝑝𝑝
𝑝𝑝2+1

.                (12) 
Using (11) and (12), we get C = 0. 
∴ Equation (11) becomes,  

𝑢𝑢�  (𝑥𝑥,𝑝𝑝) = ( 𝑝𝑝
𝑝𝑝2+1

) 𝑒𝑒𝑥𝑥 .             (13) 
Taking inverse Laplace transform of (13) 

𝑢𝑢(𝑥𝑥, 𝑡𝑡)= 𝑒𝑒𝑥𝑥 cos 𝑡𝑡.                  (14) 
The solution (14) is plotted in Figure 2. 

 
Figure 2.Solution of𝑢𝑢( 𝑥𝑥, 𝑡𝑡)=𝑒𝑒𝑥𝑥 cos 𝑡𝑡. 

Example 3. Consider 
𝑢𝑢𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢 + ∫ 𝑒𝑒𝑡𝑡−𝑠𝑠𝑢𝑢(𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑 = (𝑥𝑥2 + 1)𝑒𝑒𝑡𝑡 − 2𝑡𝑡

0 (15) 
𝑢𝑢(𝑥𝑥, 0) =  𝑥𝑥2 , 𝑢𝑢𝑡𝑡 (𝑥𝑥, 0) = 1,            (16) 
𝑢𝑢(0, 𝑡𝑡) = 𝑡𝑡 , 𝑢𝑢𝑥𝑥 (0, 𝑡𝑡) = 0.              (17) 

Taking Laplace transform of (15) w.r.t. t we get 
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𝑝𝑝𝑢𝑢�  (𝑥𝑥,𝑝𝑝) - 𝑢𝑢(𝑥𝑥, 0)-𝑑𝑑2ū
𝑑𝑑𝑥𝑥 2 +𝑢𝑢� + 1

(𝑝𝑝−1)
ū = 1

(𝑝𝑝−1)
(𝑥𝑥2 + 1) − 2

𝑝𝑝
.(18) 

𝑑𝑑2𝑢𝑢�
𝑑𝑑𝑥𝑥 2 − � 𝑝𝑝2

𝑝𝑝−1
� 𝑢𝑢� =  −𝑥𝑥2 � 𝑝𝑝

𝑝𝑝−1
� − 1

𝑝𝑝−1
+  2

𝑝𝑝
.    (19) 

Solving (19) we get, 

𝑢𝑢�  (𝑥𝑥,𝑝𝑝) = 𝐶𝐶1𝑒𝑒
� 𝑝𝑝 2

𝑝𝑝 −1𝑥𝑥 +  𝐶𝐶2𝑒𝑒−� 𝑝𝑝 2
𝑝𝑝 −1𝑥𝑥 + 𝑥𝑥 2

𝑝𝑝
+ 1

𝑝𝑝2 .    (20) 
Now, 

𝑢𝑢(0, 𝑡𝑡) = 𝑡𝑡  ∴ 𝑢𝑢�(0, 𝑝𝑝) 1
𝑝𝑝2 ,       (21) 

And 𝑢𝑢𝑥𝑥 (0, 𝑡𝑡) = 0  ∴ 𝑑𝑑𝑢𝑢�(0,𝑝𝑝)
𝑑𝑑𝑑𝑑

=  0          (22) 
Using (21) and (22) in (20) we get, 

𝐶𝐶1 +  𝐶𝐶2 = 0 .            (23) 
And 𝐶𝐶1 − 𝐶𝐶2 = 0 .                 (24) 

Solving (23) and (24) we get, 
𝐶𝐶1 = 0, 𝐶𝐶2 = 0 . 

∴ Equation (20) becomes, 
𝑢𝑢�  (𝑥𝑥,𝑝𝑝) = 𝑥𝑥 2

𝑝𝑝
+  1

𝑝𝑝2 .  
Taking inverse Laplace transform we get, 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) =  𝑥𝑥2 + 𝑡𝑡 . 
This is an exact solution of (15). 
Figure 3 represents the graph of 𝑢𝑢(𝑥𝑥, 𝑡𝑡) =  𝑥𝑥2 + 𝑡𝑡 . 

 
Figure 3.  Solution of (15)𝑢𝑢(𝑥𝑥, 𝑡𝑡) =  𝑥𝑥2 + 𝑡𝑡 . 

Example 4. Consider 
𝑢𝑢𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑢𝑢𝑡𝑡 − 𝑢𝑢 + 𝑥𝑥𝑥𝑥 − 

∫ sinh(𝑡𝑡 − 𝑠𝑠)𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 (𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 = 0           (25) 

𝑢𝑢(𝑥𝑥, 0) = 0, 𝑢𝑢𝑡𝑡 (𝑥𝑥, 0) = 𝑥𝑥, 𝑢𝑢𝑡𝑡𝑡𝑡 (𝑥𝑥, 0) = 0,    (26) 
𝑢𝑢(0, 𝑡𝑡) = 0, 𝑢𝑢𝑥𝑥 (0, 𝑡𝑡) = sin 𝑡𝑡 , 𝑢𝑢𝑥𝑥𝑥𝑥 (0, 𝑡𝑡) = 0.    (27) 

Taking Laplace transform of (25) with respect to t and 
using equation (26) we get, 

𝑑𝑑3𝑢𝑢�
𝑑𝑑𝑥𝑥3 + 

1
𝑝𝑝2 (𝑝𝑝3 + 𝑝𝑝4 − 𝑝𝑝7 − 1)𝑢𝑢� = 

1
𝑝𝑝2 (𝑝𝑝2 − 1)(1 − 𝑝𝑝3)𝑥𝑥             (28) 

Solving (28) we get, 
𝑢𝑢�(𝑥𝑥, 𝑝𝑝) =

 𝑒𝑒

(−1)
2
3�1−𝑝𝑝 3−𝑝𝑝 4+𝑝𝑝 7�

1
3𝑥𝑥

𝑝𝑝
2
3 𝐶𝐶1 + 𝑒𝑒

−
(−1)

1
3�1−𝑝𝑝 3−𝑝𝑝 4+𝑝𝑝 7�

1
3𝑥𝑥

𝑝𝑝
2
3 𝐶𝐶2  +

 𝑒𝑒

�1−𝑝𝑝 3−𝑝𝑝 4+𝑝𝑝 7�
1
3𝑥𝑥

𝑝𝑝
2
3 𝐶𝐶3 +  1

𝑝𝑝2+1
𝑥𝑥.         (29) 

Using (27) we get, 
𝐶𝐶1 = 0, 𝐶𝐶2 = 0 and 𝐶𝐶3 = 0. 
Therefore equation (29) becomes, 

𝑢𝑢�(𝑥𝑥, 𝑝𝑝) =  
1

𝑝𝑝2 + 1
𝑥𝑥 .  

Taking inverse Laplace transform we get, 
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥 sin 𝑡𝑡.                (30) 

Figure 4 shows the graph of (30). 

 
Figure 4.  Solution of (25) 𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥 sin 𝑡𝑡. 

5. Conclusions 
PIDEs are used in modelling various phenomena in sci-

ence, engineering and social sciences. The LT technique is 
successfully used to solve a general linear PIDE involving a 
convolution kernel. We get exact solutions of such PIDEs 
after a few steps of calculations. We hope some other types 
of PIDEs and these equations can be used in modelling real 
life phenomena. 
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