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Abstract  This paper discusses about the slider bearing of various shapes stator pad surfaces (e.g. inclined plane, expo-
nential, secant, convex, and parallel) including combined effects of porosity at both the ends, anisotropic permeability, slip 
velocity, and squeeze velocity. Expression for load capacity is obtained in general and discussed for various cases of stator 
pad surface to explore its possible effects on the above system for different permeabilities at both the ends. Various sizes of 
the porous matrix at both the ends are also discussed for the possible optimization of bearing performance. From the study we 
conclude that better load capacity is obtained when the thickness of both the porous plates are small, and also when both the 
porous plates are of same size rather than different size. 
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1. Introduction 
Wu[1] in an innovative analysis, dealt with the case of 

squeeze film behavior for porous annular disks in which he 
showed that owing to the fact that fluid can flow through the 
porous material as well as through the space between the 
bounding surfaces, the performance of a porous walled 
squeeze film can differ substantially from that of a solid 
walled squeeze film. Later Sparrow et. al.[2] extended the 
above analysis[1] by introducing the effect of velocity slip to 
porous walled squeeze film with porous matrix appeared in 
the above plate. They found that the load capacity decreases 
due to the effect of porosity and slip. Prakash and Vij[3] 
investigated a porous inclined slider bearing and found that 
porosity caused decrease in the load capacity and friction, 
while it increased the coefficient of friction. Many other 
authors have also worked in this direction, for example Patel 
et. al.[4], Gupta et. al.[5], Naduvinamani et. al.[6], Guo. et. 
al.[7]. 

In all above investigations, none of the authors considered  
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both the porous plates in their study. The porous layer in the 
bearing is considered because of its advantageous property 
of self lubrication. With this motivation the aim of the 
present work is to study the behavior of a slider bearing of 
various stator pad surfaces with the porous matrix attached to 
both the plates (that is upper and lower). Here, we have also 
included the effects of slip velocity and anisotropic perme-
ability at both the porous plates, as well as squeeze velocity 
when the upper plate approaches to lower one. 

A lubrication equation is derived in general for the above 
system. The various shapes of the slider bearing due to dif-
ferent stator pad surfaces is considered for the study of load 
capacity with various sizes of upper and lower porous matrix. 
Moreover, two different cases of anisotropic permeability at 
upper and lower porous matrix is also considered for study. 

2. Formulation of the Mathematical 
Model 

Figure 1-5 shows schematic diagram of various system 
under study which consists of a fluid film of thickness h 
within an stator pad surface of various shapes and a slider of 
length A in the x-direction and width B in y-direction, A<< B. 
The value of h is h2 at the inlet and h1 at the outlet. This film 
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thickness h are given as follows: 
(a) For inclined pad slider bearing: 

( )2 2 1 /= − −ih h h h x A ; 0 ≤ x ≤ A      (1) 

 
Figure 1.  Inclined pad slider bearing 

(b) For exponential pad slider bearing: 
( )ln

2

−
=

x a
A

eh h e ; 0 ≤ x ≤ A          (2) 

 
Figure 2.  Exponential pad slider bearing 

 
Figure 3.  Secant pad slider bearing 

(c) For secant pad slider bearing: 
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1 sec
2
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(d) For convex pad slider bearing: 
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2

2 2 124
 
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δ ; 0 ≤ x ≤ A    (4) 

 
Figure 4.  Convex pad slider bearing 

where δ is the central thickness of the convex pad. 
(e) For parallel pad slider bearing: 

1 2= =ph h h  ; 0 ≤ x ≤ A          (5) 

 
Figure 5.  Parallel pad slider bearing 

Porous matrix of thickness l2 and l1 metres have attached 
with the slider and stator respectively. Both the porous ma-
trix are backed by a solid wall. The slider moves with a 
uniform velocity U in the x-direction. Also, stator moves 
normally towards the slider with a uniform velocity

/h dh dt= , where t is time in seconds. 
The basic one dimensional flow equation governing the 

lubricant flow in the film region for the above phenomenon 
follows form Navier-Stokes’s equation under the usual as-
sumption of lubrication, neglecting inertia terms and that the 
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derivatives of velocities across the film predominate, yields 
2

2

1
 

∂ ∂
=

∂∂
u p

xz η
,                 (6) 

where u is the film fluid velocity in the x-direction, p is film 
pressure and η  is fluid viscosity. 

Solving equation (6) under the slip boundary conditions 
given by Sparrow et.al.[2] and modified by Shah et.al.[8] 
with the addition of slider velocity U to[2] 
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is
 (i =1, 2), being slip 

parameter, ,x xmη are porosities in the x- direction and ,x xϕ ψ  
are permeabilities in the x- direction in the porous region, we 
obtain 
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where 1 2 1 2 .s s s hs s= + +  

Substituting the above value of u in the integral form of 
continuity equation 

0
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              (9) 

where w is the axial component of the fluid velocity in the 
film, we have 

3 3 2
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Using Darcy’s law, the velocity components of the fluid in 
the porous matrix are given as follow: 

For upper porous region: 

1
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x
ψ
η
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∂
 ( x – direction )         (11) 
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where ,x zψ ψ  are fluid permeabilities in the upper porous 
region in x and z direction respectively, and P is the fluid 
pressure in the porous region. 
For lower porous region: 
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where ,x zϕ ϕ  are fluid permeabilities in the lower porous 
region in x and z direction respectively, and P is the fluid 
pressure in the porous region. 

Substituting equations (11) and (12) in the continuity 
equation for upper porous region 

1 1 0
u w
x z

∂ ∂
+ =

∂ ∂
,                 (15) 

and then integrating the result with respect to z across the 
upper porous matrix ( h, h+l1 ), we obtain 

2
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using Morgan-Cameron approximation[6] and the fact that 
the surface 1z h l= +  is non-porous. 

Substituting equations (13) and (14) in the continuity equa-
tion for lower porous region 
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u w
x z

∂ ∂
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,                (17) 

and then integrating the result with respect to z across the 
lower porous matrix (−  l2, 0), we obtain 
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0z =

∂ ∂
= −

∂ ∂
xz

z

P p l
x

ϕϕ
η η

,             (18) 

using Morgan-Cameron approximation[6] and the fact that 
the surface 2z l= −  is non-porous. 

Considering the normal component of velocity across the 
film porous interface are continuous, so that 1 ,hw h w= −  

0 2w w=  using equations (16), (18) and (10), we obtain 
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which is the Reynolds’s type equation for the considered 
phenomenon. 

Introducing the dimensionless quantities 
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We have from equations (1)-(5), 
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Also, equation (19) transforms to 
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Equation (20) is known as dimensionless Reynolds’s 
equation. 
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3. Calculation of Load Capacity 
Since the pressure is negligible on the boundaries of the 

slider bearing compared to inside pressure, solving equation 
(20) under boundary conditions 

0p =  when 0,1.X =  
The dimensionless film pressure p  is obtained as: 

0
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G
−

= ∫ , where

1

0
1

0

1
=
∫

∫

E dX
G

Q
dX

G

. 

The load carrying capacity W in dimensionless forms as 
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4. Results and Discussion 
Both porous plates various slider bearing with slip veloc-

ity, anisotropic permeability, squeeze velocity lubricated by 
a conventional fluid are examined to explore the possible 
effects on the bearing characteristic like load capacity.  

The dimensionless load capacity W for various bearings 
denoted as follows: 

iW  - Dimensionless load capacity for inclined pad stator 
slider bearing 

eW  - Dimensionless load capacity for exponential pad 
stator slider bearing 

sW  - Dimensionless load capacity for secant pad stator 
slider bearing 

cW  - Dimensionless load capacity for convex pad stator 
slider bearing 

pW  - Dimensionless load capacity for parallel pad stator 
slider bearing 

The values of dimensionless load capacity W for various 
bearings are calculated as follows: 

(1) For various values of xψ (m2) keeping xϕ =0.000001 
(m2) fixed and for the cases 

(a) 1l = 5, 2l  = 5 (Refer Table 1) 
(b) 1l = 5, 2l  = 10 (Refer Table 2) 
(c) 1l = 10, 2l  = 5 (Refer Table 3) 
(2) For various values of xϕ  (m2) keeping xψ =0.000001 

(m2) fixed and for the cases 

(a) 1l = 5, 2l  = 5 (Refer Table 4) 
(b) 1l = 5, 2l  = 10 (Refer Table 5) 
(c) 1l = 10, 2l  = 5 (Refer Table 6) 
For various values of 2l  keeping 1l = 5 fixed and for the 

cases 
(a) xϕ =0.001(m2), xψ =0.00001(m 2) (Refer Table 7) 
(b) xϕ =0.00001(m 2), xψ =0.001(m 2) (Refer Table 8) 
(4) For various values of 1l keeping 2l = 5 fixed and for 

the cases 
(a) xϕ =0.001(m2), xψ =0.00001(m 2) (Refer Table 9) 
(b) xϕ =0.00001(m 2), xψ =0.001(m 2), (Refer Table 10) 
The values of the various parameters used are as follows:  

0.64=xη , 0.81=xm , 0.15=A (m), 1 0.05=h (m), 0.012=η
(kgm-1s-1), 1.0=U (ms-1),  

0.005h = −  (ms-1), 2.0=a (m), 0.3=δ   
From the Table 1 to 10 we have following observations: 

From Table 1 to Table 3 we say that maximum load ca-
pacity obtained for all types of bearings when xψ
=0.000001(m2) and in that case  

c e i s pW W W W W> > > >  
When the value of xψ

 
increases then for all cases the 

load capacity decreases. 

Table 1.  Values of W  for xϕ = 0.000001 

Load Capacity 
Values of xψ

 
for 1l  =5, 2l  = 5 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  0.2944947 0.2689662 0.1587890 0.0352725 0.0041350 0.0000422 

eW  0.2975676 0.2710447 0.1580027 0.0346340 0.0040542 0.0000417 

sW  0.1972811 0.1822016 0.1190259 0.0413386 0.0096864 0.0001678 

cW  0.3093480 0.2796860 0.1582435 0.0338544 0.0039615 0.0000416 

pW  0.0140397 0.0114718 0.0042390 0.0005919 0.0000620 0.0000006 

Table 2.  Values of W  for xϕ = 0.000001 

Load Capacity 
Values of xψ

 
for 1l  =5, 2l  = 10 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  0.2918521 0.2668492 0.1581476 0.0352431 0.0041346 0.0000422 

eW  0.2948064 0.2688426 0.1573522 0.0346051 0.0040538 0.0000417 

sW  0.1957036 0.1809591 0.1186622 0.0413158 0.0096857 0.0001678 

cW  0.3061993 0.2772202 0.1575657 0.0338259 0.0039611 0.0000416 

pW  0.0137314 0.0112653 0.0042106 0.0005913 0.0000620 0.0000006 
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Table 3.  Values of W  for xϕ = 0.000001 

Load Capacity 
Values of xψ

 
for 1l =10, 2l  = 5 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  0.2918521 0.2494771 0.1137400 0.0192648 0.0020950 0.0000211 

eW  0.2948064 0.2508111 0.1125619 0.0188813 0.0020535 0.0000209 

sW  0.1957036 0.1708363 0.0931378 0.0277342 0.0058655 0.0000845 

cW  0.3061993 0.2571836 0.1115002 0.0184001 0.0020056 0.0000208 

pW  0.0137314 0.0096927 0.0025259 0.0003040 0.0000311 0.0000003 

Table 4.  Values of W  for xψ = 0.000001 

Load Capacity 
Values of xϕ  

for 1l  = 2l  = 5 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  
0.2944947 0.2680720 0.1562638 0.0331854 0.0034189 0.0000138 

eW  
0.2975676 0.2701146 0.1554109 0.0325323 0.0033375 0.0000135 

sW  
0.1972811 0.1815882 0.1172506 0.0394314 0.0086131 0.0000819 

cW  
0.3093480 0.2786339 0.1554196 0.0316593 0.0032225 0.0000129 

pW
 

0.0140397 0.0114939 0.0042512 0.0005926 0.0000620 0.0000006 

Table 5.  Values of W  for xψ = 0.000001 

Load Capacity 
Values of xϕ  

for 1l  =5, 2l  = 10 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  
0.2918521 0.2486224 0.1118416 0.0181073 0.0017316 0.0000069 

eW  
0.2948064 0.2499240 0.1106264 0.0177186 0.0016899 0.0000067 

sW  
0.1957036 0.1702498 0.0917470 0.0265267 0.0052428 0.0000413 

cW  
0.3061993 0.2561861 0.1094241 0.0171918 0.0016310 0.0000064 

pW
 

0.0137314 0.0097086 0.0025301 0.0003042 0.0000311 0.0000003 

Table 6.  Values of W  for xψ = 0.000001 

Load Capacity 
Values of xϕ  

for 1l  =10, 2l  = 5 

0.000001 0.00001 0.0001 0.001 0.01 0.1 

iW  
0.2918521 0.2659589 0.1556308 0.0331577 0.0034186 0.0000138 

eW  
0.2948064 0.2679171 0.1547693 0.0325051 0.0033372 0.0000135 

sW  
0.1957036 0.1803489 0.1168920 0.0394097 0.0086125 0.0000819 

cW  
0.3061993 0.2761736 0.1547520 0.0316326 0.0032222 0.0000129 

pW
 

0.0137314 0.0112865 0.0042224 0.0005920 0.0000620 0.0000006 

Table 7.  Values of W  for 1l = 5.0 

Load Capacity 
Values of 2l  for xϕ = 0.001, xψ

 
= 0.00001 

0.0 1.0 5.0 10.0 20.0 40.0 

iW  
0.2180849 0.0990051 0.0328764 0.0180166 0.0094715 0.0048621 

eW  
0.2192873 0.0979005 0.0322321 0.0176316 0.0092597 0.0047508 

sW  
0.1512922 0.0826861 0.0391454 0.0264118 0.0173794 0.0111250 

cW  
0.2253188 0.0967895 0.0313746 0.0171117 0.0089722 0.0045994 

pW
 

0.0096402 0.0023600 0.0005869 0.0003027 0.0001538 0.0000775 
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Table 8.  Values of W  for 1l = 5.0 

Load Capacity 
Values of 2l  for xϕ = 0.00001, xψ

 
= 0.001 

0.0 1.0 5.0 10.0 20.0 40.0 

iW  
0.0350800 0.0350217 0.0347906 0.0345059 0.0339503 0.0328914 

eW  
0.0344448 0.0343873 0.0341594 0.0338788 0.0333311 0.0322875 

sW  
0.0411240 0.0410786 0.0408982 0.0406755 0.0402393 0.0394020 

cW  
0.0336681 0.0336116 0.0333873 0.0331111 0.0325722 0.0315458 

pW
 

0.0005919 0.0005908 0.0005863 0.0005809 0.0005703 0.0005502 

Table 9.  Values of W  for 2l = 5.0 

Load Capacity 
Values of 1l  for xϕ = 0.001, xψ

 
= 0.00001 

0.0 1.0 5.0 10.0 20.0 40.0 

iW  
0.0331505 0.0330953 0.0328764 0.0326069 0.0320809 0.0310785 

eW  
0.0325019 0.0324475 0.0322321 0.0319668 0.0314491 0.0304626 

sW  
0.0393603 0.0393171 0.0391454 0.0389336 0.0385185 0.0377217 

cW  
0.0316390 0.0315858 0.0313746 0.0311146 0.0306074 0.0296413 

pW
 

0.0005925 0.0005914 0.0005869 0.0005815 0.0005709 0.0005507 

Table 10.  Values of W  for 2l  = 5.0 

Load Capacity 
Values of 1l  for xϕ = 0.00001, xψ

 
= 0.001 

0.0 1.0 5.0 10.0 20.0 40.0 

iW  0.2285116 0.1043952 0.0347906 0.0190824 0.0100370 0.0051539 

eW  0.2300928 0.1033890 0.0341594 0.0187020 0.0098268 0.0050432 

sW  0.1584230 0.0866701 0.0408982 0.0275250 0.0180610 0.0115320 

cW  0.2374170 0.1026574 0.0333873 0.0182240 0.0095599 0.0049020 

pW  0.0094748 0.0023499 0.0005863 0.0003025 0.0001537 0.0000775 

 
From Table 4 to Table 6 we say that maximum load ca-

pacity obtained for all types of bearings when xϕ
=0.000001(m2) and in that case  

c e i s pW W W W W> > > >  
When the value of xϕ  increases then for all cases the 

load capacity decreases. 
From Table 7 and Table 8 we say that maximum load 

capacity for all shapes of bearing is obtained when 
2l  = 0 

that is when there is no porous matrix on the slider. In gen-
eral when the width of the porous matrix is small, the load 
capacity increases. 

The same behavior for load capacity obtained for Table 9 
and 10. 

5. Conclusions 
Based upon the above formulation, and results & discus-

sion, the conclusions can be drawn as follows for designing 
various slider bearings: 

(1) Because of having the self lubrication property of the 
porous plate bearing, it is suggested to have both the porous 

plate bearing for better self lubrication. 
(2) Better load capacity is obtained when the thickness of 

l1 and l2 is small. 
(3) Better load capacity is obtained when l1 = l2 as compare 

to l1 < l2 and l1 > l2 . 
(4)The order of increase of load capacity for various 

bearings are as follows. 
> > > >c e i s pW W W W W  
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