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Abstract  The efficiency of the Moment Method (MM) when the expansion functions are defined in the infinite domain 
is checked. It is shown that efficient solution is obtained when the expansion functions obey the known physical behaviour 
of the fields. The age-old problem of the thin, charged disk is solved by the MM for which an electric field component is 
expanded outside the body. This solution is compared to the known analytic solution and to the MM solution for which the 
surface charge density is expanded on the finite disk. An excellent agreement between the analytical solution and the MM 
solution based on expansion functions defined in the infinite domain was achieved. 
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1. Introduction 
Moment Method (MM) is used frequently in solving 

electromagnetic problems[1]. Different expansion (basis) 
functions and test functions were checked during the last 
years in order to get more accurate and fast converging so-
lutions. The inclusion of the edge behaviour of the fields in 
the expansion functions in order to get more accurate and 
fast converging solutions is addressed in many papers. For 
example[2] deals with the characterization of an infinite 
array microstrip reflectarray elements, and it is said that a 
complete set of trigonometric functions which do not en-
force the correct edge conditions shows a slow rate of con-
vergence of the solution. In[3] there is a use of MM basis 
functions containing the 90o conducting edge singularity 
behaviour to efficiently solve an infinite array of 
stub-loaded rectangular waveguides. It was shown, for ex-
ample, by[4] that while expansion functions exactly obey 
the known physical behaviour of the fields, the solution 
obtained is more accurate and fast converging, as compared 
to cases when the expansion functions do not obey the 
known physical behaviour of the field. Fuzzy basis func-
tions which can approximate any function to an arbitrary 
degree of accuracy are applied in[5]. In this method the 
user's insight can be taken into account easily and system-
atically resulting in a better approximation. Recently large 
complex structures are solved by the MM by dividing the  
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structure to sub-domains, where few expansion functions 
are needed for each sub-domain. Use of these basis func-
tions leads to a significant reduction in the number of un-
knowns, and results in a substantial size reduction of the 
MM matrix[6,7]. 

In this paper we check the efficiency of an MM solution 
when the expansion functions are defined in the infinite 
domain. To do this we choose a simple electromagnetic 
problem (a toy model) for which the analytic solution is 
known, and compare our MM solution based on expansion 
functions defined in the infinite domain to the analytic solu-
tion and to an MM solution based on expansion functions 
defined in the finite domain. The relevant problem chosen is 
the isolated flat, infinitely thin, ideal conducting circular 
disc of radius R, with a total charge q placed on it. We 
choose to expand the ρ component of the electric field out-
side the disk, where the expansion functions obey the exact 
physical behaviour of the field near the edge of the disk and 
at infinity. This solution in compared to the MM solution 
where the expansion functions describe the surface charge 
density on the finite disk. 

The structure of the paper is as follows: chapter II de-
scribes the formulation of the problem and includes the 
analytical solution and the MM solutions. Chapter III deals 
with the selection of the expansion functions, and numerical 
results are presented in chapter IV. Finally, conclusions are 
discussed in chapter V. Some relevant mathematical calcu-
lations are presented in the Appendix. 

2. Formulation 
2.1. Geometry and Analytic Solution 
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The thin, charged disk is shown in figure 1. The radius of 
the disk is R and the total charge on it is q 

 
Figure 1.  Isolated, infinitely thin, flat, circular conducting disk of radius 
R with a total charge q placed on it 

The analytic solution for the surface charge distribution 
and Eρ at z = 0 are given in the cylindrical system of coor-
dinates (ρ, ϕ, z)[8]. 

   (1) 

  (2) 

The analytic solution will be compared to the MM solutions 
based on expansion functions defined in the finite and in the 
infinite domains. 

2.2. The Fields Related to the Problem 

Laplace equation around the disk is specified by 

                (3) 
where is the potential function. The solution is 

     (4) 

where 

 
[8], and where J₀(.) is the Bessel function of the first 

kind[9]. A(k) will be expressed by the MM expansion func-
tions.. The electric field components are given by 

        (5) 

2.3. MM Equation Based on Expansion Functions   
Defined in the Infinite Domain 

Expanding Eρ outside the disk, on the disk plane, by the 
MM set of expansion functions {ej(ρ), j = 1,2,..N} where N 
is the number of expansion functions taken to the calcula-
tion, we have 

  (5) 

Extracting A(k) in terms of the expansion functions by 
multiplying both sides of the former equation by J₁(kρ)ρ 
and integrate over ρ from 0 to infinity 

   (7) 

By using[10] 

  (8) 

we obtain 

(9) 

where 

      (10) 

The boundary condition for Ez is 

(11) 

Writing in terms of the potential, outside the disk 

(12) 

Now expressing the potential in terms of A(k), the former 
equation is 

(13) 

Applying Galerkin method, we have ti(ρ) = ei(ρ), i = 
1,2,..N, where ti(ρ) are the test functions. Multiply the for-
mer equation by ti(ρ) ρ for i = 1,2,..N, and integrate over ρ 
from R to infinity, we get the equation 

(14) 

where is given by 
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   (15) 

Finally we get the MM equation by expressing A(k) in 
terms of the expansion functions 

(16) 

or in matrix notation 
                    (17) 

where 

      (118) 

and where a = (a₁,a₂,...) is the vector containing the un 
normalized MM expansion function coefficients. The final 
values of the coefficients are determined by taking into ac-
count the value of the total charge on the disk. 

2.3. MM Equation Based on Expansion Functions   
Defined in the Finite Domain 

In this case we expand the surface charge density 

(19) 

The boundary condition for Ez is 

(20) 

Expressing the surface charge density in terms of A(k), 
we obtain 

(21) 

Multiplying both sides of the former equation by J₀(kρ)ρ 
and integrate over ρ from 0 to infinity, we have for A(k) 

       (22) 

where 

    (23) 

Now, setting the boundary condition 
   (24) 

and expressing Eρ on the disk in terms of the expansion 
functions 

(25) 

Now we can obtain the MM equation: multiply both sides 
of the last equation by fi(ρ)ρ and integrate from 0 to R 

(26) 

By changing order of integration and summation, we can 
write the former expression in a more compact form 

   (27) 

where 

   (28) 

and in matrix notation 

(29) 

where b = (b₁,b₂,...) is the vector containing the 
un-normalized MM expansion function coefficients. The 
final values of the coefficients are determined by taking into 
account the value of the total charge on the disk. 

2.4. Choosing the Expansion Functions in the Infinite 
Domain 

The expansion functions for Eρ (ρ, z = 0) are chosen such 
to obey the physical behaviour of this field component near 
the edge of the disk and at infinity. The behaviour is given by 

(30) 

where α1, α2, .., β1, β2,.. are constants. It can be shown 
that the following functions belonging to the two sets below 
for Eρ (ρ, z = 0) 

  (31) 

   (32) 

contain all the needed powers near the edge of the disk 
and at infinity. Note that these functions do not include 
'wrong' powers, that is, powers which do not belong to the 
correct edge powers for ρ → R and/or for ρ → ∞. In 
addition, these functions have analytical Fourier-Bessel 
transform, in terms of the generalized hypergeometric func-
tions[11]. The analytic solution is not included in the ex-
pansion function sets. 
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2.5. Choosing the Expansion Functions in the Finite 
Domain 

The a-priory physical behaviour if the surface charge 
density known to us is 

  (33) 

where b1, b2,…c0, c1, .. are constants. It can be shown 
that the functions belonging to the set below for σ (ρ) 

(34) 

contain all the required powers when ρ → 0 and when 
ρ → R , where Ti(.) are the Chebyshev polynomials[12]. 
Note that these functions do not include 'wrong' powers, 
that is, powers which do not belong to the correct edge 
powers for ρ →R and/or for ρ → 0. In addition, these 
functions have analytical Fourier-Bessel transform in terms 
of the generalized hypergeometric functions. These expan-
sion functions do not contain the analytic solution. 

3. Numerical Results 
3.1 MM Solution Based on Expansion Functions Defined 

in the Infinite Domain 
The expansion functions taken for the calculation were 

 

(35) 

The MM matrix elements where analytically calculated 
by MATHEMATICA software[13]. The results for the ex-
pansion functions coefficients are shown in table 1. 

The surface charge density is shown in fig. 2, where for 
simplicity we have set R = 1. It is seen that an excellent rate 
of convergence for the solution was achieved. The red line 
for 4 expansion functions overlaps the brown line for 2 ex-
pansion functions, the yellow line for 3 expansion functions, 
and the green line which presents the analytic solution. 

A zoom on the area near the centre of the disk is shown 
in fig. 3 

Table 1.  MM Coefficients of the expansion functions defined in the 
infinite domain 

 1 2 3 4 
1 0.21049    
2 0.16277 0.06265   
3 0.14912 0.07595 0.01032  
4 0.14275 0.08233 0.01644 -0.00348 

 
Figure 2.  Surface charge distribution on the disk, based on expansion 
functions defined in the infinite domain. Green line is for the analytic 
solution, blue - for one expansion function, brown - for two expansion 
functions, yellow - for three expansion function, and red line is for four 
expansion functions 

 
Figure 3.  Surface charge distribution near the centre of the disk, based 
on expansion functions defined in the infinite domain.. The red line is for 
the analytic solution, brown - for two expansion functions, blue - for three 
expansion function, and green line is for four expansion functions 

3.2. MM Solution Based on Expansion Functions    
Defined in the Finite Domain 

The three expansion functions fi (ρ), i = 1, 2, 3 for the 
surface charge density on the disk taken to the calculation 
were, respectively 

   (36) 

The MM matrix elements where analytically calculated 
by MATHEMATICA softwar. The results for the expansion 
function coefficients are shown in table 2. 

The surface charge density is shown in fig. 4, exhibits an 
excellent rate of convergence for the solution. The green 
line for 3 expansion functions overlaps the blue line for 2 
expansion functions, and the red which presents the analytic 
solution. 

A zoom on the area near the centre of the disk is shown 
in fig. 5. 

Table 2.  MM Coefficients of the expansion functions defined in the finite 
domain 

 1 2 3 
1 0.202642   
2 0.194083 0.031324  
3 0.193429 0.032805 -0.002690 
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Figure 4.  Surface charge distribution on the disk, based on expansion 
functions defined in the finite domain. Red line is for the analytic solution, 
brown - for one expansion function, blue - for two expansion functions, 
and green line is for three expansion functions 

 
Figure 5.  Surface charge distribution near the centre of the disk, based 
on expansion functions defined in the finite domain. Red line is for the 
analytic solution, brown - for two expansion functions, blue - for three 
expansion functions 

4. Conclusions 
The possibility to apply the moment method by using 

expansion functions describing the fields in the infinite do-
main (outside the body) has been checked, and it is shown 
that excellent accuracy and converging rate has been 
achieved, even slightly better than the case of the conven-
tional MM solution based on expansion functions defined 
on the finite body. The key point was the requirement that 
the expansion functions will exactly obey the a-priori 
known physical behavior of the fields, near the edge of the 
body and at infinity. We conclude that efficient MM solu-
tions based on expansion functions defined in an infinite 
domain is possible. The efficiency of the MM solution 
based on expansion functions defined in the infinite domain 
has to be checked in the future for electromagnetic prob-
lems, for example for antennas with different electrical 
sizes. 

Appendix 
A1. The Fourier-Bessel Transform of the 1st expansion 

Function Defined in the Infinite Domain 

The Fourier-Bessel transform for the MM first expansion 
function in the infinite domain is 

(A1) 

where 1F4 is a generalized hypergeometric function[], and Γ 
is the gamma functions[14]. 

A2. Calculation the behaviour of the potential around 
the disk for ρ → ∞ 

A calculation for finding the behaviour of the potential at 
infinity is shown below[15]. 

 (A2) 

Due to the azimutal symmetry of the potential around the 
disk, we can set ч = 0 

   (A3) 

where K (.) is the Elliptic function[16]. However, we 
have the asymptotic behaviour  

   (A4) 

Hence, we finally obtain 

  (A5) 
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