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Abstract  In this paper, we use two integral methods, the first integral method and the direct integral method to study a 
higher-order nonlinear Schrödinger equation (NLSE). The application of the first integral method yield trigonometric func-
tion solutions and solitary wave solutions. Using the direct integration lead to shock wave solution and Jacobi elliptic func-
tion solutions. The direct integral method is more concise and direct than the first integral method.  
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1. Introduction 
The higher-order nonlinear Schrödinger equation (NLSE) 

takes the form[1-4]. 
𝑞𝑞𝑧𝑧 = 𝑖𝑖𝑎𝑎1𝑞𝑞𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑎𝑎2𝑞𝑞|𝑞𝑞|2 + 𝑎𝑎3𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑎𝑎4(𝑞𝑞|𝑞𝑞|²)𝑡𝑡

+ 𝑎𝑎5𝑞𝑞(|𝑞𝑞|²)𝑡𝑡 ,           
(1) 

which describes propagation of ultrashort pulses in 
nonlinear optical fibers, where the complex function 
𝑞𝑞 = 𝑞𝑞(𝑧𝑧, 𝑡𝑡) is slowly varying envelop of the electric field, 
the subscripts z and t are spatial and temporal partial de-
rivatives in retard time coordinates also 
a1,  a2,  a3,  a4 and a5 are the real parameters related to the 
group velocity, self-phase modulation, third order dispersion, 
self-steepening and self-frequency shift arising from stimu-
lated Raman scattering respectively see[5-7], some exact 
solitary wave solutions of Eq. (1) have been successfully 
obtained by the generally projective Riccat method, the 
F-expansion method, the extended F-expansion method 
and (G′/G)-expansion method. 

The rest of this paper are organized as follow. In section 2, 
the basic ideas of the first integral method are expressed. In 
section 3, the method is employed for obtaining the exact 
solutions. In section 4, we aim using the direct integration on 
the reduced nonlinear ordinary differential equation obtained 
after using the travelling wave transformation on the NLSE 
to get more exact solutions, and finally conclusion is pre-
sented in section 5. 

2. The First Integral Method 
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Consider the nonlinear partial differential equation in the 
from 

𝐹𝐹(𝐴𝐴, 𝐴𝐴𝑡𝑡 , 𝐴𝐴𝑥𝑥 , 𝐴𝐴𝑥𝑥𝑥𝑥 , 𝐴𝐴𝑡𝑡𝑡𝑡 , 𝐴𝐴𝑥𝑥𝑥𝑥 , … ) = 0        (2) 
 

where A=A(x,t) is a solution of the nonlinear partial dif-
ferential equation (2). We use the transformation 

 
𝐴𝐴(𝑥𝑥, 𝑡𝑡) = 𝑓𝑓(𝜉𝜉)               (3) 

where 𝜉𝜉 = 𝑥𝑥 + 𝜆𝜆𝜆𝜆. This  enables us to use the following 
changes:  

 � 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ) = 𝜆𝜆 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ), 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ) = 𝜕𝜕
𝜕𝜕𝜕𝜕

(. ), 𝜕𝜕²
𝜕𝜕𝑥𝑥²

(. ) = 𝜕𝜕²
𝜕𝜕𝜉𝜉²

(. ), … �(4) 
Using Eq. (4) to transfer the nonlinear partial differential 

equation (2) to nonlinear ordinary differential equation 
𝐺𝐺(𝑓𝑓(𝜉𝜉), ((𝜕𝜕𝜕𝜕(𝜉𝜉))/(𝜕𝜕𝜕𝜕)), ((𝜕𝜕²𝑓𝑓(𝜉𝜉))/(𝜕𝜕𝜕𝜕²)), . . . . ) = 0(5) 

Next, we introduce a new independent variable 
 𝑋𝑋(𝜉𝜉) = 𝑓𝑓(𝜉𝜉), 𝑌𝑌 = �𝜕𝜕𝜕𝜕(𝜉𝜉)

𝜕𝜕𝜕𝜕
�           (6) 

which leads to a system of nonlinear ordinary differential 
equations  

�
𝜕𝜕𝜕𝜕(𝜉𝜉)
𝜕𝜕𝜕𝜕

� = 𝑌𝑌(𝜉𝜉),  

�𝜕𝜕𝜕𝜕(𝜉𝜉)
𝜕𝜕𝜕𝜕

� = 𝐹𝐹₁�𝑋𝑋(𝜉𝜉), 𝑌𝑌(𝜉𝜉)�         (7) 
By the qualitative theory of ordinary differential equa-

tions[8], if we can find the integrals to Eqs. (7) under the 
same conditions, then the general solutions to Eqs. (7) can 
be solved directly. However, in general, it is really difficult 
for us to realize this even for one first integral, because for a 
given plane autonomous system, there is no systematic the-
ory that can tell us how to find its first integrals, nor is there 
logical way for telling us what these first integrals are. We 
will apply the Division Theorem to obtain one first integral 
to Eqs. (7) which reduces Eq. (5) to a first order integrable 
ordinary differential equation. An exact solution to Eq. (2) 
is then obtained by solving this equation. For convenience, 
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first let us recall the division theorem for two variables in 
the complex domain C[ω,z]. 

Division Theorem : (see[9-11]) Suppose that P(ω,z) and 
Q(ω,z) are polynomials in the complex domain C[ω,z]; and 
P(ω,z) is irreducible in C[ω,z]. If Q(ω,z) vanishes at all zero 
points of P(ω,z), then there exists a polynomial G(ω,z) in 
C[ω,z] such that 

𝑄𝑄(𝜔𝜔, 𝑧𝑧) = 𝑃𝑃(𝜔𝜔, 𝑧𝑧)𝐺𝐺(𝜔𝜔, 𝑧𝑧).         (8) 
The Divisor Theorem follows immediately from the Hil-
bert-Nullstenstuz Theorem [12]. 

3. The Application of the First Integral 
Method on the (NLSE) 

In this section, we study the NLSE using the first integral 
method 

Use the transformation 
𝑞𝑞(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡)𝑓𝑓(𝜉𝜉)), 𝜉𝜉 = 𝑧𝑧 + 𝜆𝜆𝜆𝜆    (9) 

 where 𝑓𝑓(𝜉𝜉) = 𝑓𝑓(𝑧𝑧, 𝑡𝑡) is a real function, k, 𝜔𝜔 and 𝜆𝜆 are 
constants, all of them are to be determined. 
Substituting Eq. (9) into Eq. (1), we obtain an ordinary dif-
ferential equation for f(ξ), 

i[(a1 + 3a3ω)f ′′ − (a3ω3 + a1ω2 + k)f + f 3(a2 +        
  a4ω)] + a3f ′′′ − (2a2ω + 3a3ω2 + λ)f ′ + (3a4 +            

2a5)f ′ f 2 =0.                                (10) 
We divide Eq. (10) into two parts imaginary part and real 
part as follow 

Im:(𝑎𝑎1 + 3𝑎𝑎3ω)𝑓𝑓 ′′ − (𝑎𝑎3ω3 + 𝑎𝑎1ω2 + 𝑘𝑘)𝑓𝑓 + (𝑎𝑎2 + 𝑎𝑎4ω)𝑓𝑓3 =
0(11) 

Re: 𝑎𝑎3𝑓𝑓′′′ − (2𝑎𝑎2ω + 3𝑎𝑎3ω2 + 𝜆𝜆)𝑓𝑓′ + (3𝑎𝑎4 + 2𝑎𝑎5)𝑓𝑓′𝑓𝑓2 = 0(12) 
Integrating Eq. (12), once and setting the integration con-

stants to be zero, then we obtain 
 𝑎𝑎3𝑓𝑓′′ − (2𝑎𝑎2ω + 3𝑎𝑎3ω2 + 𝜆𝜆)𝑓𝑓 + 1

3
(3𝑎𝑎4 + 2𝑎𝑎5)𝑓𝑓3 = 0 (13) 

It can be proved that the following conclusion holds: the 
necessary and sufficient condition for a non-constant func-
tion 𝑓𝑓 = 𝑓𝑓(𝜉𝜉) satisfying both Eqs. (11) and (13) satisfy the 
proportional relation as follows: 

𝑎𝑎3
𝑎𝑎1+3𝑎𝑎3ω

= �2𝑎𝑎1ω+3𝑎𝑎3ω2+𝜆𝜆�
(𝑎𝑎3ω3+𝑎𝑎1ω2+𝑘𝑘)

= 3𝑎𝑎4+2𝑎𝑎5
3(𝑎𝑎2+𝑎𝑎4ω)

     (14) 
from which it is derived that 

 ω = 3𝑎𝑎2𝑎𝑎3−𝑎𝑎1(3𝑎𝑎4+2𝑎𝑎5)
6𝑎𝑎3(𝑎𝑎4+𝑎𝑎5)

           (15) 

𝑘𝑘 =  8𝑎𝑎3 ω3 + 8𝑎𝑎1 ω2 + 2𝑎𝑎1
2+3𝑎𝑎3𝜆𝜆
𝑎𝑎3

 ω + 𝑎𝑎1
𝑎𝑎3

 𝜆𝜆,   (16) 
where 𝜆𝜆 is an arbitrary nonzero constant. 
Based on the conclusion just mentioned we only solve Eq. 

(13), instead of both Eqs. (11) and (13), provided that ω and 
k appearing in Eqs. (11) and (13) are replaced by Eqs. (15) 
and (16) respectively.  

For the sake of simplicity we set 
𝑘𝑘1 = �2𝑎𝑎1ω+3𝑎𝑎3ω2+𝜆𝜆�

𝑎𝑎3
, 𝑘𝑘2 = 3𝑎𝑎4+2𝑎𝑎5

3𝑎𝑎3
      (17) 

Then Eq. (13) can be rewritten as a simple form  
𝑓𝑓′′ (𝜉𝜉) − 𝑘𝑘1𝑓𝑓(𝜉𝜉) + 𝑘𝑘2𝑓𝑓3(𝜉𝜉) = 0     (18) 

Using (7) we get 
𝑋̇𝑋(𝜉𝜉) = 𝑌𝑌(𝜉𝜉)             (19) 

 𝑌̇𝑌(𝜉𝜉) = 𝑘𝑘1𝑋𝑋 − 𝑘𝑘2𝑋𝑋3           (20) 
According to the first integral method, we suppose that 

X(ξ) and Y( ξ) are nontrivial solutions of (19), (20) and  
𝑄𝑄(𝑋𝑋, 𝑌𝑌) = ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑌𝑌𝑖𝑖𝑚𝑚

𝑖𝑖=0 = 0        (21) 
is an irreducible polynomial in the complex domain 

C[X,Y] such that  
𝑄𝑄(𝑋𝑋( ξ) , 𝑌𝑌( ξ) ) = ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋( ξ) )𝑌𝑌𝑖𝑖( ξ) 𝑚𝑚

𝑖𝑖=0 = 0   (22) 
 where  𝑎𝑎𝑖𝑖(𝑋𝑋) (i=0,1,.......,m), are polynomials of X and 

𝑎𝑎𝑚𝑚(𝑋𝑋)≠0. Eq. (21) is called the first integral to (19), (20). 
Due to the Division Theorem, there exists a polynomial 
g(X)+h(X)Y, in the complex domain C[X,Y] such that 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

+ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑌𝑌

𝑑𝑑𝑑𝑑
𝑑𝑑𝜉𝜉

= (𝑔𝑔(𝑋𝑋) + ℎ(𝑋𝑋)𝑌𝑌) ∑ 𝑎𝑎𝑖𝑖(𝑋𝑋)𝑌𝑌𝑖𝑖𝑚𝑚
𝑖𝑖=0 (23) 

In this example, we take two different cases, assuming that 
m=1 and m=2 in (22), we have 
Case 1: 

Suppose that m=1, by comparing the coefficients of 
𝑌𝑌𝑖𝑖( ξ) (i=2,1,0) on both sides of (23), we have 

𝑎𝑎1̇(𝑋𝑋) = ℎ(𝑋𝑋)𝑎𝑎1(𝑋𝑋)           (24) 
𝑎𝑎0̇(𝑋𝑋) = 𝑔𝑔(𝑋𝑋)𝑎𝑎1 + ℎ(𝑋𝑋)𝑎𝑎0(𝑋𝑋)        (25) 

𝑎𝑎1(𝑋𝑋)[𝑘𝑘1𝑓𝑓(𝜉𝜉) − 𝑘𝑘2𝑓𝑓3(𝜉𝜉)] = 𝑔𝑔(𝑋𝑋)𝑎𝑎0(𝑋𝑋)    (26) 
Since 𝑎𝑎𝑖𝑖(X) (i=0,1) are polynomials, then from (24) we 

deduce that 𝑎𝑎1(𝑋𝑋) is constant and h(X)=0. For simplicity, 
take 𝑎𝑎1(𝑋𝑋)=1, Balancing the degrees of g(X) and a₀(X), we 
conclude that deg(g(X))=1 only. Suppose that 
g(X)=A₁X+B₀, then from (25) we find a₀(X). 

𝑎𝑎0(𝑋𝑋) = 𝐵𝐵₁ + 𝐵𝐵₀𝑋𝑋 + 1
2

A1𝑋𝑋2        (27) 
where A₁,B₀ are arbitrary constants , and B₁ is an arbitrary 

integration constant to be determined. 
Substituting a₀(X) and g(X) into (26) and setting all coef-

ficients of X powers to be zero, then we obtain a system of 
nonlinear algebraic equations and by solving it, we obtain 

𝐴𝐴1 = �−2𝑘𝑘2,  𝐵𝐵0 = 0,  𝐵𝐵1 = 𝑘𝑘1
�−2𝑘𝑘2

       (28) 
𝐴𝐴1 = −�−2𝑘𝑘2,  𝐵𝐵0 = 0,  𝐵𝐵1 = −𝑘𝑘1

�−2𝑘𝑘2
       (29) 

Using conditions (28) in (22), we obtain 
𝑌𝑌(𝜉𝜉) = �−𝑘𝑘2

2
 �𝑘𝑘1
𝑘𝑘2
− 𝑋𝑋2�         (30) 

Combining (21) with (19), we obtain the exact solution to 
(19), (20) and the exact solution to the higher-order nonlin-
ear Schrödinger equation as follows 

𝑞𝑞1(𝑧𝑧, 𝑡𝑡) = �𝑘𝑘1

𝑘𝑘2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡)) tanh ��𝑘𝑘1

𝑘𝑘2
 ��−𝑘𝑘2

2
(𝑧𝑧 + 𝜆𝜆𝜆𝜆) +

c(31) 

where c is an arbitrary integration constant. 
Similarly, in the case of (29), from (22), we obtain 

𝑌𝑌(𝜉𝜉) = �−𝑘𝑘2
2

 �𝑋𝑋2 − 𝑘𝑘1
𝑘𝑘2

 � ,       (32) 
then the exact solution to a higher-order nonlinear 

Schrödinger equation can be written as 

𝑞𝑞2(𝑧𝑧, 𝑡𝑡) = �𝑘𝑘1
𝑘𝑘2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡)) coth ��𝑘𝑘1

𝑘𝑘2
 �−�−𝑘𝑘2

2
(𝑧𝑧 +

𝜆𝜆𝑡𝑡+c               (33) 

Case 2 
Suppose that m=2, compare the coefficients of 𝑌𝑌𝑖𝑖( ξ) 

(i=3,2,1,0) on both sides of (22),we have 
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𝑎𝑎2̇(𝑋𝑋) = ℎ(𝑋𝑋)𝑎𝑎2(𝑋𝑋)           (34) 
𝑎𝑎1̇(𝑋𝑋) = 𝑔𝑔(𝑋𝑋)𝑎𝑎2(𝑋𝑋) + ℎ(𝑋𝑋)𝑎𝑎1(𝑋𝑋)     (35) 

 𝑎𝑎0̇ (𝑋𝑋) = −2𝑎𝑎2(𝑋𝑋)(𝑘𝑘1𝑋𝑋 − 𝑘𝑘2𝑋𝑋3) + 𝑔𝑔(𝑋𝑋)𝑎𝑎2(𝑋𝑋) +
ℎ(𝑋𝑋)𝑎𝑎0(𝑋𝑋)              (36) 

𝑎𝑎1(𝑋𝑋)(𝑘𝑘1𝑋𝑋 − 𝑘𝑘2𝑋𝑋3) =  𝑔𝑔(𝑋𝑋)𝑎𝑎0(𝑋𝑋)      (37) 
Since  𝑎𝑎𝑖𝑖(𝑋𝑋) (i=0,1,2) are polynomials, then from (23) 

we deduce that 𝑎𝑎2(𝑋𝑋) is a constant and h(X)=0, For sim-
plicity, take 𝑎𝑎2(𝑋𝑋) = 1 , Balancing the degrees of 
g(X), 𝑎𝑎1(𝑋𝑋)and 𝑎𝑎2(𝑋𝑋), we conclude that deg(g(X))=1 only. 
Suppose that g(X)= 𝐴𝐴1X+𝐵𝐵0 , then from (35) and (36) we 
find 𝑎𝑎1(𝑋𝑋) and 𝑎𝑎0(𝑋𝑋)as follows 

𝑎𝑎1(𝑋𝑋) = 𝐵𝐵₁ + 𝐵𝐵₀𝑋𝑋 + 1
2
𝐴𝐴₁𝑋𝑋²       (38) 

𝑎𝑎0(𝑋𝑋) = 𝑑𝑑 + 𝐵𝐵₁𝐵𝐵₀𝑋𝑋 +
1
2
�𝐵𝐵0

2 − 2𝑘𝑘1 + 𝐵𝐵₁𝐴𝐴₁�𝑋𝑋2  
+ 1

2
𝐴𝐴₁𝐵𝐵₀𝑋𝑋3 + 1

4
�2𝑘𝑘2 + 1

2
𝐴𝐴1

2� 𝑋𝑋4     (39) 
where 𝐴𝐴₁, 𝐵𝐵₀ are arbitrary constants, and 𝐵𝐵₁, d are arbi-

trary integration constants. 
Substituting 𝑎𝑎1(𝑋𝑋), 𝑎𝑎0(𝑋𝑋) and g(X) in the last equation 

in (37) and setting all coefficients of X powers to be zero, 
then we obtain a system of nonlinear algebraic equations and 
by solving it with aid of Maple program, we obtain 

𝐴𝐴1 = 2�−2𝑘𝑘2, 𝐵𝐵0 = 0,  𝐵𝐵1 = − 𝑘𝑘1
�−2𝑘𝑘2

, 𝑑𝑑 = −𝑘𝑘1
2

2𝑘𝑘2
   (40) 

𝐴𝐴1 = 2�−2𝑘𝑘2, 𝐵𝐵0 = 0,  𝐵𝐵1 = 𝑘𝑘1
�−2𝑘𝑘2

, 𝑑𝑑 = −𝑘𝑘1
2

2𝑘𝑘2
    (41) 

By using  conditions (40) and (41) into (23), we get 

𝑌𝑌(𝜉𝜉) = ±�−𝑘𝑘2
2

 �𝑋𝑋2 − 𝑘𝑘1
𝑘𝑘2

 �         (42) 
Combining (42) with (19), we obtain the following exact 

solution to (19),(20) and by back substitution the exact so-
lution to the higher-order nonlinear Schrödinger equation 
can be written as 

𝑞𝑞3(𝑧𝑧, 𝑡𝑡) = ±�𝑘𝑘1
𝑘𝑘2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡)) tanh � ��–𝑘𝑘1

2
(𝑧𝑧 + 𝜆𝜆𝜆𝜆) +

c (43) 

      
where 𝑘𝑘1 and 𝑘𝑘2  appearing in (24)-(43) are expressed by 
(17), in which ω is expressed by (15). 

4. The Direct method 
In this section, we multiply Eq. (18) by 𝜕𝜕f(ξ)

𝜕𝜕ξ
, then we get 

𝑓𝑓′′ (𝜉𝜉)𝑓𝑓′(𝜉𝜉) − 𝑘𝑘1𝑓𝑓(𝜉𝜉)𝑓𝑓′(𝜉𝜉) + 𝑘𝑘2𝑓𝑓3(𝜉𝜉)𝑓𝑓′(𝜉𝜉) = 0  (44) 
Case 1 

Integrating (44) once and considering the constant of in-
tegration to be zero, then we obtain 

𝑓𝑓′2(𝜉𝜉) = 𝑘𝑘1𝑓𝑓(𝜉𝜉)2  − 𝑘𝑘2
2
𝑓𝑓4(𝜉𝜉)        (45) 

Eq. (45) has the following exact solution by using direct 
integration method 

𝑓𝑓4(𝜉𝜉) =  �2𝑘𝑘1
𝑘𝑘2

 sech⁡[ �2𝑘𝑘1
𝑘𝑘2

 ��𝑘𝑘2
2
𝜉𝜉 + 𝑐𝑐1�     (46) 

where 𝑐𝑐1 is an arbitrary integration constant. 
By back substitution we obtain the following exact solu-

tion to a higher-order nonlinear Schrödinger equation 

𝑞𝑞4(𝑧𝑧, 𝑡𝑡) = �2𝑘𝑘1
𝑘𝑘2
𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡)) sech ��2𝑘𝑘1

𝑘𝑘2
 ��𝑘𝑘2

2
(𝑧𝑧 +

𝜆𝜆𝜆𝜆) + c1��(47) 

  This solutions has been obtained in Ref. [2]. 
Case 2 

Integrating (44) once then we obtain 
𝑓𝑓′2(𝜉𝜉) = 2𝑎𝑎 + 𝑘𝑘1𝑓𝑓(𝜉𝜉)2  − 𝑘𝑘2

2
𝑓𝑓4(𝜉𝜉)      (48) 

where a is an arbitrary integration constant. 
Using Jacobi functions, this equation have many solution 

by relations between values of (2a,  𝑘𝑘1 ,  − 𝑘𝑘2
2

) and corre-
sponding f(ξ) see[13], are given by the following 

𝑓𝑓5(𝜉𝜉) = 𝑠𝑠𝑠𝑠 �𝜉𝜉, �−𝑘𝑘2
2

 � ,  𝑘𝑘1 = −�1 − 𝑘𝑘2
2
�      (49) 

𝑓𝑓6(𝜉𝜉) = 𝑐𝑐𝑐𝑐 �𝜉𝜉, �𝑘𝑘2
2

 � ,  𝑘𝑘1 = ( 𝑘𝑘2 − 1)      (50) 

𝑓𝑓7(𝜉𝜉) = 𝑛𝑛𝑛𝑛 �𝜉𝜉, �1 + 𝑘𝑘2
2

 � ,  𝑘𝑘1 = (1 +  𝑘𝑘2)    (51) 

𝑓𝑓8(𝜉𝜉) = 𝑛𝑛𝑛𝑛 �𝜉𝜉, �1 − 𝑘𝑘2
2

 � ,  𝑘𝑘1 = �1 + 𝑘𝑘2
2
�    (52) 

𝑓𝑓9(𝜉𝜉) = 𝑠𝑠𝑠𝑠 �𝜉𝜉, �1 + 𝑘𝑘2
2

 � ,  𝑘𝑘1 = �1 − 𝑘𝑘2
2
�    (53) 

𝑓𝑓10(𝜉𝜉) = 𝑛𝑛𝑛𝑛�𝜉𝜉, �1 + 2𝑘𝑘2 � ± 𝑠𝑠𝑠𝑠�𝜉𝜉, �1 + 2𝑘𝑘2 �,  𝑘𝑘1 =
 (1 + 𝑘𝑘2)(54) 

By back substitution we obtain the following new exact 
solutions to the higher-order nonlinear Schrödinger equation 

𝑞𝑞5(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �
−𝑘𝑘2

2
 �, 

 𝑘𝑘1 = −�1 − 𝑘𝑘2
2
�(55) 

𝑞𝑞6(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 

�(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �𝑘𝑘2
2

 � ,  𝑘𝑘1 = (𝑘𝑘2 − 1)(56) 

𝑞𝑞7(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  

�(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �1 + 𝑘𝑘2
2

 � ,  𝑘𝑘1 = (𝑘𝑘2 + 1)(57) 

𝑞𝑞8(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 

�(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �1 − 𝑘𝑘2
2

 � ,  𝑘𝑘1 = 1 + 𝑘𝑘2
2

(58) 

𝑞𝑞9(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 

�(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �1 + 𝑘𝑘2
2

 � ,  𝑘𝑘1 = 1 − 𝑘𝑘2
2

(59) 

𝑞𝑞10(𝑧𝑧, 𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖(𝑘𝑘𝑘𝑘 + ω𝑡𝑡))[𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �
(𝑥𝑥 + 𝜆𝜆𝜆𝜆)

, �1 + 2𝑘𝑘2 
� ±

𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 �(𝑧𝑧 + 𝜆𝜆𝜆𝜆), �1 + 𝑘𝑘2 � ,  𝑘𝑘1 = 1 + 𝑘𝑘2 (60) 

5. Conclusions 
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In this work, we have obtained many exact solutions of 
the higher-order nonlinear Schrödinger equation (NLSE) by 
using the first integral method and the direct method. The 
application of the two methods was successfully used to 
establish travelling wave solutions for Eqs. (1). Some of 
these solutions are different from the results of research in 
Ref.[1-4], the solution q4(z, t) has been obtained in Ref. 
[2]. By comparison between the two methods, the direct 
integral method is easy and powerful than the first integral 
method. 

 

REFERENCES 
[1] Li L.-X., Wang M.-L., Appl. Math. Comput. 208(2009) 

440–445. 

[2] Hassan M. M., Khater A. H., 387(2008)2433-2442. 

[3] Gedalin M., Scott T. C., Band Y. B., Phys. Rev. Lett. 

78(1997)448-451.  

[4] Zhang J. L., Wang M. L., Li X. R., Chaos Solitons Fract. 
33(2007)1450-1457. 

[5] Liu C. P., Chaos Solitons Fract. 23 (2005) 949–955. 

[6] Xu L. P., Zhang J. L., Chaos Solitons Fract. 31(2007) 
937-942. 

[7] Abdou M. A., Chaos Solitons Fract. 31(2007) 95–104. 

[8] Ding T. R., Li C. Z., Peking University Press, Peking, 1996. 

[9] Feng Z., Chaos Solitons Fract. 38 (2008) 481-488. 

[10] Zhang T. S., Physics Letters A 371 (2007) 65-71. 

[11] Hosseini K., Ansari R., Gholamin P., J. Math. Anal. Appl. 
387(2012) 806-814. 

[12] N. Bourbaki Commutative Algebra, Addison-Wesley, Paris, 
1972.  

[13] Yomba E., Chaos Solitons Fract. 27 (2006) 187-196.

 


	1. Introduction
	2. The First Integral Method
	3. The Application of the First Integral Method on the (NLSE)
	4. The Direct method
	5. Conclusions

