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Abstract  In this paper, we have presented the Differential Quadrature Method (DQM) for finding the numerical solution 
of boundary-value problems for a singularly perturbed differential-difference equation of mixed type, i.e., containing both 
terms having a negative shift and terms having a positive shift. Such problems are associated with expected first exit time 
problems of the membrane potential in models for the neuron. The Differential Quadrature Method is an efficient descriti-
zation technique in solving initial and/or boundary value problems accurately using a considerably small number of grid 
points. To demonstrate the applicability of the method, we have solved the model examples and compared the computational 
results with the exact solutions. Comparisons showed that the method is capable of achieving high accuracy and efficiency.  
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1. Introduction 
A singularly perturbed differential-difference equation is 

an ordinary differential equation in which the highest de-
rivative is multiplied by a small parameter and involving at 
least one delay or advance term. In recent papers the terms 
negative or left shift and positive or right shift have been 
used for delay and advance respectively. The smoothness of 
the solutions of such singularly perturbed differential- dif-
ference equation deteriorates when the parameter tends to 
zero. Such problems arise frequently in the study of varia-
tional problems of control theory where the problem is 
complicated by the effect of time delays; this occurs in sig-
nal transmission[4] and in depolarization in the Stein model 
[18], which is a continuous-time, continuous-state space 
Markov Process whose sample paths have discontinuities of 
the first kind[10]. The time between nerve impulses is the 
time of first passage to a level at or above a threshold value; 
determining the moments of this random variable involves 
differential-difference equation. The mathematical model-
ling of the determination of the expected time for generation 
of action potentials in nerve cells by random synaptic inputs 
in dendrites includes a general boundary value problem for 
singularly perturbed differential difference equation with 
small shifts. 
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The differential-difference equation plays an important 
role in the mathematical modeling of various practical phe-
nomena in the biosciences and control theory. Any system 
involving a feedback control will almost always involve 
time delays. These arise because a finite time is required to 
sense information and then react to it. For a detailed discus-
sion on differential-difference equation one may refer to the 
books and high level monographs: Bellen[1], Driver[19], 
Bellman and Cooke[22].  

It is well known that the classical methods fail to provide 
reliable numerical results for such problems (in the sense that 
the parameter ε  and the mess size h  cannot vary inde-
pendently). Lange and Miura[2-4] gave asymptotic ap-
proaches in the study of class of boundary-value problems 
for linear second-order differential-difference equations in 
which the highest order derivative is multiplied by small 
parameter. In [2] and [3], authors pointed out that the shift 
term can be expanded using a Taylor series, provided the 
shift is of order 𝜺𝜺, with 𝜺𝜺 small. The effect of small shifts on 
the oscillatory solution of the problem has been discussed in 
[3]. In[17], M.K. Kadalbajoo and K.K. Sharma presented a 
numerical method based on finite difference scheme to solve 
boundary value problems for singularly perturbed differen-
tial-difference equations with small shifts of mixed type. 
In[16], they described a numerical approach based on finite 
difference method to solve a mathematical model arising 
from a model of neuronal variability. In[14], M.K. Kadal-
bajoo and D. Kumar presented a numerical method based on 
fitted mess and B-spline technique for singularly perturbed 
differential-difference equations with small delay. In[15], 
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M.K. Kadalbajoo, D. Kumar, presented a computational 
method based on piecewise uniform mess and Quasilin-
earization process for singularly perturbed nonlinear differ-
ential-difference equations with small shifts. In[23], M. 
Gulsu presented matrix methods for approximate solution of 
the second order singularly perturbed delay differential 
equations. 

The aim of this paper is to provide a simple and efficient 
numerical technique to solve singularly perturbed differen-
tial-difference equations of second order with small shifts of 
mixed type. In this technique, we first approximate the term 
containing negative/positive shift by Taylor series and then 
we apply the Differential Quadrature Method (DQM), pro-
vided the shifts are of small order of singular perturbation 
parameter: 𝜺𝜺. The DQM approximates the derivative with 
respect to a coordinate direction at a grid point by a weighted 
linear sum of all the functional values in that direction. The 
key to DQM is the determination of weighting coefficients 
for any order derivative discretization. To the best of the 
authors knowledge, the Differential Quadrature Method, 
where approximation of the derivatives have been based on a 
polynomial of high degree, has not been implemented for the 
singularly perturbed differential-difference equations of 
second order with small shifts of mixed type. 

This paper is organized as follows: Section 2 presents the 
description of the Differential Quadrature Method, including 
the formula for finding the weighting coefficients for any 
order derivative discretization and selection of sampling 
points. Section 3 presents the basic key procedure to solve 
differential equation with boundary conditions. Section 4 is 
devoted to the singularly perturbed differential-difference 
equations of second order with small shifts of mixed type and 
its solution procedure by DQM in detail. In the Section 5, we 
have considered two example problems and presented the 
Computational results, show the accuracy and efficiency of 
the method. The conclusions are presented in section 6. The 
paper ends with the references.  

2. Description of the Differential   
Quadrature Method 

The Differential Quadrature Method (DQM) was intro-
duced by Bellman et al.[20,21] in the early 1970s and, since 
then, the technique has been successfully employed in find-
ing the solutions of many problems in applied and physical 
sciences[6-9,11]. The basic idea of differential quadrature 
method is that the derivative of a function with respect to a 
space variable at a given point is approximated as a weighted 
linear sum of the functional values at all discrete points in the 
domain of that variable. 

In order to show the mathematical representation of the 
method, we consider a one dimensional field variable ( )f x  
prescribed in a field domain 1 Na x x x b= ≤ ≤ = . Let ( )i if f x=  
be the function values specified in a finite set of N  discrete 
points ( )1,2,......,ix i N=  of the field domain. Next, consider 
the value of the function derivative /m md f dx  at some dis-

crete points ix , and let it be expressed as a linearly weighted 
some of the function values. 

( )( ) ( )

1

( )
( ) , 1, 2,....,

m N
m mi

i ij jm
J

d f x
f x A f i N

dx =
= = =∑   (1) 

where ( )m
ijA are the weighting coefficients of the thm

-order derivative of the function associated with points ix . 
Equation (1) the quadrature rule for a derivative is the es-
sential basis of the Differential Quadrature Method. Thus 
using equation (1) for various order derivatives, one may 
write a given differential equation at each point of its solu-
tion domain and obtain the quadrature analog of the differ-
ential equation as a set of algebraic equations in terms of the 
N function values. These equations may be solved, in con-
junction with the quadrature analog of the boundary condi-
tions, to obtain the unknown function values provided that 
the weighting coefficients are known a priori. The weighting 
coefficients may be determined by some appropriate func-
tional approximations; and the approximate functions are 
referred to as test functions. The primary requirements for 
the choices of the test functions are of differentiability and 
smoothness. That is, the test function of the differential 
equation must be differentiable at least up to the thn  de-
rivative (here n  is the highest order of the differential 
equation) and sufficiently smooth to be satisfied the condi-
tion of the differentiability. Bellman et al.[20] proposed two 
approaches to compute the weighting coefficients. The first 
approach solves an algebraic equation system and the second 
approach uses a simple algebraic formulation, but with the 
coordinates of grid points chosen as the roots of the shifted 
Legendre polynomial. Unfortunately, when the order of the 
algebraic equation system is large, its matrix is ill- condi-
tioned. Thus it is very difficult to compute the weighting 
coefficients for a large number of grid points. To improve the 
Bellman’s approaches in computing the weighting coeffi-
cients, many attempts have been made by researchers. One 
of the most useful approaches is the one introduced by Quan 
and Chang[12,13]. After that Shu’s (Shu[6]) general ap-
proach which is based on the high order polynomial ap-
proximation and linear vector space analysis, was made 
available in the literature. This generalized approach com-
putes the weighting coefficients of the first order derivative 
by a simple algebraic formulation without any restriction on 
choice of grid points, and the weighting coefficients of 
second and higher order derivatives by a recurrence rela-
tionship. 

In the DQM, It is supposed that the solution of a 
one–dimensional differential equation is approximated by a 

−N terms high degree polynomial: 

1

1
( ) .

N
k

k
k

f x c x −

=
= ∑               (2) 

where kc  is a constant. 
The generalized approach uses two sets of base polyno-

mials to determine the weighting coefficients[6]. The first set 
of base polynomials is chosen as the Lagrange interpolated 
polynomials, which are written as  
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Where 
1 2( ) ( ).( ).......( )NM x x x x x x x= − − −  

and 
(1)

1,
( ) ( )

N

k k j
j j k

M x x x
= ≠

= ∏ −  

being the first derivative of ( )M x  at kx . 
Here

 1 2, ,......, Nx x x  are the coordinates of the grid points, 
can be chosen arbitrarily but distinct. 

The polynomials  
1( ) , 1, 2,........,k

kr x x k N−= =         (4) 
are taken as the second set of base polynomials. 
For simplicity, by setting  

( ) ( , ).( ), 1, 2,....,k kM x N x x x x k N= − =   
with (1)( , ) ( ). ,i j i ijN x x M x δ= where ijδ  is the Kronecker 

operator, the equation (3) is simplified as: 
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xxN
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)(
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)( )1( ==     (5) 

Substituting equation (5) into the equation (1) for 1m =  
and using equation (4), Shu[6] obtained the following 
weighting coefficients of the first order derivative discreti-
zation. 
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The Shu’s (Shu[6]) recurrence formulation for determi-
nation of weighting coefficients for higher order derivatives 
discretization are given as 
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Obviously, equations (6) and (7) offer an easy way of 
computing the weighting coefficients for any order deriva-
tive discretization. These explicit formulae’s merit is that 
highly accurate weighting coefficients may be determined 
for any number of arbitrarily spaced sampling points. 

2.1. Choice of Sampling Points 

A convenient and natural choice for the sampling points is 
that of the equally spaced points. But the Differential 
Quadrature solutions usually deliver more accurate results 
with unequally spaced sampling points. A rational basis for 
the sampling points is provided by the zeros of the or-
thogonal polynomials. A well accepted kind of sampling 
points in the DQM is the so called Gauss-Lobatto- Cheby-
shev sampling points. For a domain specified by a x b≤ ≤  
and discretized by a set of unequally spaced points (non- 
uniform grid), then the coordinate of any point i  can be 

evaluated by: 
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3. Application to Differential Equation 
The basic key procedure in the DQM is to approximate the 

derivatives in a differential equation by equation (1). Sub-
stituting the equation (1) into the governing equations and 
equating both sides of the governing equations, we obtain 
simultaneous equations which can be solved by use of Gauss 
elimination or other methods. That is, DQM is composed of 
the following procedure: 

(a) The function to be determined is replaced by a group of 
function values at a group of selected sampling points. 
Gauss-Lobatto-Chebyshev sampling points (8) are strongly 
recommended for numerical stability, 

(b) Approximate derivatives in a differential equation by 
these N unknown function values. 

(c) Form a system of linear equations and 
(d) Solving the system of linear equation yields the desired 

unknowns. 
The proper implementation of boundary condition is very 

important for the accurate numerical solution of differential 
equation. Essential and natural boundary condition can be 
approximated by DQM. Using the technique in solving dif-
ferential equation, the governing equations are actually sat-
isfied at each sampling point of the domain, so one has one 
equation for each point, for each unknown. In the resulting 
system of algebraic equation from the DQM, each boundary 
condition replaces the corresponding field equation. This 
procedure is straightforward when there is one boundary 
condition at each boundary and when we have distributed the 
sampling points so that there is one point at each boundary. 

4. Application to Singularly Perturbed 
Differential-Difference Equations 
with Small Shifts of Mixed Type  

To show the applicability of DQM, we consider the 
boundary-value problems for a singularly perturbed differ-
ential-difference equation of the mixed type (i.e., containing 
both terms having a negative shift and terms having a posi-
tive shift) with small shifts, 

);()()(
)()()()()(''2

xfxyx
xyxwxyxxy

=+
++−+

ηβ
δαε

    (9) 

on [0,1], under the boundary conditions 
0);()( ≤≤−= xxxy δφ          (10) 

and 
( ) ( ), 1 1y x x xψ η= ≤ ≤ +            (11) 

where ε  is a singular perturbation parameter, (0 1)ε< <<  
and ,δ η  are also small shifting parameters, with 0 1δ< <<  
and 0 1.η< <<  The functions ( ), ( ), ( ), ( )x x x xα β ϕ ψ  and ( )f x
are assumed to be sufficiently continuously differentiable 
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functions in [0,1].  The solution to the boundary-value 
problem (9) with (10) and (11) exhibits the layer behaviour at 
both ends of the interval [0,1].   

Since the solution of the boundary-value problem (9) with 
(10) and (11) is continuous and continuously differentiable 
on [0,1]. , so expanding the terms containing shift by Taylor 
series, we obtain 

)(')()( xyxyxy δδ −≈−         (12) 
)(')()( xyxyxy ηη +≈+         (13) 

Using equation (12) and (13) in the equation (9) with (10) 
and (11) we obtain 

)()()]()(
)([)('])()([)(''2

xfxyxwx
xxyxxxy

=+
++−+

β
αδαηβε

   (14) 

on [0,1], under the boundary conditions 
)0()0( φ≈y                   (15) 

and 
)1()1( ψ≈y                    (16) 

Since the equation (14) with (15) and (16) is an approxi-
mate version of equation (9) with (10) and (11), it is good to 
use different notation (say )(xu ) for the solution of this 
approximate differential equation. Thus the problem (14) 
with (15) and (16) results into the following singularly per-
turbed boundary-value problem: 

)()()]()(
)([)('])()([)(''2

xfxuxwx
xxuxxxu

=+
++−+

β
αδαηβε

     (17) 

on [0,1], under the boundary conditions 
)0()0( φ≈u                 (18) 

and 
(1) (1)u ψ≈                   (19) 

We solve this boundary-value problem (17) with (18) and 
(19) by DQM to get the solution of boundary-value problem 
(9) with (10) and (11) over the interval [0,1].  

For finding the solution of the equation (17) with the 
boundary conditions (18) and (19) by DQM, we have fol-
lowed the following procedure/steps: 

(i) Discritize the interval [0,1]. such that 1 2 30 ........ 1Nx x x x= < < < < =  
where, N is the number of sampling/grid points.  

Denote ( ) ,i iu u x= ( )i if f x=  etc. 
(ii) Apply the DQM to approximate the derivatives in the 

equation (17), that leads to the following discretized form of 
the equation: 
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with the boundary conditions 
)1();0(1 ψφ == Nuu           (21) 

(iii) Apply the equation (20) at all interior points 
, ( 2,3,............, 1)ix i N= − , that leads to a system of ( 2)N −  

equations with N  unknowns. 
(iv) Use the boundary values for 1u  and Nu  from (21) 

in the obtained system of equations from step (iii) to get 
another system of ( 2)N − equations with ( 2)N − unknowns

, ( 2,3,........., 1)iu i N= − . 
(v) Solve the system of equations obtained in step (iv) for 

the unknowns , ( 2,3,........., 1).iu i N= −   
(vi) Use the boundary values to get the complete solution. 

We have applied the Gaussian elimination method with 
partial pivoting and employed the double precision Fortran, 
to solve the obtained system of linear equations in the step 
(iv), for the unknowns 2 3 1, ,......., .Nu u u −  

5. Numerical Illustrations 
To demonstrate the applicability of the DQM, we have 

applied it to two linear boundary-value problems for a sin-
gularly perturbed differential-difference equation of the 
mixed type (i.e., containing both terms having a negative 
shift and terms having a positive shift) with small shifts of 
small order .ε  In the first example we have considered the 
problem in which the shift δ is fixed and the shift η is varied. 
In the second example we have considered the problem in 
which the shift η is fixed and the shift δ is varied. These 
examples have been chosen because they have been dis-
cussed in literature and because exact solutions are available 
for comparison.  

Note that for the considered example problems, the DQM 
results in the tables, are given in terms of Maximum Abso-
lute Error (M.A.E.) at uniform grids ,( 0,1,2,......, )ix ih i K= = , 
with 2 510 ,10h − −=  and 2 510 ,10K =  which have been interpo-
lated through the use of natural cubic spline interpolation 
polynomial. For the derivation of this polynomial, we have 
used the DQM results ( ), , 1,2,......, ,i ix y i N=  where 

,( 1,2,......, )iy i N=  are the values of y  at non-uniform grid 
points (Gauss-Lobatto-Chebyshev points) ,( 1,2,........, )ix i N=  obtained from (8).  

To show the accuracy and efficiency of the method with 
Non-uniform grid points (Gauss-Lobatto-Chebyshev points) 

,( 1,2,........, )ix i N= obtained from (8), we have also given the 
computational results in terms of Maximum Absolute Error 
in the tables 5.1(e), 5.1(f), and 5.2(e), 5.2(f), for the example 
problems- 5.1 and 5.2 respectively, for different values of 

, ,N δ η  and small parameter: ε . 
Example 5.1: Consider the following singularly perturbed 

differential-difference equation with mixed shift from[17]: 
2 ''( ) 0.25 ( ) ( ) 0.25 ( ) 1y x y x y x y xε δ η+ − − + + =  

on [0,1], under the boundary conditions 
 ,1)( =xy  0xδ− ≤ ≤  

and 
( ) 0,y x =  1 1x η≤ ≤ +  

For this example, we have ( ) 0.25 ( ),x xα β= =  
( ) 1, ( ) 1, ( ) 1w x f x xϕ= − = =  and ( ) 0.xψ =   

The exact solution to this boundary value problem is given 
by: 

2 1

1 2

1 2

( ) [[(1 )exp( ) 1]exp( )
[(1 )exp( ) 1]exp( )] / [( )
(exp( ) exp( ))] 1/ ( ),

y x w m m x
w m m x w

m m w

α β
α β α β

α β

= − − − − −
− − − − + +

− + + +
where 

2 2
1 [( ) ( ) 4 ( )]m wαδ βη βη αδ ε α β= − + − − + + / 22 ,ε  
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2 2
2 [( ) ( ) 4 ( )]m wαδ βη βη αδ ε α β= − − − − + + / 22 .ε  

with 0.25, 1.wα β= = = −  
The computational results in terms of maximum absolute 

error for 0.07, 0.1δ ε= =  are presented in the Tables 5.1(a), 
5.1 (b) and for 0.007, 0.01δ ε= =  are presented in the Tables 
5.1 (c), 5.1 (d), for different values of ,N K  and .η  

The Maximum Absolute Error in the DQM solution at 
non-uniform grid points (Gauss-Lobatto-Chebyshev points) 

, 1,2,........,ix i N= obtained from (8), with 0.07, 0.1δ ε= =  
and 0.007, 0.01δ ε= =  for different values of N  and ,η  
are presented in the Tables 5.1 (e) and 5.1 (f) respectively.

Table 5.1(a).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,..., )ix ih i K= = with 2 210 , 10h K−= = for example problem 5.1 

η  0.07, 0.1δ ε= =  
25N =  45N =  65N =  175N =  335N =  

0.00 .122370E-01 .369268E-02 .170588E-02 .282663E-03 .144491E-03 
0.03 .128478E-01 .392070E-02 .181981E-02 .301691E-03 .139894E-03 
0.06 .136207E-01 .419070E-02 .193755E-02 .320970E-03 .134944E-03 
0.09 .144621E-01 .446980E-02 .205818E-02 .340283E-03 .129707E-03 

Table 5.1(b).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 510 ,h −= 510K =  for example problem-5.1 

η  0.07, 0.1δ ε= =  
25N =  45N =  65N =  175N =  335N =  

0.00 .125288E-01 .375337E-02 .177253E-02 .283157E-03 .145511E-03 
0.03 .133545E-01 .398765E-02 .188062E-02 .302111E-03 .141307E-03 
0.06 .142056E-01 .422706E-02 .200198E-02 .321542E-03 .136717E-03 
0.09 .150750E-01 .449136E-02 .212626E-02 .341703E-03 .131931E-03 

Table 5.1(c).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 210 ,h −= 210K =  for example problem-5.1 

η  
0.007, 0.01δ ε= =  

45N =  125N =  225N =  351N =  475N =  
0.000 .237117E-01 .332569E-02 .123558E-02 .650783E-03 .412307E-03 
0.003 .255847E-01 .344535E-02 .132728E-02 .676912E-03 .416118E-03 
0.006 .275697E-01 .355622E-02 .142338E-02 .701532E-03 .417700E-03 
0.009 .296610E-01 .365599E-02 .152341E-02 .724185E-03 .416910E-03 

Table 5.1(d).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 510 ,h −= 510K =  for example problem-5.1 

η  
0.007, 0.01δ ε= =  

45N =  125N =  225N =  351N =  475N =  
0.000 .427684E-01 .541496E-02 .165916E-02 .702304E-03 .461702E-03 
0.003 .450890E-01 .573070E-02 .175310E-02 .740888E-03 .478741E-03 
0.006 .474111E-01 .605005E-02 .184755E-02 .780994E-03 .497589E-03 
0.009 .497070E-01 .636968E-02 .195249E-02 .823933E-03 .518898E-03 

Table 5.1(e).  Maximum Absolute Error in the DQM solution at non-uniform grid points (Gauss-Lobatto-Chebyshev points) , ( 1, 2,........, )ix i N= obtained 
from (8) with different values of N and η , for the example problem-5.1 

η  
0.07, 0.1δ ε= =  

25N =  45N =  65N =  175N =  335N =  
0.00 .1790E-05 .3241E-05 .6415E-05 .9126E-04 .9351E-04 
0.03 .1875E-05 .3323E-05 .6659E-05 .9089E-04 .9133E-04 
0.06 .1882E-05 .3347E-05 .7123E-05 .9054E-04 .8892E-04 
0.09 .1965E-05 .3391E-05 .7650E-05 .9005E-04 .8621E-04 

Table 5.1(f).  Maximum Absolute Error in the DQM solution at non-uniform grid points (Gauss-Lobatto-Chebyshev points) , ( 1, 2,........, )ix i N= obtained 
from (8) with different values of N and η , for the example problem-5.1 

η  
0.007, 0.01δ ε= =  

45N =  75N =  125N =  225N =  351N =  
0.000 .5738E-06 .1950E-05 .9082E-05 .1469E-04 .4839E-04 
0.003 .6054E-06 .1955E-05 .9346E-05 .1478E-04 .4882E-04 
0.006 .5890E-06 .1995E-05 .9632E-05 .1488E-04 .4915E-04 
0.009 .6058E-06 .2005E-05 .9817E-05 .1497E-04 .4966E-04 
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Example 5.2: Consider the following singularly perturbed 
differential-difference equation with mixed shift from[17]:  

2 ''( ) 2 ( ) ( ) 2 ( ) 1;y x y x y x y xε δ η− − − − + = on [0,1], un-
der the boundary conditions 

( ) 1,y x =  on 0xδ− ≤ ≤  
( ) 0,y x =  on 1 1x η≤ ≤ +  

For this example, we have ( ) 2 ( ),x xα β= − =  
( ) 1, ( ) 1, ( ) 1w x f x xϕ= − = =  and ( ) 0.xψ =   

The exact solution to this boundary value problem has the 
expression as in Example 5.1 with 2α β= − =  and 1.w = −  

The computational results in terms of maximum absolute 
error for 0.05, 0.1η ε= = are presented in the Tables 5.2(a), 
5.2 (b) and for 0.005, 0.01η ε= =  are presented in the Tables 
5.2 (c) , 5.2 (d), for different values of ,N K  and .δ  

The Maximum Absolute Error in the DQM solution at 
non-uniform grid points (Gauss-Lobatto-Chebyshev points) 

, 1,2,........,ix i N= obtained from (8), with 0.05, 0.1η ε= =  
and 0.005, 0.01η ε= =  for different values of N  and δ  
are presented in the Tables 5.2 (e) and 5.2 (f) respectively.

Table 5.2(a).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,..., )ix ih i K= = with 2 210 , 10h K−= = for example problem 5.2 

δ  0.05, 0.1η ε= =  
25N =  75N =  225N =  325N =  535N =  

0.00 .155586E-01 .162579E-02 .153491E-03 .767565E-04 .376317E-04 
0.03 .178163E-01 .191330E-02 .170083E-03 .922227E-04 .311189E-04 
0.06 .200619E-01 .222337E-02 .197636E-03 .110401E-03 .231794E-04 
0.09 .221085E-01 .253889E-02 .225729E-03 .129312E-03 .181108E-04 

Table 5.2(b).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 510 ,h −= 510K =  for example problem-5.2 

δ  0.05, 0.1η ε= =  
25N =  75N =  225N =  325N =  535N =  

0.00 .158362E-01 .168038E-02 .185440E-03 .769568E-04 .548717E-04 
0.03 .181057E-01 .193406E-02 .211882E-03 .930375E-04 .521493E-04 
0.06 .203526E-01 .222638E-02 .242203E-03 .110874E-03 .488184E-04 
0.09 .228656E-01 .254190E-02 .276763E-03 .130853E-03 .449864E-04 

Table 5.2(c).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 210 ,h −= 210K =  for example problem-5.2 

δ  0.005, 0.01η ε= =  
45N =  85N =  175N =  325N =  525N =  

0.000 .285488E-01 .979099E-02 .851595E-03 .679801E-03 .272189E-03 
0.003 .300157E-01 .982639E-02 .850559E-03 .688696E-03 .276544E-03 
0.006 .306603E-01 .950206E-02 .817726E-03 .673192E-03 .270660E-03 
0.009 .302882E-01 .881001E-02 .752925E-03 .631693E-03 .253919E-03 

Table 5.2(d).  Maximum Absolute Error in the solution (computed from derived cubic spline interpolation polynomial) for uniform points: 
, ( 0,1, 2,......, )ix ih i K= =  with 510 ,h −= 510K =  for example problem-5.2 

δ  0.005, 0.01η ε= =  
45N =  85N =  175N =  325N =  525N =  

0.000 .456307E-01 .132318E-01 .319455E-02 .930104E-03 .344921E-03 
0.003 .487496E-01 .154133E-01 .364660E-02 .106141E-02 .395240E-03 
0.006 .579941E-01 .177681E-01 .416796E-02 .121361E-02 .453439E-03 
0.009 .685383E-01 .201096E-01 .475819E-02 .138606E-02 .520459E-03 

Table 5.2(e).  Maximum Absolute Error in the DQM solution at non-uniform grid points (Gauss-Lobatto-Chebyshev points) , ( 1, 2,........, )ix i N= obtained 
from (8) with different values of N and δ , for the example problem-5.2 

δ  0.05, 0.1η ε= =  
25N =  75N =  225N =  325N =  535N =  

0.00 .3134E-06 .2478E-05 .1757E-04 .1991E-04 .5517E-04 
0.03 .2797E-06 .2227E-05 .1741E-04 .1980E-04 .5250E-04 
0.06 .2411E-06 .2024E-05 .1725E-04 .1973E-04 .4924E-04 
0.09 .1692E-06 .1836E-05 .1707E-04 .1972E-04 .4547E-04 

Table 5.2(f).  Maximum Absolute Error in the DQM solution at non-uniform grid points (Gauss-Lobatto-Chebyshev points) , ( 1, 2,........, )ix i N= obtained 
from (8) with different values of N and δ , for the example problem-5.2 

δ  0.005, 0.01η ε= =  
65N =  85N =  175N =  325N =  525N =  

0.000 .1245E-06 .2564E-06 .2114E-05 .1206E-04 .1331E-04 
0.003 .1121E-06 .2518E-06 .1098E-05 .1147E-04 .1246E-04 
0.006 .1072E-06 .2469E-06 .1809E-05 .1078E-04 .1140E-04 
0.009 .1245E-06 .2461E-06 .1446E-05 .1011E-04 .1029E-04 
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5. Conclusions  
In this paper, we have presented the Differential Quadra-

ture Method (DQM) for finding the numerical solution of 
linear, second order boundary-value problems for singularly 
perturbed differential-difference equation of the mixed type 
(i.e., containing both terms having a negative shift and terms 
having a positive shift) with small shifts. We have applied 
the DQM to solve the example problems having both nega-
tive and positive shift. The applications presented here 
showed that the DQM has the capability of solving singu-
larly perturbed differential difference equations with small 
shifts of mixed type and of producing accurate results with 
minimal computational effort. We have given here only a 
few values although the solutions can be computed at desired 
number of uniform points. It can be observed from the tables 
that the DQM approximates the exact solution very well with 
small number of sampling points. This shows the efficiency 
and accuracy of the present method. It has been observed that 
an increase in the number of grid points gives rise to an 
increase in the accuracy of the DQM solution, as in the most 
numerical techniques. However a small number of grid 
points in the DQM produces highly accurate results with the 
use of non-uniform grids. This method provides an alterna-
tive technique to the conventional ways of solving singularly 
perturbed differential-difference equation with small shift of 
mixed type. 
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