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Abstract  It has been observed numerically that the viscoplastic consistency model by Wang (1997) with a linear yield 
surface and a linear hardening/softening rule converges, using the standard stress return mapping, with two steps. In this 
paper this numerical observation is proved analytically using the Maple software. The proof is carried out for the Modified 
Mohr-Coulomb viscoplastic consistency model in the corner plasticity situation, i.e. when both the Rankine and 
Mohr-Coulomb criteria are violated. 
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1. Introduction 
The classical viscoplasticity formulations, namely the 

Perzyna and Duvaut-Lions models, do not utilize the con-
sistency condition[1]. Consequently, trial stress states vio-
lating the yield criterion are not returned to the yield surface 
defined by the yield criterion. In those models, the vis-
coplastic strain rate depends on the amount of violation[1]. 
In contrast, the consistency condition is imposed in the 
more recent viscoplastic consistency model by Wang[2]. 
Thereby, the trial stresses violating the yield function are 
returned to the yield surface as in the classical rate- inde-
pendent plasticity. The major difference to the rate- inde-
pendent plasticity is the dependence of the yield function on 
the rate of the internal variable(s). The basic components of 
the bi-surface viscoplastic consistency model are:  
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where ,i iκ κ  denote the internal variable and its rate, re-
spectively. Moreover, gvp,i is the viscoplastic potential, vpε  
is the viscoplastic strain tensor (vector), and iλ  is the vis-
coplastic increment, i.e. the rate of viscoplastic multiplier. 
The yield function fvp,i can be called a dynamic yield function 
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since it can expand and shrink in relation to its static position 
depending on the loading rate. Moreover, the loading- 
unloading conditions of Kuhn-Tucker form must hold. 

As a consequence, the robust stress return algorithms of 
rate-independent computational plasticity can be employed 
with minor modifications concerning the presence of the rate 
of the internal variable(s). It is shown in this paper that a 
two-step exact solution exists for a viscoplasticity problem 
with a linear bi-surface yield function and linear harden-
ing/softening laws. This fact has, of course, been observed in 
numerical simulations but a formal proof is given here. The 
proof is performed for the Modified Mohr-Coulomb (MMC) 
viscoplastic consistency model in the corner plasticity situa-
tion, i.e. when both the Rankine and Mohr-Coulomb criteria 
are violated. Moreover, the proof is carried out with the 
Maple technical computing software due to the complexity 
of the equations involved. The MMC model is chosen due its 
wide usage in geotechnical engineering analyses. The MC 
criterion is usually modified with the Rankine, or the prin-
cipal stress, criterion to predict the correct tensile strength of 
geomaterials such as rock and concrete. 

2. Modified Mohr-Coulomb Viscoplastic 
Consistency Model 

The MMC yield criterion in the principal stress space, 
assuming the ordering 1 2 3σ σ σ≥ ≥ , consists of the MC and 
Rankine criteria: 
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where σ1, σ3 are the major and minor principal stresses, φ 
is the internal friction, c and ft are the cohesion and tensile 
strength of the material. The rates of the internal variables 
are related to viscoplastic increments as R R ,κ λ=   

MC MC MCkκ λ= 

 with T2
MC MC MC3k g g= ∂ ∂σ σ  where symbol

x∂ denotes the derivative with respect to a variable (scalar or 
vector) x. The combined yield surface is illustrated in Figure 
1. 

 
Figure 1.  Modified Mohr-Coulomb criterion in principal stress space 

The rate-dependent softening/hardening rules for cohesion 
and tensile strength are assumed to be linear by 
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where c0 is the initial (intact) value of cohesion while hMC, 
hR and sMC, sR are the softening/hardening and viscosity 
moduli in compression and tension, respectively.  

In order to account for correct dilatation behaviour of the 
material in compression, the plastic potential is chosen as 

MC 1 3 1 3( ) ( )sing σ σ σ σ ψ= − + +σ          (4) 
where ψ is the dilatation angle. Due to its linearity, the 

gradients of the MC yield surface and plastic potential are 
constant vectors (having the angles φ and ψ as parameters). 
With this choice for the plastic potential, the expression for 
kMC simplifies as 2

MC 3 (4 2cos )k ψ= − . Therefore, since the 
relation between the internal variables and plastic increments 
is a constant relation, it is more convenient to use the plastic 
multipliers and increments in the following derivations. 

 
Figure 2.  Illustration of the geometry of a corner point 

3. Return Mapping Scheme for     
Bisurface Viscoplastic Consistency 
Model 

The intricacy involved in the multisurface plasticity is the 
stress return to an intersection of yield criteria. At such a 
point the gradient of the combined yield surface is not unique 
as illustrated in Figure 2 depicting a corner point in a 
bi-criteria case. 

The set of admissible stresses is denoted by Eσ in Figure 1. 
Γ1 is the region where 1 20, 0λ λ> <  , in Γ2, 1 20, 0λ λ< >  , and in 
Γ12, 1 20, 0λ λ> >  . The stress return algorithm should be able 
to distinguish between these regions and restore the consis-
tency accordingly. This means, e.g., that if the trial stress lies 
in Γ1 the single surface integration should be performed in 
order to return the trial stress to the surface f1 = 0. The de-
termination of the right return can be performed by trial and 
error only because the condition trial 0if > does not guarantee 
that eventually 0.iλ >  Here the procedure presented in ‎[3] is 
employed for determining the active set of yield surfaces. 

Stress integration, i.e. return mapping, algorithms for 
classical single and multi-surface plasticity and viscoplas-
ticity are considered, e.g. in[1,3], while algorithms for con-
sistent viscoplasticity are developed in[2,4,5]. For present 
purposes, the stress integration algorithm by Wang et al.[2] 
is utilized as modified for the linear bi-surface case. It is 
assumed that both criteria are violated. 
Return mapping algorithm for bi-surface viscoplastic 
consistency model: 
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( 1)
2, 2, 2,

i
t t t tλ λ λ +
+∆ = + ∆ and exit. 

The expressions for G and F needed in step 1 of the algo-
rithm, derived in Appendix A, are:  

( )
( )
( )
( )

T( ) ( )
vp1 vp2

11 12

21 22

T

11 vp1 vp1 1 1 1

T

12 vp1 vp2

T

21 vp2 vp1

T

22 vp2 vp2 2 2 2

( / )

( / )

i if f

G G
G G

G f g h s t k

G f g

G f g

G f g h s t k

 =  
 

=  
 

= ∂ ∂ + + ∆

= ∂ ∂

= ∂ ∂

= ∂ ∂ + + ∆

σ σ

σ σ

σ σ

σ σ

F

G

E

E

E

E

     (5) 

The purpose of step 3 in the algorithm is to ensure that a 
genuine corner plasticity situation is realized. This can be 
performed on trial and error only, as noted above. If one of 
the cumulative plastic increments is found non-positive, the 
trial stress was located in one of the regions denoted by Γ1 
and Γ2 in Figure 2 and, thus, no genuine corner plasticity has 
occurred (i.e. the trial stress was not located in region Γ12). 
This means that the bi-surface iteration must be terminated 
and a single surface integration should be performed to re-
turn the trial stress onto the correct yield surface as explained 
above. 

In fact, in this form the algorithm above is similar to the 
generalized cutting plane algorithm[3]. Therefore, it is not 
limited to linear yield surfaces but can be used for stress 
integration of nonlinear models as well. 

4. A Two-Step Solution for the MMC 
Viscoplasticity Problem 

It is convenient for present purposes to write the MC cri-
terion with its viscoplastic potential in the following simpler 
form: 
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where fc is the uniaxial compressive strength which is 
substituted for c in Equation (3). In addition, the constant kMC 
becomes now 2

MC 3 (1 )k m= + . 
Next, it is shown by Maple software that a two-step exact 

solution, using the algorithm above, exists for the MMC 
viscoplasticity problem in the corner plasticity situation with 
the linear hardening/softening rules (3). The proof begins at 
the onset of viscoplasticity. Vector notation is used and only 
the relevant intermediate results of the Maple command 
executions are shown. 

First time step: transition from elasticity to viscoplasticity, 
i.e. vp

MC, R,, 0, 0t t tλ λ= = =ε 0 , is treated as shown in Figure 3. 

 
Figure 3.  Maple code for the first iteration involving a transition from 
elasticity to viscoplasticity 

According to lines 25 and 26 of the Maple code in Figure 3,
(1) (1) (1)

MC cor MC MC,( , , ) 0tf λ λ∆ =σ  and (1) (1) (1)
R cor R R,( , , ) 0.tf λ λ∆ =σ   Therefore, 

at the onset of viscoplasticity, a single step solution exists. 
Before continuing, the above Maple script is elaborated in 
some detail. After loading the linear algebra package in line 
2, the linear elasticity matrix is defined in line 3 with E1 = 
E(1−ν)/(1+ν)(1−2ν) and E2 = Eν/(1+ν)(1−2ν) Lines 4-8 
define the trial values of the MC and Rankine criteria, the 
plastic potential (for MC criterion), and their gradients de-
termined with the diff command. In lines 9 and 10 the initial 
values are set for the viscoplastic multipliers and strain. 
Vector F and matrix G according to Equation (5) are defined 
in lines 11-16. Then, the viscoplastic increments are solved 
in line 17 corresponding to step 1 in the algorithm. Lines 18 
and 19 corresponds to steps 2 and 4 in the algorithm. Lines 
20 and 21 do the same operations as steps 5 and 6 in the 
algorithm. Line 22 corrects the stress according to step 7. 
Lines 23, 24 update the values of uniaxial tensile and com-
pressive strengths and, finally, lines 25 and 26 compute the 
new values of the yield criteria (step 8 in the algorithm). 

In the next time step: vp vp,(1) (1)
MC, MC,t t tλ λ+∆ = ∆ = ∆ε ε and 

(1)
R, Rtλ λ= ∆ . This is a general time step involving soften-

ing/hardening and the strain rate effects as well. The Maple 
code is shown in Figure 4. 
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Figure 4.  Maple code for the first iteration involving viscoplasticity 

In line 31 above s1 and s2 denote the trial stress state. 
Moreover, the Maple commands in lines 41 and 42 yield 
results that can be written in form: 
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Thus, in the end of the first iteration the values of the yield 
functions are given by (7). Accordingly, the exact solution is 
obtained with the first step if the viscosity moduli sMC and sR 
are set to zero which is the rate-independent case. In the 
rate-dependent (viscous) case another step is needed: 

 
Figure 5.  Maple code for the second iteration involving viscoplasticity 

According to lines 52 and 53 of the Maple code: 
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Therefore, only two steps are required for the exact solu-
tion which was to be proven.  

4. Conclusions 
The purpose of this paper was to prove that a two-step 

exact solution exist for the rate-dependent softening continua 
modelled with the Modified Mohr-Coulomb viscoplastic 
consistency model with linear hardening/softening rule. 
According to the proof with the Maple software, the two-step 
nature of the consistent viscoplasticity model is located in 
the invention of the viscosity parameter to the harden-
ing/softening rules. On setting the viscosity modulus to zero, 
the classical rate-independent MMC plasticity with a sin-
gle-step exact solution is recovered. 

Even though the proof was carried out with the MMC 
model, it can be performed for all other models with linear 
yield surfaces, such as the Tresca surface, and linear hard-
ening/softening rules. 

Finally, it has been observed in numerical simulations that 
also the Drucker-Prager (DP) viscoplastic consistency model 
with linear hardening/softening rule has the same two-step 
nature with respect to convergence. This clearly stems from 
the fact that a closed form solution exists for the 
rate-independent DP plasticity problem. However, the proof 
is somewhat more complicated due to the nonlinearity of the 
DP criterion. 

ACKNOWLEDGEMENTS 
This research has been funded by Academy of Finland 

(Grant no. 251626). 

Appendix A 
The relation for solving the increment of viscoplastic 

multiplier vector in bi-surface consistent viscoplasticity with 
linear isotropic hardening/softening laws is derived here. 
Following notations are used. 
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The yield functions are assumed to be of form  
vp, ( , , ) ( , )Y

i i i i i i if κ κ σ σ κ κ= −σ                (A2) 
where ( )i iσ σ= σ   is some expression of stress. Yield 

stresses are assumed to depend linearly on the harden-
ing/softening variables and their rates, i.e. 

0
Y Y
i i i i i ih sσ σ κ κ= + +                  (A3) 

where hi and si are the constant hardening/softening and 
viscosity moduli, respectively. At the end of the time step, 
condition vp, ( , , ) 0t t t t t t

i i if κ κ+∆ +∆ +∆ =σ   must be satisfied for 



  American Journal of Computational and Applied Mathematics 2012, 2(1): 41-45 45 
 

 

i= 1,2. Following Winnicki et al.[5], it assumed that 
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By (A4) the yield functions fvpi are formulated to depend 
on iλ∆ : vp, vp, ( , )t t t t

i if f λ+∆ +∆= ∆σ . Hence, F can be expanded 
with the first term of the vector valued Taylor series: 
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It is assumed that gvpi is independent of ∆λi and f1 is in-
dependent of ∆λ2. By this, and making use of (A2)-(A4), the 
first row the gradient (A6) can be written as 
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Now, on solving for λ∆δ and denoting the gradient with G 
the desired relation is obtained as 
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where G is a 2×2 matrix with the entries in (5). 
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