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Abstract  Visco- Elastic Plates are being increasingly used in the aeronautical and aerospace industry as well as in other 
fields of modern technology. Plates with variable thickness are of great importance in a wide variety of engineering appli-
cations i.e. nuclear reactor, aeronautical field, naval structure, submarine, earth-quake resistors etc. The analysis is pre-
sented here is to study the two dimensional thermal effect on vibration of visco-elastic square plate of variable thickness. 
Temperature & thickness both vary linearly in one direction and parabolically in another direction. A frequency equation is 
derived by using Rayleigh-Ritz technique with a two-term deflection function. Both the modes of the frequency are calcu-
lated by the latest computational technique, MATLAB, for the various values of taper parameters and temperature gradient.  
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1. Introduction 
Since new materials and alloys are in great use in the 

construction of technically designed structures therefore the 
application of visco-elasticity is the need of the hour. Ta-
pered plates are generally used to model the structures. Plates 
with thickness variability are of great importance in a wide 
variety of engineering applications. 

With the advancement of technology, the requirement to 
know the effect of temperature on visco-elastic plates of 
variable thickness has become vital due to their applications 
in various engineering branches such as nuclear power plants, 
engineering, industries etc. Further in mechanical system 
where certain parts of machine have to operate under ele-
vated temperature, its effect is far from negligible and ob-
viously cause non-homogeneity in the plate material i.e. 
elastic constants (young modulus etc.) of the materials be-
comes functions of space variables. 

In an up-date survey of literature, authors have come 
across various models to account for non-homogeneity of 
plate materials proposed by researchers dealing with vibra-
tion but none of them consider non-homogeneity with 
thermal effect on visco-elastic plates. It also indicates that 
sufficient work on one dimensional temperature variation 
has been done but negligible work has been done in the field 
of two dimensional temperature variation.  

Recently, A.K. Gupta and Anupam Khanna[1], studied the 
Thermal Effect on Vibrations of Parallelogram Plate of 
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Linearly Varying Thickness. A.K. Gupta and Anupam 
Khanna[2], studied the Vibration of clamped visco-elastic 
rectangular plate with parabolic thickness variations. A.K. 
Gupta and Anupam Khanna[3], has been studied on Free 
vibration of clamped visco-elastic rectangular plate having 
bi-direction exponentially thickness variations. A.K. Gupta 
and A. Khanna[4], also studied the, Vibration of Visco- 
elastic rectangular plate with linearly thickness variations in 
both directions. Anupam Khanna, Ashish Kumar Sharma[5], 
studied the Study of free Vibration of Visco-Elastic Square 
Plate of Variable Thickness with Thermal Effect. Anupam 
Khanna, Ashish Kumar Sharma[6], has been studied on 
Vibration Analysis of Visco-Elastic Square Plate of Variable 
Thickness with Thermal Gradient.  

We assume that non homogeneity occurs in Modulus of 
Elasticity. For various numerical values of thermal gradient 
and taper constants; frequency for the first two modes of 
vibration are calculated with the help of latest software. All 
results are shown in Graphs. 

2. Equation of Motion and Analysis 
The governing differential equation of transverse motion 

of a visco-elastic plate of variable thickness in Cartesian 
co-ordinates, as : 
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The expression for Mx, My, Myx are given by 
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On substitution the values Mx, My and Myx from equation 
(2.2) in (2.1) and taking w, as a product of two functions, 
equal to w(x, y, t) = W(x, y) T (t), equation (2.1) becomes: 

4 4 4 3 3 3 3
1 1

1 4 2 2 4 3 2 3 2

2 2 2 2 2 2 2 2
1 1 1

2 2 2 2 2 2

W W W D W W D W W[D ( 2 ) 2 ( ) 2 ( )
x yx x y y x x y y x y

D W W D W W D W T( ν ) ( ν ) 2(1 ν) ] / hW -
x y x y DTx x y y y x

ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +

∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + − =

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂





(2.3) 

Here dot denote differentiation with respect to t. taking 
both sides of equation (2.3) are equal to a constant p2, we 
have 
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which is a differential equation of transverse motion for 
non-homogeneous plate of variable thickness.  

Here, D1 is the flexural rigidity of plate i.e.  
3 2

1 /12(1 )D Eh v= −           (2.5) 

and corresponding two-term deflection function is taken 
as[4] 

2

1 2

[( / )( / )(1 / )(1 / )]
[ ( / )( / )(1 / )(1 / )]
W x a y a x a y a
A A x a y a x a y a
= − −
+ − −

   (2.6) 

Assuming that the square plate of engineering material has 
a steady two dimensional i.e. linear in one direction and 
parabolic in another direction as shown below: 

2 2
0 (1 / )(1 / )x a y aτ τ= − −              (2.7) 

where, τ  denotes the temperature excess above the ref-
erence  temperature and 0τ  denotes the temperature at any 
point on the boundary of plate and “a” is the length of a side 
of square plate. 

The temperature dependence of the modulus of elasticity 
for most of engineering materials can be expressed in this 

( )0 1- γτE E=             (2.8) 

where, E0 is the value of the Young's modulus at reference 
temperature i.e. τ 0=  and γ  is the slope of the variation 
of E with τ . The modulus variation (2.8) become 

2 2
0[1 (1 / )(1 / )]E E x a y aα= − − −         (2.9) 

where, 0 (0 1)α γτ α= ≤ <  thermal gradient. 
It is assumed that thickness also varies in two directions i.e. 

linear in one direction and parabolic in another direction as 
shown below: 

2 2
0 1 2(1 / )(1 / )h h x a y aβ β= + +       (2.10) 

where, β1 & β2 are taper parameters in x- & y- directions 
respectively and h=h0 at x=y=0. 

Put the value of E & h from equation (2.9) & (2.10) in the 
equation (2.5), one obtain 
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Rayleigh-Ritz technique is applied to solve the frequency 
equation. In this method, one requires maximum strain en-
ergy must be equal to the maximum kinetic energy. So it is 
necessary for the problem under consideration that 

2( ) 0V Tδ λ− =            (2.12) 

for arbitrary variations of W satisfying relevant geomet-
rical boundary conditions. Since the plate is assumed as 
clamped at all the four edges, so the boundary conditions are  

, 0, 0,
, 0, 0,

x

y

W W x a
W W y a

= = = 
= = = 

       (2.13) 

where, 
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Here, 2 2 2 2
0 012 (1 ) /v a E hλ ρ= −  is a frequency parameter. 

Equation consists two unknown constants i.e. A1 & A2 
arising due to the substitution of W. These two constants are 
to be determined as follows 

2( ) / nV T Aλ∂ − ∂
 
, n = 1, 2       (2.16) 

On simplifying (2.16), one gets 
1 1 2 2 0bn A bn A+ =  , n =1, 2        (2.17) 

For a non-trivial solution, the determinant of the coeffi-
cient of equation (2.17) must be zero. So one gets, the fre-
quency equation as 
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=              (2.18) 

With the help of equation (2.18), one can obtains two 
modes of vibration of frequency i.e. λ1 (Mode1) & λ2 
(Mode2). 

3. Result and Discussion 
All calculations are carried out with the help of latest 

Matrix Laboratory computer software. Computation has 
been done for frequency of visco-elastic square plate for 
different values of taper constants β1 and β2, thermal gradient 
α, at different points for first two modes of vibrations.  

 
Figure 1.  Frequency vs. Thermal Gradient 

Fig 1 Frequency Vs Thermal gradient
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Fig 1:- It is clearly seen that value of frequency decreases 
as thermal gradient increases from 0.0 to 1.0 for β1=β2=0.0 
and β1=0.4, β2=0.8 for both modes of vibrations. Also, note 
that frequency increases fast as taper parameters (β1&β2) 
increase from 0.0 to 0.4 and 0.8 respectively. 

Fig 2:- Value of frequency increases with the increment in 
taper parameter β1 for following cases  

i) α= 0.4, β2=0.2 ii) α= 0.2, β2=0.4 
Interesting to note that frequency increases with the in-

crement in β1 from 0.0 to 1.0. Also, value in case (ii) is more 
than in case (i). 

 
Figure 2.  Frequency vs. Taper Constant 

5. Conclusions 
Results of present paper are compared with paper[6]. It is 

interesting to note that value of frequency has greater value 
in this paper as compared to[6]. So, main aim for our re-
search is to develop a theoretical mathematical model for 
scientists and design engineers so that they can make a use of 

it with a practical approach, for the welfare of the human 
beings as well as for the advancement of technology. 
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Fig.2  Frequency Vs Taper constant
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