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Abstract  Fitted fourth order central difference scheme is presented for solving singularly perturbed two-point boundary 
value problems with the boundary layer at one end point. A fitting factor is introduced in a tri-diagonal finite difference 
scheme and is obtained from the theory of singular perturbations. Thomas Algorithm is used to solve the system and its 
stability is investigated. To demonstrate the applicability of the method, we have solved linear and nonlinear problems. From 
the results, it is observed that the present method approximates the exact solution very well. 
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1. Introduction 
There are varieties of physical processes in which a 

boundary layer may arise in the solutions for certain pa-
rameter ranges. These types of problems may be generally 
characterized as singular perturbation problems, and the 
parameter is termed as the perturbation parameter. Detailed 
theory and analytical discussion on singular perturbation 
problems, can be referred in Bender and Orsazag[1], 
Kevorkian and Cole[3], Nayfeh[5-6], O’Mally[7] and Van 
Dyke[12] and for exponential fitted methods Miller,J.J.H., 
O’Riordan,E. and Shishkin, G.I.[4], Y.N.Reddy, P.Pramod. 
Chakravarthy[9] and Reddy Y.N., Awoke A.[10-11]. 

Fitted stable fourth order scheme is presented for solving 
singularly perturbed two-point boundary value problems 
with the boundary layer at one end point. A fitting factor is 
introduced in a tri-diagonal finite difference scheme and is 
obtained from the theory of singular perturbations. Thomas 
Algorithm is used to solve the system and its stability is 
investigated. To demonstrate the applicability of the method, 
we have solved several linear and nonlinear problems. From 
the results, it is observed that the present method approxi-
mates the exact solution very well. 

2. Fourth Order Finite Difference 
Method 

Consider a linear singularly perturbed two-point boundary 
value problem of the form:  
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( ) ( ) ( ) ( ) ( ) ( )y x a x y x b x y x f xε ′′ ′+ + = , x ∈[0,1]      (1) 
with y (0)=α                                  (2a) 
and y (1)= β;                                  (2b) 
where ε is a small positive parameter (0<ε<<1) and α, β 

are known constants. We assume that a(x), b(x) and f(x) are 
sufficiently continuously differentiable functions in[0,1]. 
Further more, we assume that b(x) ≤ 0, a(x) ≥ M > 0 
throughout the interval[0,1], where M is some positive con-
stant.  

A finite difference scheme is often a convenient choice 
for the numerical solution of two point boundary value 
problems, because of their simplicity. Let us divide the in-
terval[0,1] in to N equal parts , each of length h where 

1/h N=  and then we have ,  i 0,1,...,Nix ih= = . For sim-

plicity, let us denote 
i

( ) , ( ) , ( ) , ( )
, ( )   y (x ) .

i i i i i i i

i i i i

a x a b x b f x f y x
y y x y and y

= = =
′ ′ ′′ ′′= = =

 

Assuming that y has continuous fourth order derivatives in 
the interval [0,1], by using Taylor series expansion we obtain 
the central difference formulas for ii yy ′′′,  given by. 

2
1 1

12 6
i i

i i
y y hy y R

h
+ −−′ ′′′≅ − +            (3) 

and 
2

(4)1 1
22

2
12

i i i
i i

y y y hy y R
h

+ −− +′′≅ − +          (4) 

where, 
4 (5)

1
( )

5!
h yR η

= −  and 
4 (6)

2
2 ( )

6!
h yR ξ

= −  for 1 1, [ , ]i ix xξ η − +∈ . 

From (1), we have  
( ) ( ) ( )y f x a x y b x yε ′′ ′= − −          (5) 

Differentiating both sides of equation (5) with respect to x, 
we get 

1 ( ( ) )y f ay a b y b y
ε

′′′ ′ ′′ ′ ′ ′= − − + −         (6) 

Differentiating twice both sides of equation (5) with re-
spect to x, we get 
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(4) 1 ( (2 ) ( 2 ) )y f ay a b y a b y b y
ε

′′ ′′′ ′ ′′ ′′ ′ ′ ′′= − − + − + −   (7) 

By substituting ,i iy y′ ′′  from equations (3) and (4) in (1) at 
ix x= , we get the central difference approximation in a form 

that includes all the 2( )o h  error terms: 
2 2

(4)1 1 1 1
2

2
( ) ( )

12 2 6
i i i i i

i i i i i i
y y y y yh hy a y b y f

hh
ε + − + −− + − ′′′− + − + = (8)

 

where, iy ′′′  and )4(
iy  are defined accordingly in equa-

tions (6) and (7) respectively. Using equations (3, 4, 6 & 7) in 
equation (8), we get the fourth order scheme 

2

1 12

1 1

2 2 2 2

(2 )
[ ]( 2 )

6 12
( ) ( 2 )

[ ]( )
12 24 2

[ ] ,   i 1,2,..,N-1
6 12 12 6

i i i
i i i

i i i i i i
i i

i i i i i i
i i i

a a b
y y y

h
ha a b h a b a

y y
h

h a b h b h f h a f
b y R f

ε
ε

ε

ε ε

+ −

+ −

′ +
+ − − +

′ ′′ ′+ +
+ + + −

′ ′′ ′′ ′
+ + + + = + + =

 

Where, 4
1 2 ( )R R R O h= + = , from equation (4). For de-

tail discussions of the method refer Joshua Y.Choo and 
David H.Schultz[2]. 

3. Fitted Fourth Order Scheme 
A difference scheme with a fitting factor containing ex-

ponential functions is known as exponentially fitted differ-
ence scheme. From the theory of singular perturbations it is 
known that the solution of (1)-(2) is of the form [cf. O’ 
Malley[7]; pp 22-26] 

0

( ) ( )
( )

0 0
(0)( ) ( ) ( (0)) ( )
( )

x
a x b x dx

a xay x y x y e O
a x

εα ε
 

− − 
 ∫

= + − +    (9) 

where 0 ( )y x is the solution of 

0 0( ) ( ) ( ) ( ) ( )a x y x b x y x f x′ + = , 0 (1)y β=    (10) 
By taking first terms of the Taylor’s series expansion for 

a(x) and b(x) about the point ‘0’, (10) becomes, 
(0) (0)

(0)
0 0( ) ( ) ( (0)) ( )

a b x
ay x y x y e Oεα ε

 
− − 
 = + − +     (11) 

Now we divide the interval [0, 1] into N equal parts with 
constant mesh length h. Let 0=x0, x1, x2, …xN =1 be the mesh 
points. Then we have xi = ih; i=0, 1, 2, …, N. 

From (11) we have  
(0) (0)

(0)
0 0( ) ( ) ( (0)) ( )

a b ih
ay ih y ih y e Oεα ε

 
− − 
 = + − + . 

Therefore 
2 (0) (0)

(0)
0 00

lim ( ) (0) ( (0))
a b i

a

h
y ih y y e

ε ρ

α
 −

−  
 

→
= + − , 

where hρ
ε

=                                (12) 

Now, we consider the stable fourth order central differ-
ence scheme (8) and introduce the fitting factor ( )σ ρ : 
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(2 )
( )[ ]( 2 )

6 12
i i i

i i i
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h
εσ ρ

ε + −

′ +
+ − − +  
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( ) ( 2 )
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12 24 2

i i i i i i
i i

ha a b h a b a
y y

hε + −

′ ′′ ′+ +
+ + + −  

2 2

[ ]
6 12

i i i
i i

h a b h b
b y

ε
′ ′′

+ + + =
2 2

,   i 1,2,..,N-1
12 6

i i i
i

h f h a f
f

ε
′′ ′

+ + =   (13) 

Rewriting (13), we have 
2

1 12

(2 )
[ ]( 2 )

6 12
i i i

i i i
a a b

y y y
h

σσε
ε + −

′ +
+ − − +  

1 1
( ) ( 2 )

[ ]( )
12 24 2

i i i i i i
i i

ha a b h a b a
y y

hε + −

′ ′′ ′+ +
+ + + −  

2 2

[ ]
6 12

i i i
i i

h a b h b
b y

ε
′ ′′

+ + + =
2 2

,   i 1,2,..,N-1
12 6

i i i
i

h f h a f
f

ε
′′ ′

+ + =   (14) 

0y α=  ; Ny β= ; where σ(ρ) is a fitting factor which is to 
be determined in such a way that the solution of (14) con-
verges uniformly to the solution of (1)-(2). 

Multiplying (14) by h and taking the limit as h→ 0; we get  

( )

( )

2

0

(0)( ) (( 1) ) 2 ( ) (( 1) )
6lim 0

(0) (( 1) ) (( 1) )
2

h

a y i h y ih y i h

a y i h y i h

σ σ ρ
ρ

→

 
+ + − + − 

  =
 
+ + − −  

  (15) 

By using (12) in (15) and simplifying, we get 

0
lim
h

Sσ
→

=
2(0) a (0) (0) oth(( ) )

2 (0) 2
a bc

a
ε ρ−      (16) 

Where 
2 26 (0)
6

aS ρ
ρ

+
=                         (17) 

We have; 
2(0) a (0) (0) oth(( ) )

2 (0) 2
a bc

S a
ε ρσ −

=           (18) 

σ  given by (18) is the constant fitting factor.  
From (14) we have 

2

12

(2 ) ( ) ( 2 )
[ ]

6 12 12 24 2
i i i i i i i i i
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+
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i i i i i i i i i
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hh

σ σσε
ε ε +
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i i i
i

h f h a f
f

ε
′′ ′

+ + =          (19) 

where the fitting factor σ is given by (18). 
The equivalent three term recurrence relation of equation 

(19) is given by: 
1 1i i i i i i iE y F y G y H− +− + =  ; i=1,2,3, …….,N-1 (20) 

where  
2

2
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6 12 12 24 2

i i i i i i i i i
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hh
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This gives us the tri-diagonal system which can be solved 
easily by Thomas Algorithm. 
Thomas Algorithm 

A brief discussion on solving the tri-diagonal system using 
Thomas algorithm is presented as follows:  

Consider the scheme given in (20): 
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1 1i i i i i i iE y F y G y H− +− + =  ; i=1,2,3, …….,N-1 
subject to the boundary conditions 

0 (0)y y α= =                  (21a) 
(1)Ny y β= =                  (21b) 

We set 1i i i iy W y T+= +  for i = N-1, N-2, ….2, 1.  (22) 
where ( )i iW W x= and ( )i iT T x= which are to be determined. 
From (22), we have 

1 1 1i i i iy W y T− − −= +               (23) 
By substituting (23) in (20), we get  

( )1 1 1i i i i i i i i iE W y T F y G y H− − ++ − + = . 

1
1

1 1

i i i i
i i

i i i i i i

G E T Hy y
F EW F EW

−
+

− −

   −
= +   − −   

        (24) 

By comparing (24) and (22), we get the recurrence rela-
tions 

1

i
i

i i i

G
W

F E W −

 
=  − 

               (25a) 

1

1

i i i
i

i i i

E T H
T

F E W
−

−

 −
=  − 

              (25b) 

To solve these recurrence relations for i=0,1,2,3, ,N-1, we 
need the initial conditions for 0W and 0T . For this we take

0 0 1 0y W y Tα= = + . We choose 0 0W =  so that the value of
0T α= .With these initial values, we compute iW and iT for 

i=1,2,3,….,N-1 from (25) in forward process, and then ob-
tain iy in the backward process from (22)and (21b). 
Stability Analysis 

We will now show that the algorithm is computationally 
stable. By stability, we mean that the effect of an error made 
in one stage of the calculation is not propagated into larger 
errors at later stages of the calculations. Let us now examine 
the recurrence relation given by (25a). Suppose that a small 
error 1ie −  has been made in the calculation of 1iW − ; then, we 
have 

1 1 1i i iW W e− − −= +  and we are actually calculating 

1

i
i

i i i

GW
F EW −

 
=  − 

              (26) 

From (26) and (25a), we have 

1 1 1( )
i i

i
i i i i i i i

G Ge
F E W e F EW− − −

   
= −   − + −   

( )( )
1

1 1 1( )
i i i

i i i i i i i

G E e
F E W e F EW

−

− − −

 
=   − + − 

 

2

1
i i

i
i

W E e
G −

 
=  
 

                     (27) 

under the assumption that the error is small initially. From 
the assumptions made earlier that a(x)>0 , b(x)≤0 and its 
derivatives also non-positive, we have  

i i iF E G≥ + ; i=1, 2, 3, …, N-1 
Form (25a) we have 1

1
1

GW
F

= <1, since F1>G1 
2

2
2 2 1

GW
F E W

=
− < 2

2 2

G
F E−

; since W1 <1, 

< 2

2 2 2

1
G

E G E
=

+ − ; since F2≥E2 +G2 

Successively, it follows that 2
1

i
i i i

i

Ee W e
G −=  < 

1ie − , since i iE G≤ . 
Therefore the recurrence relation (25a) is stable. Similarly 

we can prove that the recurrence relation (25b) is also stable. 
Finally the convergence of the Thomas Algorithm is ensured 
by the condition iW <1, i=1, 2, 3,…., N-1. 

4. Numerical Examples 
4.1. Example 

Consider the following homogeneous singular perturba-
tion problem from Bender and Orszag[[1], page 480; prob-
lem 9.17 with α=0]  

( ) ( ) ( ) 0y x y x y xε ′′ ′+ − = ; x∈[0,1],with y(0)=1 and 
y(1)=1. 
The exact solution is given by : 

2 1 1 2

2 1

[( 1) (1 ) ]( )
[ ]

m m x m m x

m m
e e e ey x

e e
− + −

=
−

 

Where m1= ( 1 1 4 ) / (2 )ε ε− + +  and m2=
( 1 1 4 ) / (2 )ε ε− − +  

Error plot for Example 4.1, ε=10-3
, h=10-2 

 

Error plot for example 4.1, ε=10-4, h=10-2. 

 

4.2. Example 

Let us consider the following non-homogeneous singular 
perturbation problem from fluid dynamics for fluid of small 
viscosity, Reinhardt[[8], example 2] 

( ) ( ) 1 2y x y x xε ′′ ′+ = + ; x∈[0,1],with y(0)=0 and y(1)=1. 
The exact solution is given by  

( )
( )

/

1/

1) 1
y(x) x(x 1-2 )

1

xe

e

ε

ε

ε
ε

−

−

(2 − −
= + +

−
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Error plot for Example 4.2, ε=10-3
, h=10-2 

 

Errorplot for Example 4.2, ε=10-4
, h=10-2 

 

5. Non-linear Problems 
Nonlinear singular perturbation problems were converted 

as a sequence of linear singular perturbation problems by 
using quasilinearization (Replacing the non-linear problem 
by a sequence of linear problems) method. The outer solution 
(the solution of the given problem by putting ε=0) is taken to 
be the initial approximation. 

5.1. Example 

Consider the following singular perturbation problem 
from Bender and Orszag[[1], page 463; equations: 9.7.1] 

( )( ) 2 ( ) 0y xy x y x eε ′′ ′+ + = ; x∈[0,1], 
with y(0)=0 and y(1)=0. 
The linear problem concerned to this example is 

2 2 2( ) 2 ( ) ( ) log 1
1 1 1ey x y x y x

x x x
ε     ′′ ′+ + = −    + + +    

 

We have chosen to use Bender and Orszag’s uniformly 
valid approximation[[1], page 463; equation: 9.7.6] for 

comparison, 2 /2( ) log (log 2)
1

x
e ey x e

x
ε− = − + 

 

For this example, we have boundary layer of thickness O(ε) 
at x=0. [cf. Bender and Orszag[1]]. 

Error plot for Example 5.1, ε=10-3
, h=10-2  

 

Error plot for Example 5.1, ε=10-4
, h=10-2 

 

5.2. Example 

Let us consider the following singular perturbation prob-
lem from Kevorkian and Cole[[3], page 56; equation 2.5.1]  

0)x(y)x(y)x(y)x(y =−′+′′ε ; x∈[0,1],with y(0)= -1 and 
y(1)=3.9995 

The linear problem concerned to this example is 
9995.2x)x(y)9995.2x()x(y +=′++′′ε  

We have chosen to use the Kevorkian and Cole’s uni-
formly valid approximation[[3], pages 57 and 58; equations 
(2.5.5), (2.5.11) and (2.5.14)] for comparison, 















 +
ε







+= 2

1
1 cx

2
ctanhcx)x(y  

Where c1=2.9995 and c2=(1/c1)loge[(c1-1)/(c1+1)] 
For this example also we have a boundary layer of width 

O(ε) at x=0 [cf. Kevorkian and Cole[3], pages 56-66]. 
The numerical results are given in table 4(a), 4(b) for ε=10-3 
and 10-4 respectively. 

Error plot for Example 5.2, ε=10-3
, h=10-2 

 

Error plot for Example 5.2, ε=10-4
, h=10-2 

 

6. Conclusions 
We have presented fitted fourth order finite difference 
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method for solving singularly perturbed two-point boundary 
value problems The present fitted fourth order finite differ-
ence method for solving singularly perturbed two-point 
boundary value problems produce better approximation to 
the exact solution, specifically in the boundary layer region 
with step size h ε> , the perturbation parameter. 
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