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Abstract  This paper examines the effect of Treatment and Infected Immigrants on the spread of Hepatitis C Virus 
(HCV) disease with Acute and Chronic stages. A nonlinear mathematical model for the problem is proposed and analysed 
qualitatively using the stability theory of the differential equations. The results show that the disease free equilibrium is 
locally stable at threshold parameter less than unity and unstable at threshold parameter greater than unity. Globally, the 
disease free equilibrium is not stable due existence of forward bifurcation at threshold parameter equal to unity. However 
the disease becomes more endemic due to the presence of infected immigrants in the community. It is also shown that in 
the presence of treatment, the rate of infected immigrants (acute and chronic) decreases and consequently the treated in-
fected individuals decreases continuously. Numerical simulation of the model is implemented to investigate the sensitivity 
of certain key parameters on the treatment and infected immigrants on the spread of the disease with acute and chronic 
stages. 
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1. Introduction 
Hepatitis (plural hepatitides) is an inflammation of the 

liver characterized by the presence of inflammatory cells in 
the tissue of the organ[1]. The inflammation of liver causes 
soreness and swelling. Hepatitis is most commonly caused 
by one of the 5 hepatitis viruses; hepatitis A, hepatitis B, 
hepatitis C, hepatitis D and hepatitis E. Hepatitis C is usually 
spread through contact with blood products[2]. Blood 
products have been the main agents through which HCV is 
transmitted, but ever since 1992, when it became possible to 
detect the virus in blood, transmissions through transfusions, 
and organ transmissions have been minimal. 

Most common avenues through which HCV is spread are 
unprotected sex, sharing of contaminated needles among 
drug addicts and those with  other STDs[3]. Some people 
also get this virus from tattoo and piercing salons. It is also 
possible to contract HCV at birth, as it can be transmitted 
from mother to baby. 

A HCV infection can be categorized into two stages, 
firstly an acute infection (following initial infection) and 
secondly a chronic infection. Acute means ‘new ‘or illness of  

 
* Corresponding author: 
emassawe@uccmail.co.tz (Estomih S. Massawe) 
Published online at http://journal.sapub.org/ajcam 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

a short period. A chronic hepatitis C infection is when the 
infection lasts for longer than six months. 

The goal of treatment is to reduce the amount of the HCV 
in the blood to levels that can't be detected after 24 weeks of 
therapy. HCV is treated with drugs that slow or stop the virus 
from damaging the liver. The treatment of HCV has ad-
vanced in recent years which have greatly improved the 
outlook for people with HCV. The usual treatment of HCV is 
a combination of two different medicines called pegylated 
interferon and ribavirin[2]. 

[4] made an analysis on the immigration status, race and 
language barriers on chronic hepatitis virus infection man-
agement and treatment outcomes. The researchers found that 
HCV endemic regions of the word are diagnosed with HCV 
infection after immigration and subsequently referred to viral 
hepatitis chronics for disease management. They suggested 
that optimal care to all patients, indentifying and under-
standing barriers to care related to immigrant status, race and 
language in HCV management must be provided. 

[5] found that chronic HCV is a progressive condition that 
accounts for at least one quarter of all cases of chronic liver 
disease[6] predicted that the prevalence of chronic HCV 
(CH-C) remains high and the complications of infection are 
common[7] discovered that chronic HCV complications are 
increasing, especially among people older than 60 years[8] 
conducted a study on disease progression of Acute HCV[9] 
analyzed the screening of HCV in a Health maintenance 
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Organization[10], investigated the effects of a HCV educa-
tional intervention or a motivational intervention on alcohol 
use and sexual risk behaviours among injection drug users 

[11] investigated the dynamic behaviour of an SEI (Sus-
ceptible- Exposed- Infective) model with acute and chronic 
stages. However the integration of treatment and infective 
immigrants to the population was not incorporated. In this 
paper, it is intended to study and analyze a model which 
incorporates the impact of treatment and infective immi-
grants on the spread of HCV transmission dynamics. Thus 
we study and analyse a deterministic model of the effect of 
treatment and infected immigrants on the spread of HCV 
disease with acute and chronic stages. 

2. Model Formulation 
A non linear mathematical model is proposed and ana-

lyzed to study the effect of treatment and infected immi-
grants on the spread of HCV disease with acute and chronic 
stages. 

In modelling the dynamics, the population is divided into 
five groups: Susceptible individuals ′S′; Exposed individuals 
′E′’ who are not yet infectious; Acute infected class ′𝐼𝐼′ who 
are individuals initially infected; Chronic infected class ''V , 
who are infectious individuals; Treated group ′𝑇𝑇′ but not yet 
cured. 

The interaction between the classes will be assumed as 
follows: Exposed ( )E  acute infected ( )I  and chronic 

infected ( )V  immigrants enter into the population with the 

rates 1 2 3  δ , δ , δ ,  respectively. Susceptible individuals  (𝑆𝑆) 

are shifted to exposed class (𝐸𝐸) by the rate 1δ . Also sus-

ceptible individuals ( )S  may become acute infectious ( )I  
and chronic infectious ( )V  shifted to Treatment class ( )T  
at the rates 1 2,  π π  respectively. The number of new infec-
tious individuals produced is therefore 

1 2 3( )I V T S

N

β β β+ +
 where 1 2 3,  ,  β β β  are the effective 

contact rate of individuals with acute hepatitis C chronic 
hepatitis C, and the individual still undergoing Treatment but 
not yet cured respectively. 

In formulating the model, the following assumptions are 
taken into consideration: 

i. Both treatment ( )T  and chronic infectious individuals 

( )V  recover with the constant rates >0 ρ and >0 α  re-

spectively, 

ii. The recovered individuals go back to susceptible ( )S  

group, 

iii. The rate of transmission is directly proportional to the 
susceptible population and also to the ratio between the 
infected population and the total population. Total popula-
tion at time 𝑡𝑡  is given by  

( ) ( ) ( ) ( ) ( ) ( )N t  = S  t  + E t  + I t   + T t  +V t ,      (1) 

iv. Following the interactions of susceptible, exposed class, 
acute individuals, chronic infective and treated group in 
everyday activities, susceptible acquire HCV infection with 
the force of infection υ , 
v. The population is homogeneously mixed and each 

susceptible individual has equal chance of acquiring HCV 
infection when he/she comes into contact with infectious 
individual, 
vi. The population under study comprise of persons with at 
least fifteen (15) years old. In this case, it is assumed that 
there is no vertical transmission and all recruitments are 
immigrants.  

vii. All parameters in population are positive and all com-
partments suffer natural mortality at a rate µ . 

Taking into account the above considerations, we then 
have the following schematic flow diagram (Figure1): 

 
Figure 1.  Model flowchart. 

From the above flow chart, and with 
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the model will be governed by the following system of 
equations: 
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3 1 2(1 ) ( )
dV

N kI V
dt

δ λ π π α µ= + − − + +     (2) 

with nonnegative initial conditions and 0)0( >N . 
where 

 (i=1,2,3)iβ  are the effective contact rates of individuals 
with acute hepatitis C, chronic hepatitis C, and the individual 
still undergoing treatment but not yet cured, 

 (i=1,2,3)iδ  are the rates at which exposed ( )E , acute 

infected ( )I and chronic infected ( )V  immigrants enter 
into the population respectively, 

λ  is the recruitment rate, 
µ  is the death rate, 
k  is the rate of progression from acute infected class to 

both treatment and chronic infected class, 
ε  is the rate of progression from the exposed to acute 

infected class, 

1π , 2π  are the rates of progression from acute infected 
and chronic infected groups to treatment respectively, 

ρ , α  are the rates of progression for treatment from 
acute infected and chronic infected group respectively 

Since the model is homogeneous of degree one, the vari-
ables can be normalized by setting /s S N= , /e E N= , 

/i I N= , /h T N= , /v V N= . This leads to the normal-
ized system 

1 2 31ds ( δ δ δ s)λ
dt

= − − − −  

1 2 3(β i β v β h)s αv ρh− + + + +  

1 1 2 3( ) ( )de e i v h s e
dt

δ λ β β β ε= − + + + −  

2( )di i e ki
dt

δ λ ε= − + −  

1 2 ( )dh ki v h
dt

π π ρ λ= + − +  

3 1 2( ) (1 )dv v ki v v
dt

δ λ π π α= − + − − −     (3) 

3. Model Analysis 
The nonlinear system in Equation (1) will be qualitatively 

analyzed so as to find the conditions for existence and sta-
bility a disease free equilibrium points[12]. Analysis of the 
model allows us to determine the effect of treatment with 
infected immigrants on the spread of HCV disease with acute 
and chronic stages. Also on finding the reproductive number 

0R , one can determine if the disease become endemic in a 
population or not. 

3.1. Disease Free Equilibrium (DFE) 
The disease free equilibrium of the normalised model 

system of equations (3) is obtained by setting  

0
ds de di dh dv
dt dt dt dt dt

= = = = = . 

At disease free equilibrium we have 
1,    0s e i h v= = = = =  Thus the system (3) becomes 

0sλ λ− = . 
Therefore the disease free equilibrium (DFE) denoted by

0€  of the normalised model system (3) is given by  

( ) ( )0  0  0  0  0 1  0  0  0  0€ s, , , , , , , ,= = . 

3.2. Local Stability of Disease Free Equilibrium 
The disease free equilibrium of the normalised model 

system (3) was given by  

( ) ( )0€ ,  0,  0,  0,  0 1,  0,  0,  0,  0s= = .  
The local stability of 0€ is established by using the next 

generation operator method on the normalised model system 
(3). The basic reproduction number 0R  is defined as the 
effective number of secondary infections caused by typical 
infected individual during his/her entire period of infec-
tiousness[13]. This definition is given for the models that 
represent spread of infection in a population. It is obtained by 
taking the largest (dominant) Eigen value, (spectral radius) 
of 

1

0 0(€  ) (€  )
.i i

j

F V

X Xj

−
∂ ∂

∂ ∂

   
   
     

           (4) 

where  

iF  is the rate of appearance of new infection in com-

partment i , 
iV  is the transfer of individuals out of the compartment i  

by all other means, 

0€  is the disease free equilibrium. 
Therefore 

1 1 2 3

2

3

4

( )
0
0
0

i

F i v h s
F

F
F
F

β β β+ +

= =

   
   
   
        

          (5) 

By linearization approach, the associated matrix at disease 
free equilibrium is obtained as 

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

3 0 3 0 3 0 3 0

4 0 4 0 4 0 4 0

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€  )

F F F F

e i h v
F F F F

e i h v
F F F F

e i h v
F F F F

e i h v

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

 
 
 
 
 
 
 
 
 
 

F   (6) 
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This gives 

1 3 20
0 0 0 0
0 0 0 0
0 0 0 0

β β β

=

 
 
 
 
 

F               (7) 

The transfer of individuals from the compartment i  
is given by 

1 1

2 2

3 1 2

2 3 14

( )
( )

( )
( ) (1 )

i

V e
V k i e

V
V h ki v

v kiV

ε λ λδ
λ δ λ ε

ρ λ π π
π α λ δ λ π

+ −
+ − −

= =
+ − −

+ + − − −

   
   
   
   
   

    (8) 

Again, by linearization approach, the associated matrix at 
disease free equilibrium is given by 

1 0 1 0 1 0 1 0

2 0 2 0 2 0 2 0

3 0 3 0 3 0 3 0

 4 0 4 0 4 0 4 0

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€  )

(€  ) (€  ) (€  ) (€ )

V V V V
e i h v

V V V V
e i h v

V V V V
e i h v

V V V V
e i h v

 
 
 
 
 
 
 
 
 
 
 
 
 

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂=

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

V

 This gives 

1 2

1 2

0 0 0
0 0

0
0 (1 ) 0

k
k

k

ε λ
ε λ

π λ ρ π
π α π λ

+
− +

=
− + −

− − + +

 
 
 
 
 
 

V      (9) 

With 

1
1

1 1 2 1 2

1 1

1 1 2 1 2

1
0 0

1
0

( )( ) ( )
1

( )( )( ) ( )( )

θ δ λ
θ

θ δ λ γ δ λ γ δ λ
θγ γ

θ δ λ γ δ λ σ λ γ δ λ σ λ σ λ

−

+ +

=
+ + + + + +

+ + + + + + + + +

 
 
 
 
 
 
  
 

V (10) 

Therefore 

0 0 0 01
0 0 0 0
0 0 0 0

M N R Q 
 

−  =
 
 
 

FV            (11) 

Where 
( )3 1 1 21

( )( ) ( )( )( )( )2

k
M

k k
β ε π α π λ πβ ε

ε λ λ ε λ λ λ ρ α π λ
+ +

= +
+ + + + + + +

2 1

2

( 1 )
( )( )( )

k
k

β π ε
ε λ λ α π λ

− +
−

+ + + +
 

3 1 1 21

2

( )
( ) ( )( )( )

k
N

k k
β π α π λ πβ

λ λ λ ρ α π λ
+ +

= +
+ + + + +

 

2 1

2

( 1 )
( )( )

k
k
β π
λ α π λ
− +

−
+ + +

 

3

( )
R

β
λ ρ

=
+

 

and 

λπα
β

λπαρλ
πβ

++
+

+++
=

2

2

2

23

))((
Q  

The Eigen values of 1−FV  are ( )0,  0,  0,  Z  where 

3 1 1 21

2

( )
( )( ) ( )( )( )( )

k
Z

k k
β ε π α π λ πβ ε

ε λ λ ε λ λ λ ρ α π λ
+ +

= +
+ + + + + + +

 

2 1

2

( 1 )
( )( )( )

k
k

β π ε
ε λ λ α π λ

− +
−

+ + + +
 

It follows that the basic reproduction number for the 
normalised model system (3) with infective immigrant and 
treatment denoted by 0R  is given by 

1
0 ( )( )

R
k

β ε

ε λ λ
=

+ +
 

3 1 1 2

2

( )

( )( )( )( )

k

k

β ε π α π λ π

ε λ λ λ ρ α π λ

+ +
+

+ + + + +
 

2 1

2

( 1 )

( )( )( )

k

k

β π ε

ε λ λ α π λ

− +
−

+ + + +
        (12) 

The disease free equilibrium of the treatment model sys-
tem (3) with infective immigrants is locally asymptotically 
stable if 0 1R <  and unstable if 0 1R > . In order to assess 
the contribution of ,  i ν  and h  in terms of 1 2,  β β and 

3β  respectively from equation (12) above, we let 

1
0 ( )( )iR

k

β ε

ε λ λ
=

+ +
, 

2 1
0

2

( 1 )

( )( )( )

k
R v

k

β π ε

ε λ λ α π λ

− +
= −

+ + + +
, 

3 1 1 2
0

2

( )

( )( )( )( )h
k

R
k

β ε π α π λ π

ε λ λ λ ρ α π λ

+ +
=

+ + + + +
  (13) 

Then 

0 0 0 0i v hR R R R= + + . 

Lemma 1 
The disease free equilibrium of the treatment model sys-

tem (3) with infective immigrants is locally asymptotically 
stable if 0 1R <  and unstable If 0 1R > .  

Remark:From the equations (14) above, it is clear that 

0 00i vhR R R> >  which implies that acute infective ' 'i  
have a significant contribution on the transmission of the 
HCV infection followed by individuals who are still under-
going treatment but not yet cured ′ℎ′ which keep the disease 
endemic (i.e. 0 1R > ) in the population through 1 1'' ,   ''β δ

and 3 3'' ,   ''β δ  respectively compared to chronic infective 
‘ v ’ under 2 2'' ,   ''β δ . 

In the absence of infection, the population size approaches 
the steady state for a normalized model system (3). The 
results by[11] on 0R   𝑅𝑅0 are recovered only when 𝛽𝛽3 = 0 
and 𝜋𝜋1 = 𝜋𝜋2 = 0 from equation (12) above. 



14  Neterindwa Ainea et al.:  Modelling the Effect of Treatment and Infected Immigrants on the Spread  
  of Hepatitis C Virus Disease with Acute and Chronic Stages 

 

3.3. Endemic Equilibrium and Local Stability 

To obtain an endemic equilibrium Ε∗ , we set each equa-
tion in the model (3) equal to zero. Solving the system while 
expressing each equilibrium point in terms of *i  at steady 
state, we get ( )*s t , ( )*e t , ( )* i t , ( )*h t , and ( )*v t  as 
an endemic equilibrium point. Thus 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )* * * * *,  ,  ,  ,  Ε s t e t i t h t v t∗ =   
is an endemic equilibrium where 

( )3 4

0 1 2

r r i
s

R r i rλ

∗
∗

∗

+
=

+ +
 

( ) ( )( )
( )( )

1 0 1 2 0 1 2 3 4

0 1 2

R r i r R r i r r r i
e

R r i r

δ λ λ

λ λ ε

∗ ∗ ∗
∗

∗

+ + + + +
=

+ + +
 

( )
( )

1 1 2 2 3

2( )
ki

h
λπ απ π π δ λ

ρ λ λ π α

∗
∗ + + +
=

+ + +
 

2 1

2

(1 )ki
v

δ λ π
λ π α

∗
∗ + −
=

+ +
 

and 
( )

1
( )k

r
ε λ λ

ε
+ +

= , ( )
( )( )

2 3 3 2 3
2

2
r

β δ λ ρ λ β π δ λ
ρ λ λ π α

+ +
=

+ + +
 

( ) ( ) ( )
( )( )

2 1 2 3 3 2 3
3

2

( ) 1
r

λ ρ λ λ π α δ δ δ ρ λ αδ λ ρπ δ λ

ρ λ λ π α

+ + + − − − + + +
=

+ + +  
( ) ( )

( )
1 1 1 2

4
2

1 ( )

( )

k k
r

ρ λ α π ρ λπ απ π

ρ λ λ π α

+ − + + +
=

+ + +
 

We note that * * * *,  v ,  s ,  h e  are always positive and this 
will happen if and only if 0 0R > . 

3.4. Global Stability of DFE 

Theorem 1: If 0 1R > , the endemic equilibrium Ε∗ of 
the model (3) is globally asymptotically stable. 

Proof: To establish the global stability of the endemic 
equilibrium Ε∗ , we construct the following Lyapunov func-
tion: 

* * * * *( , , , , ) log sV s e i h v s s s
s

∗
∗ ∗ 

= − −  
 

 

log loge ie e e i i i
e i

∗ ∗
∗ ∗ ∗ ∗   

+ − − + − −      
   

log  logh vh h h v v v
h v

∗ ∗
∗ ∗ ∗ ∗   

+ − − + − −      
   

 

By directly calculating the derivation of V along the so-
lution of (3) we get  

dV s s ds e e de
dt s dt e dt

∗ ∗   − −
= +      
     

i i di h h dh v v dv
i dt h dt v dt

∗ ∗ ∗     − − −
+ + +          
     

  (14) 

which gives 
dV a b
dt

= −  

Where 

( ) ( )2

1 2 3
s s

a i v h
s

β β β
∗

∗ ∗ ∗ −
= + +  

( )1 2 3
s

v h i s v s h s
s

α ρ β β β
∗

∗ ∗ ∗+ + + + +  

1 2 3( )δ δ δ λ+ + +  

( )1 2 3 1 2 3
e

i s v s h s is vs hs
e

β β β β β β
∗

∗ ∗ ∗ ∗ ∗ ∗+ + + + + +  

( ) ( )1 2 1 h vki v ki ki
h v

π π π
∗ ∗

∗ ∗ ∗+ + + +  

2 1 2 3( )v h v kiα ρ π λ λ δ δ δ+ + + + + + + +  

2 3 1e vs hs isε β β β+ + + +  
and 

( ) ( )2

1 2 3
s s

b i v h
s

λ β β β
∗−

= + + +
 

( ) ( ) ( ) ( )2 2
e e i i

k
e i

λ ε λ
∗ ∗− −

+ + + +
 

( ) ( ) ( ) ( )2 2

2
h h v v

h v
ρ λ λ π α

∗ ∗− −
+ + + + +

 

( )2 3 1
s

v h vs hs is
s

λ α ρ β β β
∗

+ + + + + +
 

( )1 1 2 3 1 2 3
e

is vs hs i s v s h s e
e

δ λ β β β β β β ε
∗

∗ ∗ ∗ ∗ ∗ ∗+ + + + + + + +  

( )2 1+ 
i

e ki si
i

δ λ ε β
∗

+ + +  

( )1 2 3
h

ki v h sh
h

π π ρ β
∗

+ + + +  

( )1 3 2 2
v ki ki v v sv
v

π δ λ α π β
∗

∗+ + + + + + +  

1 2 3( )δ δ δ λ+ + +  

Thus from (14), if a b<  then 
dV
dt  

will be negative 

definite, implying that 0
dV
dt

< . Also 0
dV
dt

=  if and only 

if .,   ,   ,   ,   s s e e i i h h v v∗ ∗ ∗ ∗ ∗= = = = =  
Therefore, the largest compact invariant set in 
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{ }* * * * *( , , , , ) : 0
dV

s e i h v
dt

∈Γ = is the singleton { }∗Ε , 

where ∗Ε  is endemic equilibrium of the normalised system 
(3). By LaSalle’s invariant principle, it then implies that ∗Ε  
is globally asymptotically stable in Γ  if a b< . 

3.5. Determination of Forward or Backward Bifurcation 

The existence and stability of endemic equilibrium is de-
termined through the investigation of the possibility of ex-
istence of the backward or forward bifurcation due to exis-
tence of endemic equilibrium using the the centre manifold 
theory [14]. As a disease invades the population, it reduces 
the number of susceptible individuals in the population, 
which tends to reduce its reproductive rates.  

Figure (2) shows forward bifurcation for the chosen nu-
merical data:

  1 0.03β = , 2 0.02β = , 3 0.01β = , 0.4k = , 

0.5ρ = , 0.581α = , 0.4λ = , 1 0.00002δ = , 

2 0.00001δ = , 3 0.000004δ = , 0.5ε = , 

1 0.029π = , 2 0.016π =  

 
Figure 2.  The forward or transcritical bifurcation. 

A Forward or Transcritical bifurcation at the stationary 
solutions occurs at 0 1R = . If 0 R 1,< no biologically 
meaningful endemic stationary solution exists, and the dis-
ease free stationary solution is a global attractor. But if

0 1,R > the endemic solution exists and it is a global attractor, 
while the disease free solution is a saddle point. This is re-
ferred to as a forward bifurcation because in the 
neighbourhood of the bifurcation point, the endemic disease 
prevalence is an increasing function of 0R . 

3.6. Model with Infected Immigrants and 
Treatment When Treated HCV Infectives 
Do Not Transmit the Infection  

( 1 0π ≠ , 2 0π ≠ , 3 0β ≠ ) 
In this case, we consider the situation where the treated 

HCV infectives take the preventive measures and change 

their behaviour so as not to transmit the infection in the 
community ( )3 0β = . Thus the infection is transmitted by 
acute and chronic infectives individuals only. The basic 
reproduction number in this case is given by 

( )2 11
01

2

1
( )( ) ( )( )( )

k
R

k k
β π εβ ε

ε λ λ ε λ λ α π λ
−

= +
+ + + + + +

 

and we note that 01 0R R< . We also note that 0 01R R→  
as 3 0β → . Therefore we can conclude that the endemicity 
of the infection is reduced when the treated HCV infectives 
show a positive attitude towards preventive measures and 
accelerate the transmission of the disease. 

3.7. Model in the Absence of Treatment  

( 1 0π = , 2 0π = , 3 0β = ) 
Here we consider the situation where there is no treatment 

of the acute infectives ( )1 0π =  and chronic infectives

( )2 0  π = . In this case the normalised model system (3) is 
reduced to the group of proportion of susceptibles, exposed 
individuals, acute infectives, and chronic infective indi-
viduals in the community. As there is no treatment, meaning 
that 1 0π =  and 2 0π =  it implies that 0h → . We there-
fore obtain the basic reproduction number as 

1 2
02 ( )( ) ( )( )( )

k
R

k k
β ε β ε

ε λ λ ε λ λ α λ
= +

+ + + + +
 

We note that 02 0RR <  and 0 02R R→  as 

1 20,   0,π π→ → 3 0β → . Therefore it can be concluded 
that in the absence of treatment, the endemicity of the infec-
tion increases. 

Considering the two epidemiological cases discussed 
above, it may be concluded that if both infected immigrants 
and treated HCV infectives take the preventive measures and 
do not spread the infection, then the disease tends to the 
endemic state if the rate of both infected immigrants and 
treated HCV infectives is small. If the annual infected im-
migrants and treatment rates are very high (say 100% of the 
initial population), the disease may tend to disease free 
equilibrium point. However if the infected immigrants (acute 
and chronic) and treated HCV infectives contribute to the 
transmission of the disease, then even if treatment rates are 
very high, the disease settles in the population as the system 
approaches asymptotically stable endemic equilibrium point. 
Analysis also shows that the endemicity of the disease is 
reduced by treatment of HCV infectives in the community. 

4. Numerical Simulations 
In order to verify the theoretical predictions of the model, 

the numerical simulations of the model (3) are carried out 
using the following set of estimated parameter values: 

1 3.5,β =  2 2,β =  3 0.2,β =  0.8,k =  0.4,ρ =  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
op

or
tio

n 
of

 a
cu

te
 in

fe
ct

iv
e,

 i

Reproduction number, Ro

Stable Endemic Equilibrium (EE)

Ro = 1 Unstable DFE

Stable DFE



16  Neterindwa Ainea et al.:  Modelling the Effect of Treatment and Infected Immigrants on the Spread  
  of Hepatitis C Virus Disease with Acute and Chronic Stages 

 

0.581,α =  ,8.0=λ  ,5.0=ε  1 0.6,π =  2 0.3,π =
, 

1 0.00002,δ =  2 0.00001,δ = 3 0.000004.δ =
 

Figures 4.1-4.4 below show the proportion of exposed 
population and HCV infective populations (acute, treated 
and chronic infectives) plotted against the proportion of 
susceptible population. The figures show the dynamic be-
haviour of the endemic equilibrium of the normalized model 
(3) using the estimated parameter values above for different 
starting values in four cases as shown below: 

(0) 0.6909,s =  (0) 0.2,e =  (0) 0.1,i =   (0) 0.009,h =
(0) 0.00001v =  
(0) 0.9,s =  (0) 0.5,e =  (0) 0.1,i =  (0) 0.06,h =  
(0) 0.03v =  
(0) 0.4,s =  (0) 0.2,e =  (0) 0.09,i =  (0) 0.03,h =  
(0) 0.01v =  
(0) 0.2,s =   (0) 0.1,e =   (0) 0.06,i =  (0) 0.005,h =  
(0) 0.0005v =  

 
Figure 4.1.  Variation of proportion of exposed individuals against pro-
portion of susceptible population. 

 
Figure 4.2.  Variation of proportion of acute infective population against 
susceptible population. 

 
Figure 4.3.  Variation of proportion of treated infective population against 
susceptible population. 

 
Figure 4.4.  Variation of proportion of chronic infective population 
against susceptible population. 

In figures 4.1-4.4, the endemic equilibrium Ε∗  was ob-
tained as * 0.7941s = , 0.1134e∗ = , 0.05671i∗ = , 

0.02321h = , 0.01268.v∗ =  It is can be observed from 
these figures that for any initial starting point, the solution 
curves tend to the endemic equilibrium point Ε∗ . Hence, we 
infer that the system (3) is globally stable about the endemic 
equilibrium point Ε∗  for the set of parameters chosen. 

In figure 4.5 below, the distribution of the proportion of 
population with time is shown in different classes without 
infective immigrant and treatment 

 
Figure 4.5.  Variation of proportion of the population without infected 
immigrants and treatment. 

It is observed that in the absence of HCV infected immi-
grants and treatment class in the community, the susceptible 
population decreases continuously which results in an in-
crease in infective population (acute, chronic and treated 
infectives) and then it decreases as some of the infected 
population recovery naturally due to strong immune systems. 
Other infected individuals will die out by disease induced 
deaths due to absence of HCV treatment. 

Figure. 4.6 below shows the distribution of proportion of 
population with time in all classes with the rates of infective 
immigrants  ( 1,  2,  3)iiδ =  and the rate of treatment

 ( 1,  2)i iπ = . 
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Figure 4.6.  Variation of proportion of the population with infected im-
migrants and treatment.  

It is observed that, initially the proportion of susceptible 
population decreases with time due to immigration of in-
fected immigrants and then increases with time due to re-
covery rates of individuals ,   ρ α  and eventually it reaches 
equilibrium position. Also the susceptible class decreases 
with time since individuals moved to the acute infectives at 
the rate ε . The acute infected population decreases with 
time since infected individuals moved to both treatment and 
chronic infected class. As the rate of treatment increases, the 
infective individuals decreases with time leading to the in-
crease of susceptible individuals and reaches the equilibrium 
position. 

Figure 4.7 below shows the variation of the proportion of 
susceptible individuals with different rates of infected im-
migrants  ( 1,  2,  3)i iδ =   

 
Figure 4.7.  Variation of proportion of susceptible population for different 

values of  ( 1, 2, 3)i iδ = . 

It is observed that as the infected immigrants increase, 
susceptible individuals decreases with time resulting in the 
increase of the number of infective individuals in the com-
munity. 

Figs 4.8-4.11 below show the variation of proportion of 
exposed individuals, acute, chronic and treated infected 
populations respectively. 

 
Figure 4.8.  Variation of proportion of exposed individuals for different 

values of ( ) .1,  2,  3i iδ =  

 
Figure 4.9.  Variation of proportion of acute infective population for 
different values of 𝛿𝛿𝑖𝑖(𝑖𝑖 = 1, 2, 3). 

 
Figure 4.10.  Variation of proportion of chronic infectives for different 
values of 𝛿𝛿𝑖𝑖(𝑖𝑖 = 1, 2, 3). 
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Figure 4.11.  Variation of proportion of treated infected population for 

different values of ( ) .1,  2,  3i iδ =  

It is observed from figure 4.8 that as the infected immi-
grants increase, the exposed individuals increase with time. 
Figure 4.9 shows that the exposed individuals shift to acute 
class at the rate ε  which results in the increase of the 
number of acute infective individuals. Then, the acute in-
fected individuals shifts to both treatment and chronic in-
fected class at the rate k , leading to the increase of the 
number of chronic infective individuals as seen in figure 4.10 
and treated infective individuals as seen in figure 4.11. 

Figures 4.12 and 4.13 show the variation of proportion of 
acute and chronic infectives for different values of 

 ( 1, 2)i iπ =   

 
Figure 4.12.  Variation of proportion of acute infective population for 
different values of  ( 1, 2).i iπ =  

 
Figure 4.13.  Variation of proportion of chronic infective population for 
different values of  ( 1, 2).i iπ =  

It is observed that the acute infective individuals decrease 
with time due to the increase of the rate of progression to 
treatment from acute infected individuals 1  π as seen in 
figure 4.12. Also as the rate of progression to treatment from 
chronic infectives 1  π increase, the chronic infected indi-
viduals decrease as seen in figure 4.13. 

 
Figure 4.14.  Variation of proportion of treated infectives for different 
values of  ( 1, 2).i iπ =

 

In figure 4.14, it is seen that the treated individuals in-
creases with time due to the increase of the rate of progres-
sion to treatment from acute and chronic infectives 1π  and 

2π  respectively. 

 
Figure 4.15.  Variation of proportion of susceptible population for dif-
ferent values of 𝛽𝛽𝑖𝑖(𝑖𝑖 = 1,2,3). 

 
Figure 4.16.  Variation of proportion of exposed individuals for different 
values of 𝛽𝛽𝑖𝑖(𝑖𝑖 = 1,2,3). 
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It is observed from figures. 4.15 and 4.16 that when the 
effective contact rate of individuals still undergoing treat-
ment 3β  become very small, the susceptible population 
increase with time.(see figure 4.15) and if the susceptible 
population increase, the number of exposed individuals 
decrease (see figure 4.16). 

 
Figure 4.17.  Variation of proportion of acute infective population for 
different values of 𝛽𝛽𝑖𝑖(𝑖𝑖 = 1,2,3). 

 
Figure 4.18.  Variation of proportion of chronic infected population for 
different values of 𝛽𝛽𝑖𝑖(𝑖𝑖 = 1,2,3). 

It is observed from figures. 4.17 and 4.18, that when the 
effective contact rate of individuals still undergoing treat-
ment 3β  become very small, the susceptible population 
increase and therefore the number of exposed individuals 
decrease, leading to the decrease of the acute and chronic 
infected individuals. As the rate of progression to acute 
infected class from exposed class ε decrease, the exposed 
individuals who shifted to acute infected class decreases 
resulting to the decrease of the number of acute and chronic 
infective individuals in the community. 

Figures 4.19 and 4.20, show the variation of proportion of 
chronic infectives and treated population for different re-
covery rates. 

 
Figure 4.19.  Variation of proportion of chronic infective population for 
different values of 𝜌𝜌 and 𝛼𝛼. 

 
Figure 4.20.  Variation of proportion of treated infective population for 
different values of 𝜌𝜌 and 𝛼𝛼. 

It is observed that as the recovery rates , ,ρ α  increase, 
the chronic infectives decrease with time as seen in figure 
4.19 leading to the decrease of treated group as seen in figure 
4.20. This is an indication that, as the recovery rate increases, 
the rate of progression to treatment from acute infected and 
chronic infected groups 1π  and 2π  respectively decrease, 
resulting to the decrease of infected individuals (acute, 
chronic and treated ) in the community. 

 
Figure 4.21.  Variation of proportion of chronic infective population for 
different values of λ . 

Figure 4.21 shows the variation of chronic infectives for 
different values of recruitment rate ( )λ  of the population. It 
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is clear from the figure that as the recruitment rate increases, 
the chronic infected population decrease. This might be due 
to the effect of treatment in the community which leads to the 
decline of infected individuals (acute, chronic and treated 
infectives) in the community. 

5. Discussions and Conclusions 
In this paper, a mathematical model of HCV showing the 

effects of treatment and infected immigrants on the spread of 
HCV disease with acute and chronic stages has been estab-
lished. Both qualitative and numerical analysis of the model 
was done. The model incorporates the assumption that in-
fected immigrants enter the homogenous population. It was 
shown that there exists a feasible region where the model is 
well posed in which a unique disease free equilibrium point 
exists. 

The disease free and endemic equilibrium points were 
obtained and their stabilities investigated. A numerical study 
of the model has been conducted to see the effect of certain 
key parameters on the spread of the disease. It was observed 
that the disease become more endemic due to the presence of 
infected immigrants in the community. As the infected im-
migrants increase, the acute and chronic infective individuals 
also increase in the population. It was also shown that in the 
presence of treatment, the rate of infected individuals (acute 
and chronic) decrease and consequently the treated infected 
individuals decrease continuously. It was therefore shown 
that the disease can be eliminated at some point due to 
treatment and natural immunity of chronic infected indi-
viduals in the community. 

Finally from the analysis, it may be hypothesized that 
preventive measures, through reducing rates of transmission 
of HCV are therefore necessary to the community. Reduced 
transmission leads to lower prevalence of the disease in the 
long-term. The national health cares to HCV should there-
fore seek to ensure that all people at risk or that have been at 
risk in the past, have access to and are supported in the use of 
HCV education and prevention services, regardless of their 
social and economic status. 
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