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Abstract  Now-a-days computational fluid mechanics has become very vital area in which obtained governing equations 
are differential equations.  Sometimes, these governing equations cannot be easily solved by existing analytical methods. 
Due to this reason, we use various numerical techniques to find out approximate solution for such problems. Among these 
techniques, finite volume method is also being used for solving these governing equations here we are describing compara-
tive study of Finite volume method and finite difference method.  
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1. Introduction 
Finite Volume Method is widely being used for solving 

convection diffusion problems appearing different branches 
of fluid engineering. Mainly, we would like to introduce 
some real life problems where it is arising. B. Guo and X. 
Wang[1] proposed an article in which numerical simulation 
is used as a common mean of predicting performance of oil 
and gas reservoirs in the petroleum industry. It is a 
time-consuming task due to the large dimension of the 
simulation grids and computing time required to complete a 
simulation job. Commercial software used in the petroleum 
reservoir simulation employs the first-order-accuracy finite 
difference method to solve the convection-diffusion equation. 
This method introduces numerical dispersion because of 
truncation error caused by neglecting higher-order terms in 
Taylor’s expansion. This study is focused on providing so-
lutions to the above problem. B. Guo and X. Wang devel-
oped and tested two new algorithms to speed up computation 
and minimize numerical dispersion. In this research article, 
they have derived the second and third order accurate finite 
difference formulations to solve the convection-diffusion 
equation, and also applied a counter-error mechanism to 
reduce numerical dispersion. The results indicated that the 
use of the second- and third-order accuracy finite difference 
formulations can speed up numerical simulations and retain a 
sharp displacing slope controlled by the physical diffusion 
coefficient. C. Japhet et. al[2] were proposed an article in 
which they are taking convection-diffusion models which 
was implementing on the concentration of a pollutant in the 

 
* Corresponding author: 
anandshukla86@gmail.com (Anand Shukla) 
Published online at http://journal.sapub.org/ajcam 
Copyright © 2011 Scientific & Academic Publishing. All Rights Reserved 

air. For solving these types of problems, authors presented an 
iterative, non-overlapping domain decomposition method 
for solving these problems. A reformulation of the problem 
leads to an equivalent problem, where the unknowns are on 
the boundary of the sub-domains[3].The solving of this in-
terface problem by a Krylov type algorithm[4], was done by 
the solving of independent problems in each subdomain, 
which permits to use efficiently parallel computation. In 
order to have very fast convergence, C. Japhet et. al use 
differential interface conditions of order one in the normal 
direction and of order two in the tangential direction to the 
interface, which was optimized approximations of absorbing 
boundary conditions[5]. 

The present paper deals with the description of the finite 
volume method for solving differential equations. The 
comparison is done between the analytical solutions (AS), 
the solutions obtained by implementing finite volume 
method and the finite difference method (FDM). This paper 
is organized as follows: Section 1 contains the description 
about finite volume method (FVM), Section 2 contains FVM 
for solving differential equations, and Section 3 contains real 
l i f e  p r o b l e m ,  e s p e c i a l l y  t i m e  i n d e p e n d e n t con
vection-diffusion problem and its solution by FVM. The-
Section 4 involves the comparison between the numerical 
results obtained by using finite volume method and finite 
difference method. Finally, in Section 5, we are given the 
conclusion for this paper. Some citation is also needed to 
understand the article, which are given in references.  

2. Finite Volume Method 
The finite volume method is a method for representing and 

evaluating partial differential equations in the form of alge-
braic equations[3]. Similar to the finite difference method or 
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finite element method, values are calculated at discrete 
places on a meshed geometry. "Finite volume" refers to the 
small volume surrounding each node point on a mesh. In the 
finite volume method, volume integrals in a partial differen-
tial equation that contain a divergence term are converted to 
surface integrals, using the divergence theorem. These terms 
are then evaluated as fluxes at the surfaces of each finite 
volume. Because the flux entering a given volume is iden-
tical to that leaving the adjacent volume, these methods are 
conservative. Another advantage of the finite volume 
method is that it is easily formulated to allow for unstruc-
tured meshes. The method is used in many computational 
fluid dynamics packages. In finite difference,[5] the de-
pendent variable values are stored at the nodes only. Infinite 
element method, the dependent values are stored at the ele-
ment nodes. But in finite volume method, the dependent 
values are stored in the centre of the finite volume. In FVM, 
conservation of mass, momentum, energy is ensured at each 
cell/finite volume level. This is not true in finite difference 
and finite element approach. It is always better to use gov-
erning equation in conservative form with finite volume 
approach to solve any problem which ensures conservation 
of all the properties in each cells/control volume. One ad-
vantage of the finite volume method over finite difference 
methods is that it does not require a structured mesh (al-
though a structured mesh can also be used). 

Now we shall discuss the steps involving FVM for solving 
differential equation: 
Step 1: Grid Generation 

The first step in the finite volume method is grid genera-
tion by dividing the domain in to discrete control volumes. 
Let us place a number of nodal points in the space between A 
and B. The boundaries of control volumes are positioned 
mid-way between adjacent nodes. Thus each node is sur-
rounded by a control volume or cell. It is common practice to 
set up control volumes near the edge of the domain in such a 
way that the physical boundaries coincide with the control 
volume boundaries. A general nodal point defined by and its 
neighbours in a one-dimensional geometry, the nodes to the 
west and east, are defined by W and E, respectively. The 
west face of the control volume is referred by ‘w’ and east 
side by ’e’. The distances of these points are given in figure. 

 

Step 2: Discretization 
The most important features of finite volume method are 

the integration of the governing equation over a control 

volume to yield a discretized equation to yield a discretized 
equation at its nodal points P. 
Step 3: Solution 

After discretization over each volume method, we are 
finding a system of algebraic equation. Which are easily 
solved by numerical scheme such as Gauss-Siedel method. 
Generally equations are in tri-diagonal form in next section 
we are describing this method by a suitable example 

3. Finite Volume Method for Real Life 
Problem 

In this section, we describe the finite volume method for 
solving convection-diffusion problem. Firstly, we shall de-
fine a convection-diffusion problem. 
Convection-diffusion problem 

The general transport equation for any fluid property is 
given by 

        
( ) ( ) ( ) .div u div grad S

t
ρϕ ρϕ ϕ ϕ∂

+ = Γ +
∂           (1) 

In problems where fluid flow plays a significant role we 
must account for the effects of convection. Diffusion always 
occurs alongside convection in nature so here we examine 
method to predict combined convection and Diffusion. The 
steady convection-diffusion equation can be derived from 
transport equation (1) for a general property by deleting 
transient term 

             ( ) ( ) .div u div grad sρ ΦΦ = Γ Φ +         (2) 
Formal integration over control volume gives 

.( ) ( ) .
A A CV

n u dA n grad dA S dVρ ΦΦ = Γ Φ +∫ ∫ ∫
 

 
In the absence of sources, the steady convection and dif-

fusion of a property in a given one-dimensional flow field u 
is governed by 

 d d du
dx dx dx


                    (3) 

And continuity equation becomes 0)(
=

dx
ud ρ  

Integrating equation (3) and we have 
( ) ( ) .e w

e w

uA uA A A
x x

ρ ρ ∂Φ ∂Φ   Φ − Φ = Γ − Γ   ∂ ∂   
 

And continuity equation becomes 
( ) ( ) 0.e wuA uAρ ρ− =  

To obtain discretized equation, we shall take some as-
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sumption: 
Let uF ρ=  represent convective mass flux per unit area 

and 
x

D
δ
Γ

=  represent diffusion conductance. 

Now we are taking AAA ew ==  and applying the cen-
tral differencing the integrated convection-Diffusion be-
comes  

( ) ( ).e e w w e E P w P WF F D DΦ − Φ = Φ −Φ − Φ −Φ  (4) 
And continuity equation becomes 

0.e wF F− =                (5) 
Central differencing scheme 

The central differencing approximation has been used to 
represent the diffusion terms which appears in equation (4). 

So ( ) ( )/ 2; / 2.e P E w W PΦ = Φ +Φ Φ = Φ +Φ  
Putting these values on equation (4) becomes  
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  (6) 
Equation (6) can be written as  
 

              ,P P W W E Ea a a                    (7) 
Where ,Pa Wa  and Ea  are coefficients of ,PΦ WΦ and 

,EΦ respectively.  

Example: A property Φ  is transported by means of con-
vection and diffusion through the one dimensional Domain 
the governing the governing equation is given below 

boundary conditions are 0 1Φ =  at x=0 and 0LΦ = at 

x=L. using five equally spaced cells and the central differ-
encing scheme for convection and diffusion calculate the 

distribution of Φ as a function of x for  

Case (1): u=0.1 m/s 
Case (2): u=2.5 m/sThe following data apply 

 
Solution 

It is given that u=0.1 m/s let domain is divided in to five 
control volume so 0x  m. Let 

, / , ;e wF u D x F F F     e wD D D  everywhere. 
The boundaries are denoted by A and B.  

 
The discretization of equation (7) and its coefficient apply 

at internal nodal points 2, 3, 4, but control volume 1 and 5 
need special treatment we integrate equation (3) and using 
central differencing for both diffusion and convective flux 
through the east face of cell 1. 

    ( )
2

e
P E A A e E P A P A

F F D D         
  

(8) 

and similarly for control volume 5, we may write 

    ( )
2
w

B B P W B B P w P W
FF D D           (9) 

But value of  in west face and east face is given 
( 1)w A   and ( 0).e B                          (10) 

Using (10) in equation (8) and (9) and rearranging, we 
note that 2 /A BD D x   and

A BF F gives discretized 
equation at boundary nodes of the following form   

P P W W E E Ua a a S             (11) 

and central coefficients are 
( )p w E e w Pa a a F F S= + + − −        

(12) 

Node Wa  Ea  PS  US  

1 0 2
FD

 
-(2D+F) (2 ) AD F   

2,3,4 2
FD

 
2
FD  0 0 

5 
2
FD  0 -(2D-F) (2 ) BD F   

Case1: 0.10.1 / : 0.1, 0.5
0.2

u m s F u D
x





       

gives the coefficient as summarized as given below 

Node Wa  
Ea  

US  
PS  

P W E Pa a a S    

1 0 0.45 1.1 A  -1.1 1.55 

2,3,4 .55 .45 0 0 1.0 

5 .55 0 0.9 B  -0.9 1.45 

1 2

1 2 3

2 3 4

3 4 5

4 5

1.55 .45 1.1
.55 .45 0
.55 .45 0
.55 .45 0
.55 1.45 0

   

     

     

     

    

 

The algebraic equations are given below 



70  Anand Shukla et al.:  A Comparative Study of Finite Volume Method and Finite Difference Method  
  for Convection-Diffusion Problem 

 

 1.55     -0.45         0         0         0
-0.55       1.0      -0.45       0         0
    0       -0.55       1.0     -0.45      0
    0           0       -0.55      1.0   -0.45
    0           0    

1

2

3

4

5

1.1
0
0
0

       0       -0.55  1.45 0

    
    
        
         
        
              

The solutions of above equations are given below: 
1

2

3

4

5

0.9421
0.8006
0.6276
0.4163
0.1579

   
   
      
       
      
           

Comparison with analytical solution is given below: 

Node Distance 
Finite 

volume 
solution 

Analytical 
solution Difference Percentage 

error 

1 0.1 0.9421 0.9387 -0.003 -0.36 

2 0.2 0.8006 0.7963 -0.004 -0.53 

3 0.3 0.6276 0.6224 -0.005 -0.83 

4 0.4 0.4163 0.4100 -0.006 -1.53 

5 0.5 0.1579 0.1505 -0.007 -4.91 

Case (2):  
In this case velocity is u=2.5 m/s, flow term is.

2.5, 0.5F u D
x




   


. Thus coefficients are given be-

low: 
Node Wa  Ea  uS  PS  p W E Pa a a S    

1 0 -0.75 3.5 A  -3.5 2.75 

2 1.75 -0.75 0 0 1.0 

3 1.75 -0.75 0 0 1.0 

4 1.75 -0.75 0 0 1.0 

5 1.75 0 1.5 B   1.5 1.0 

The discretizing equations are given below  
 

1 2

1 2 3

2 3 4

3 4 5

4 5

2.75 .75 3.5
1.75 .75 0
1.75 .75 0
1.75 .75 0

1.75 .25 0.

   

     

     

     

    

 

The matrix form is  
 2.7500    0.7500         0             0              0
-1.7500    1.0000    0.7500         0              0
  0           -1.7500    1.0000        0.7500      0
  0               0         -1.7500     

1

2

3

4

5

3.5
0
0 .

   1.0000      0.7500 0
  0               0          0                -1.7500       0.2500 0

Φ    
    Φ    
    Φ =
    
Φ    
    Φ    

 

Solution of the problems is  

1

2

3

4

5

1.0356
0.8694
1.2573
0.3521
2.4644

   
   
      
       
      
           

 

Node Distance 
Finite 

volume 
solution 

Analytical 
solution Difference Percentage 

error 

1 0.1 1.0356 1.0000 -0.0035 -3.56 

2 0.2 0.8694 0.9999 0.131 13.03 

3 0.3 1.2573 0.9999 -0.257 -25.74 

4 0.4 0.3521 0.9994 0.647 64.70 

5 0.5 2.4644 0.9179 -1.546 -168.48 

After solving this problem, we see that, when velocity is 
u=0.1, then numerical solution converges to analytical solu-
tion but when u = 2.5 then solution for final grid node di-
verges, but when we are taking 20 grid nodes then numerical 
solution converges this is due to velocity 25 times more than 
u = 2.5 this problem occur very frequently in convec-
tion-diffusion problems. It happen when velocity is large 
then convection is dominated and velocity is small then 
diffusion is dominated to omit these problems. There are two 
methods, first is that increase grid size and second one is that 
set up new scheme, known as up-winding but this differ-
encing scheme is not focus of our paper. 

4. Finite Difference Method 
S. M. Choo et.al. published an article[8] “High-order 

perturbation-difference scheme for a convection diffusion 
problem” using finite difference methods  and with uniform 
meshes considered for a one-dimensional singularly per-
turbed convection diffusion problem. In order to obtain 
high-order of convergence, the difference methods are 
combined with a perturbation technique. The methods have 
uniform convergence and did not give non-physical oscilla-
tions in the numerical solutions. Existence and correspond-
ing error estimates of the solution for the difference schemes 
have been shown. Numerical experiments were provided to 
back up the analysis. 

In mathematics and engineering, finite-difference meth-
ods[6] are numerical methods for approximating the solu-
tions to differential equations using finite difference equa-
tions to approximate derivatives (11). Assuming the function 
whose derivatives are to be approximated is prop-
erly-behaved, by Taylor's theorem 

2 3
' '' '''( ) ( ) ( ) ( ) ( ) ...

2 3
h hx h x h x x x         

 (13) 
From which we obtain  
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' ''( ) ( )( ) ( ) ...
2

x h x hx x
h

  
    

 
Thus, we have  

' ( ) ( )( ) ( ).x h xx O h
h

  
  

       
(14) 

Which is the forward difference approximation for ' ( )x . 
Similarly expansion of ( )x h   in Taylor’s series gives. 

2 3
' ''( ) ( ) ( ) ( ) '''( ) ....

2 6
h hx h x h x x x          (15) 

From which we obtain 
' ( ) ( )( ) ( )x x hx O h

h
  

  
      

(16) 

which is the backward difference approximation for
'( )x .Subtracting equation (15) from equation (!3) we 

obtain the following central difference approximation: 
( ) ( )( ) ( )

2
x h x hx O h

h
     

      (17)
 

It is clear that central difference approximation is better 
than backward and forward difference approximation. 
Similarly, we can obtain approximation for higher order 
derivative terms, such as adding equations (13) and (15), we 
get ''( )x . 

2
2

( ) 2 ( ) ( )( ) ( )x h x x hx O h
h

       
    

(18) 

To solve given boundary value problems, we can divide the 
range  0 , nx x  in to n equal subintervals of width h so that 

0 ,ix x ih  i=1,2, ,n. 
The corresponding value of  at these points are denoted by 

0( ) ( ).i ix x ih     
Thus from equation (17) And (18) we obtain  

21 1' ( )
2

i i
i O h

h
  

  
 

and         21 1
2

2'' ( ).i i i
i o h

h
    

    

We solve the above problem by finite difference method for 
same nodal points and finding how FVM is better than Finite 
difference method. 
Case1: U=0.1 
Since the governing equation is ( ) 






 Φ
Γ=Φ

dx
d

dx
du

dx
d ρ , we can 

write this equation in discretized  form as for 0.2,x 
1 11 1

2

2 ' 0.
2

i ii i i
ih h

       
    

After simplifying this equation we may write 
1 111 20 9 0.i i i       Thus set of algebraic equation 

is  
1 2

1 2 3

2 3 4

3 4 5

4 5

11 20 9 0
11 20 9 0
11 20 9 0
11 20 9 0
11 20 9 0.

A

B

     

     

     

     

     

 

In matrix form the above set of algebraic equations may be 
written as 

1

2

3

4

5

20 0 0 11
11 20 0 0

11 20 0 0
11 20 0

20 0

           
           
              
           
             

 

After solving above equation, we have 
1

2

3

4

5

0.9048
0.7884
0.6461
0.4722
0.2597

                                             

 

Case2: U=2.5 
In this case, the discretized equation is  

1 2

1 2 3

2 3 4

3 4 5

4 5

7 4 3 0
7 4 3 0
7 4 3 0
7 4 3 0
7 4 3 0

A

B

     

     

     

     

     

 

The above equation may be written in matrix form as: 

1

2

3

4

5

 -4    -3     0     0     0 7
 7    -4    -3     0     0 0
 0     7    -4    -3     0 0
 0     0     7    -4    -3 0
 0     0     0     7    -4 0

       
      
       
     
         









 
 
 

 

The solution of above system of equation is given below: 

1

2

3

4

5

1.0208
0.9723
1.0854
1.4375
2.4644

   
   
      
       
      
         

 

Result: 
The result and graph of both cases are given below. 

Case1: U=0.1 

Node Distance 
Finite 

volume 
Solution 

Analytical 
solution 

Finite 
difference 
solution 

1 0.1 0.9421 0.9387 0.9048 
 

2 0.2 0.8006 0.7963 0.7884 
 

3 0.3 0.6276 0.6224 0.6461 
 

4 0.4 0.4163 0.4100 0.4722 
 

5 0.5 0.1579 0.1505 0.2597 
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Figure 1.  Comparison of FVM and FDM with Analytical Solution (AS), 
U=0.1 

Case2:U=2.5 

Node Distance 
Finite 

volume 
Solution 

Analytical 
solution 

Finite 
difference 
solution 

1 0.1 1.0356 1.0000 1.0208 
 

2 0.2 0.8694 0.9999 0.9723 

3 0.3 1.2573 0.9999 1.0854 

4 0.4 0.3521 0.9994 0.8214 

5 0.5 2.4644 0.9179 1.4375 

 
Figure 2.  Comparison of FVM and FDM with Analytical Solution (AS), 
U=2.5 
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5. Conclusions 
After analysing the results and by above discussion, we 

see that when velocity is larger, finite volume solution does 
not have better convergence. The reasons for this are given 
below: 

1. The internal coefficients of discretized scalar transport 
equation (7) are  

A steady one-dimensional flow field is also governed by 
the discretized continuity equation (5).When this equation 
holds then flow field satisfies continuity and also satisfi-
esScarborough condition, which is given as  

Σ | a | 1 at allnodesnb
| a' | < 1 at onenodeat leastP





 2. In case two when velocity is 2.5 m/s, the solution does 

not provide better convergence, with
2

e
E e

Fa D  . The 

convective contribution to the east coefficient is negative; if 
the convection dominates it is possible for Ea to be negative. 
Given that 0wF  and 0eF  (that is flow is unidirectional), 
for Ea  to be positive 

eD and 
eF  must satisfy the condition

2.
e

e
e

e

F P
D

   

If
eeP is greater than two then east confidents will be 

negative. This violates one of the requirements for bound-
edness and may lead to physically impossible solution. 
These types of problems are called convection-dominated 
problems. It is well known that the convection-dominated 
diffusion problem has strongly hyperbolic nature; the solu-
tion often develops sharp fronts that are nearly shocks. So the 
finite difference method or finite element method does not 
work well when problem is convection dominated[13]. 
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