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Abstract  In this paper, the finite element method is employed in order to study the MHD free convection heat 
fluid flow past an impulsively started vertical infinite plate when a strong magnetic field is imposed in a plane which makes 
an angle α with the normal to the plate. Numerical calculations have been carried out on the velocity and temperature dis-
tributions which are depicted graphically. The results obtained are discussed extensively in terms of the different 
entering into the problem. 
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1. Introduction 
In recent years, considerable interest has been given to 

the theory of rotating fluids due to its application in cosmic 
and geophysical sciences. In an ionized gas where the den-
sity is low and/or the magnetic field is very strong, the 
conductivity normal to the magnetic field is reduced due to 
the free spiraling of electrons and ions about the magnetic 
lines of force before suffering collisions and a current is 
induced in a direction normal to both the electric and mag-
netic fields. The effect of Hall currents on the Stokes prob-
lem has provided a new dimension in its application to 
MHD power generators and extended problem of ionized 
plasma flow in the presence of special configuration of 
magnetic field. One of the most important applications of 
this problem is in the study of coronal plasma flow in the 
configuration of plasma sheet formation in the active region 
of the sun or in the magnetic tail region. The Stokes prob-
lem under transversely applied magnetic field was studied 
by Rossow[1] whereas the corresponding MHD problem for 
a vertical impulsively started infinite plate was studied by 
Soundalgekar et al[2]. When the gas or fluid is partially 
ionized, the Hall current becomes significant and plays an 
important role in the development of the flow field. Al-
though many improvements have been made in tackling this 
problem, we have chosen a computational solution based on 
the finite element analysis. Pop[3] studied the effect of Hall 
currents on hydromagnetic flow near an accelerated plate 
when the magnetic field is imposed normal to the plant. The  
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problem of Hall current has also been considered by a 
number of authors[4-7]. It is now proposed to study, by the 
finite element method, the MHD free convection of a heat 
generating fluid flow past an impulsively started vertical 
plate taking into account the Hall currents when a strong 
magnetic field is imposed in a plane which makes an angle 
α with the normal to the plate. 

 
Figure 1.  The flow configuration with the coordinate system used 

2. Mathematical Analysis 
Consider the MHD free-convection heat generating fluid 

flow past an infinite vertical plate started impulsively in its 
own plane. The x/-axis is taken along the plate in the verti-
cally upward direction and the y/-axis is taken normal to the 
plate. Initially, the temperatures of the plate and the fluid 
are assumed to be the same. At time t/>0, the plate starts 
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moving impulsively in its own plane with velocity U0 and 
its temperature is instantaneously raised or lowered to /

wT  
which is maintained at a constant value. The fluid is per-
meated by a strong magnetic field H = (0, λH0, ( ) 0

21 Hλ− ), 
where λ = cosα, α being the angle made by H with the nor-
mal to the plate. The flow configuration, together with the 
coordinate system used, is shown in Figure1.  

Since the plate is infinite in length, all variables are func-
tions of y/ and t/ only. It is assumed that the induced mag-
netic field is negligible. This assumption is justified when 
the magnetic Reynolds number is very small (Shercliff,[8]). 

The equation of conservation of electric charge 0. =∇ J
gives /

yj  = constant where ( )/// ,, zyx jjjJ = . This constant is 

zero since /
yj  = 0 at the plate, which is electrically 

non-conducting. Thus, /
yj  = 0 everywhere in the flow. 

Next, we consider the case of a short circuit problem in 
which the applied electrical field E = 0. When the strength 
of the magnetic field is very large, the generalized Ohm’s 
law in the absence of an electric field (Cowling,[9]) is given 
by: 
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where σ, μe, ωe, τe, e, ne, Pe and Q are defined in no-
menclature. Neglecting the electron pressure, the thermoe-
lectric pressure and the ion slip, we have: 
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where m = ωeτe is the Hall parameter. 
By applying the usual boundary layer approximation, the 

flow is governed by the following equations: 
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In equations (4)-(6), the inertia terms are neglected as we 
are considering only fully developed flow. Hence, our re-
sults are true for short times after the motion and tempera-
ture jump at the wall. 

The initial boundary conditions of the problem are given 
by: 

t/ ≤ 0: u/ = 0, w/ = 0, T/ = /
∞T  everywhere 

t/ > 0: u/ = U0, w/ = 0, T/ = /
wT  at y/ = 0       (7) 

u/  0, w/  0, T/  /
∞T  as y/ ∞ 

We now introduce the following non-dimensional quanti-
ties as defined in the nomenclature: 
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Using the above formulation, equations (4) – (6) reduce 
to : 
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Where q = u+iw and q  denotes the complex conjugate 
of q. 

The corresponding boundary conditions are: 
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For simplicity in the calculations, we consider m=0 and 
λ=1 which reduce M1 to a real number M2. In view of this, 
Equations (9) and (10) can be rewritten as: 
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The above system of Equations (12 - 14) with boundary 
conditions (11) has been solved numerically by a computer 
program using the finite element method in steps 1, 2 and 3. 
Step 1:  

We solve Equation (14) with the help of boundary condi-
tions (11). Constructing the quasi - variational equivalent of 
Equation (14), we have: 
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where φ i  denotes the test function and Ω  is the do-
main of the flow. 

Consider an N elements mesh and a two parameter (semi 
discrete) Galerkin approximation[10,11] of the form: 
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where i = 1,2,3,…,N and yi and yi+1 are respectively the 
lower and upper coordinates of the element i.  

Using Equations (16 - 17), Equation (15) reduces to: 
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Using the Θ - family of approximation developed by 
Reddy [11], Equation (18) reduces to: 
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The initial value C0 is obtained by the Galerkin method 
from a 32 elements mesh and is given by: 
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For t > 0, 
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Step 2:  
We solve Equation (12) with the help of boundary condi-

tions (11). Constructing the quasi - variational statement of 
Equation (12), we have:  

2
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where Ψi is the test function and Ω is the region of the 
flow. 

Consider a two parameter (semi-discrete) Galerkin ap-
proximation[10,11] of the form: 
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where i=1,2,3,…..,N and yi and yi+1 are respectively the 
lower and upper coordinates of the element i. 

Using Equations (25-26), Equation (24) reduces to: 
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Using the Θ - family of operators developed by Reddy 
[11], Equation (27) takes the form: 
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where 
[ ]Td 0...........,.........0,0,10 =           (30) 

Step 3:  
We solve Equation (13) with the help of boundary condi-

tions (11). Constructing the quasi - variational statement of 
Equation (13), we have:  
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where φi is the test function and Ω is the region of the 
flow. 

Consider a two parameter (semi-discrete) Galerkin ap-
proximation[10,11] of the form: 
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where i=1,2,3,…..,N and yi and yi+1 are respectively the 
lower and upper coordinates of the element i. 

Using Equations (32-33), Equation (31) reduces to: 
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Using the Θ - family of operators developed by Reddy 
[11], Equation (34) takes the form: 
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where 
[ ]Tf 0...........,.........0,0,00 =         (37) 

The numerical values of the temperature and velocity 
fields have been computed from Equations (23), (29) and 
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(36) and are shown in Figures.2-5. 

3. Discussion of Results 
To study the behavior of the velocity and temperature 

profiles, curves are drawn for various values of the parame-
ters that describe the flow. Numerical calculations have 
been carried out for the velocity and temperature distribu-
tions for m=0 and λ=1, reducing M1 to M2. The results ob-
tained are displayed in Figures 2-5. The method used is 
unconditionnaly stable and independent of the time step ∆t. 
The velocity profiles are examined for the cases Gr > 0 and 
Gr < 0. Gr > 0 (= +5) is used for the case when the flow is 
in the presence of cooling of the plate by free convection 
currents. Gr < 0 (= -5) is used for the case when the flow is 
in the presence of heating of the plate by free convection 
currents. Figures 2-4 show the velocity distribution for the 
two cases from which we observe that the velocity (u) de-
creases away from the plate. 

 
Figure 2.  Primary velocity (u) distribution for Gr = 5 

Series M Pr E δ t 
I 2.00 0.73 0.10 0.20 0.002 
II 5.00 0.73 0.10 0.20 0.002 
III 2.00 1.50 0.10 0.20 0.002 
IV 2.00 0.73 0.50 0.20 0.002 
V 2.00 0.73 0.10 0.50 0.002 
VI 2.00 0.73 0.10 0.20 0.005 

From Figure 2, for the case when Gr>0 (in the presence 
of cooling of the plate by free convection currents), we ob-
serve that: 

i. The primary velocity (u) decreases due to an increase in 
the magnetic parameter M. 

ii. The primary velocity (u) increases due to an increase 
in the Prandtl number Pr, the Eckert number E, the heat 
source parameter δ and the time t. 

From Figure 3, for the case when Gr<0 (in the presence 
of heating of the plate by free convection currents), we ob-
serve that: 

i. The primary velocity (u) decreases due to an increase in 
the magnetic parameter M, the Prandtl number Pr, the 

Eckert number E and the heat source parameter δ. 
ii. The primary velocity (u) increases due to an increase 

in the time t. 

 
Figure 3.  Primary velocity (u) distribution for Gr = -5 

Series M Pr E δ t 
I 2.00 0.73 0.10 0.20 0.002 
II 5.00 0.73 0.10 0.20 0.002 
III 2.00 1.50 0.10 0.20 0.002 
IV 2.00 0.73 0.50 0.20 0.002 
V 2.00 0.73 0.10 0.50 0.002 
VI 2.00 0.73 0.10 0.20 0.005 

From Figure 4, for the case when Gr = ±5, we observe 
that: 

i. The secondary velocity (w) decreases due to an in-
crease in the magnetic parameter M and the time parameter 
t.  

ii. There is an insignificant change in the secondary ve-
locity (w) due to an increase in the Prandtl number Pr, the 
Eckert number E and the heat source parameter δ. 

 

Figure 4.  Secondary velocity (w) distribution for Gr = ±5 

Series M Pr E δ t 
I 2.00 0.73 0.10 0.20 0.002 
II 5.00 0.73 0.10 0.20 0.002 
III 2.00 1.50 0.10 0.20 0.002 
IV 2.00 0.73 0.50 0.20 0.002 
V 2.00 0.73 0.10 0.50 0.002 
VI 2.00 0.73 0.10 0.20 0.005 
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Figure 5.  Temperature (Ө) distribution for Gr = ±5 

Series M Pr E δ t 
I 2.00 0.73 0.10 0.20 0.002 
II 5.00 0.73 0.10 0.20 0.002 
III 2.00 1.50 0.10 0.20 0.002 
IV 2.00 0.73 0.50 0.20 0.002 
V 2.00 0.73 0.10 0.50 0.002 
VI 2.00 0.73 0.10 0.20 0.005 

From Figure 5, for the case when Gr = ±5, we observe 
that: 

i. The temperature (Ө) decreases far away from the plate. 
The decrease is greater for a Newtonian fluid than it is for a 
non-Newtonian fluid (Ө decreases with Pr).  

ii. There is an increase in the temperature profile (Ө) due 
to an increase in the magnetic parameter M, the Eckert 
number E, the heat source parameter δ and the time pa-
rameter t.  

Nomenclature 
g the gravitational acceleration 
β the volumetric coefficient of thermal expansion 
v the kinematic coefficient of viscosity of the fluid 
k the thermal conductivity 
ρ the density of the fluid 
Q* the heat generation of the type ( )// TTQ −∞

 
Cp the specific heat at constant pressure 
T/ the temperature in the boundary layer 

/
∞T  the temperature in the free stream 

Pr the Prandtl number 
Gr the Grashof number 
M2 the magnetic field parameter 
δ the heat source parameter 
σ the electric conductivity 
μe the magnetic permeability 
ωe the cyclotron frequency 

τe the electron collision time 
e the electric charge 
ne the number density of electrons 
Pe the electron pressure 
Q the velocity of the fluid 
u the non-dimensional primary velocity 
w the non-dimensional secondary velocity 
Ө the non-dimensional temperature 
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