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Abstract  In this paper, a method for reconstructing a 3-D shape of an object from a 2-D shading image using a Genetic 
Algorithm (GA), which is an optimizing technique based on mechanisms of natural selection. The 3D-shape is recovered 
through the analysis of the gray levels in a single image of the scene. This problem is ill-posed except if some additional 
assumptions are made. In the proposed method, shape from shading is addressed as an energy minimization problem. The 
traditional deterministic approach provides efficient algorithms to solve this problem in terms of time but reaches its limits 
since the energy associated with shape from shading can contain multiple deep local minima. Genetic Algorithm is used as 
an alternative approach which is efficient at exploring the entire search space. The Algorithm is tested in both synthetic and 
real image and is found to perform accurate and efficient results. 
Keywords  Genetic Algorithm; Shape for Shading; Fitness Function and Optimization 

1. Introduction 
SFS deals with the recovery of surface orientation and 

surface shape (highlight) from the gradual variation of 
shading in images. SFS is implemented by first modeling 
the image brightness as a function of surface geometry and 
then reconstructing a surface which, under the given imag-
ing model, generates an image close to the input image. 
This field was formally introduced by Horn[1] and there 
have been many significant improvements in both theoreti-
cal and practical aspects of the problem.  

However, it has been shown that this is an ill-posed 
problem[2,3]. Surface shape recovery of observed objects is 
one of the main goals in the field of three-dimensional (3-D) 
computer vision. Marr identified shape-from shading (SFS) 
as providing one of the key routes to understanding 3D sur-
face structure via the 2½D sketch[4]. The process has been 
an active area of research for over two decades. It is con-
cerned with recovering 3D surface shape from shading pat-
terns. The subject has been tackled in a variety of ways 
since the pioneering work of Horn[5].  

They are classified into direct and indirect methods. Di-
rect or active methods recover depth information directly 
using range finder and structure light. Indirect methods de-
termine the relative depth by cues extracted from gray level 
images of observed object. This class contains shape from 
shading. Since the direct or active techniques usually in- 
volve many complex external component setup, they may 
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not be suitable for instance in object shape estimation. 
Hence many researchers have focused on the latter class of 
method. The shape from shading methods makes use of the 
change in image brightness of an object to determine the 
relative surface depth and can be effectively applied to 
smooth surface regions. Most of the shading techniques 
employ variation approaches which impose constraints such 
as smoothness, imaging equation and light conditions.  

As a result these techniques can only be applied to the 
object surface that satisfies the constraints. Also the com-
putational complexity of the resulting algorithms is high 
and increases as the number of these constraints increases. 
Useful alternatives for variation shading are local shading 
and linear shading suggested by Pentland[6] this approach 
do not require prior information on the observed scene, im-
aging geometry and regularization. The assumption is that 
the surface shape is locally spherical, and the inclined light 
source is not allowed. Pentland[7] used the linear approxi-
mation of the reflectance function in terms of the surface 
gradient and applied a Fourier transform to the linear func-
tion to get a closed form solution for the depth at each point. 
Tsai and Shah[8] applied the discrete approximation of the 
gradient first, then employed the linear approximation of 
the reflectance function in terms of the depth directly. Their 
algorithm recovered the depth at each point using a Jacobi 
iterative scheme. As opposed to the previous methods on 
SFS, Samaras and Metaxas[9] presented a model-based 
approach, where shape from shading is incorporated as a 
nonlinear hard constraint within a deformable model 
framework. Recently, Zhao and Chellappa[10] provided a 
shape from shading approach for symmetric objects. A re-
cent minimization based method proposed in[11] directly 
solves the shape by assuming the depth of the deepest sur-
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face point is known under constant albedo approximation. 
Alper and Mubarak[12] proposed a shape from shading 
(SFS) approach to recover both the shape and the reflec-
tance properties of symmetric objects using a single image. 
The common constraint of constant or piece-wise constant 
albedo for Lambertian surfaces is relaxed to arbitrary albe-
do. The proposed method can be categorized as a linear 
shape from shading method, which linearizes the reflec-
tance function for symmetric objects using the symmetry 
cues of the shape and the albedo, and iteratively computes 
the depth values. Estimated depth values are then used to 
recover pixel-wise surface albedo. 

In this study, the GA is applied to 3-D shape reconstruc-
tion of an object from a shading image of the object. In this 
method, arbitrary 3-D shapes are defined as individuals in a 
population according to the GA concept. The evaluation 
function of each individual is defined according to the cor-
respondence between the 3-D shape represented by the in-
dividual and the measured 2-D shading image and other 
information about the object's 3-D shape, and then the op-
timized solution of the function is searched for using a GA. 
Accordingly, the 3-D shape represented by the individual 
having the highest value of the evaluation function is con-
sidered as the reconstructed 3-D shape of the object. The 
principle of the proposed method for reconstructing a 3-D 
shape from a 2-D shading image using a GA is described. 
For demonstration of the proposed method, 3-D shapes are 
reconstructed from shading images which are obtained by 
both computer simulation and experiment with a CCD 
camera. The reconstructed shapes are compared with shapes 
reconstructed by the conventional method of obtaining a 
shape from shading[13]. 

2. Related Works 
There are two ways to recover shape from a single image 

namely shape from shading and user interactive modeling 
[14]. The non-interactive methods compute depth based on 
the work proposed by Horn and Brook. This is done by mi-
nimizing the Eikonal equation and presenting the solution 
as computed depth. In the interactive method, the depth 
map obtained is interactively modified by the user in order 
to get more accurate results. Zhang et al.[15] classified 
shape from shading methods into four groups viz. minimi-
zation, propagation, local and linear methods. Zhang et al. 
implemented 6-well known algorithms and compared them 
objectively based on COP time and error. Although each 
algorithm works well with specific image, but produces 
poor results with others. In another work Durou et al.[16] 
classified shape from shading methods into three classes: 
minimization approaches, approximation approaches and 
partial differential equation based approaches.  

Patel and Smith[17] used a morphable model for shape 
from shading of non-Lambertian surfaces. Shlizerman and 
Basri[18] used the similarity between faces for 3D recon-
struction. Common face features such as location of eyes, 

aspect ratio and the location of nose can vary between dif-
ferent races, gender or because of facial expressions. Using 
previously stored features their proposed algorithm guides 
the reconstruction of the face using information about the 
subject race, gender and facial expressions. 

3. Problem Formulation 
We start by giving a brief outline of the SFS problem and 

introducing the basic assumptions. We attach to the camera 
a three-dimensional coordinate system (Oxyz), such that 
Oxy coincides with the image plane and Oz coincides with 
the optical axis. Under the assumption of orthographic pro-
jection, the visible part of the scene is, up to a scale factor, a 
graph z = u(x), where x = (x,y) is an image point. As is well 
known[19], the SFS problem can be modeled by the "image 
irradiance equation": 

𝑅𝑅�𝒏𝒏(𝐱𝐱)� = 𝐼𝐼(𝐱𝐱)               (1) 
where I(x) is the greylevel measured in the image at point 

x (in fact, I(x) is the irradiance at point x, but both quanti-
ties are proportional) and R(n(x)) is the reflectance function, 
giving the value of the light re-emitted by the surface as a 
function of its orientation, i.e. of the unit normal n(x) to the 
surface at point (x,u(x)). This normal can easily be ex-
pressed as: 

𝐧𝐧(𝐱𝐱) = 1
�1+𝑝𝑝(𝐱𝐱)2+𝑞𝑞(𝐱𝐱)2 (−𝑝𝑝(𝐱𝐱), 𝑞𝑞(𝐱𝐱), 1)      (2) 

where p= 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕d and q = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, so that 𝛻𝛻u(x) = (p(x), 
q(x)). Irradiance function I is the datum in the model since 
it is measured at each pixel of the image, for example in 
terms of a greylevel (from 0 to 255). To construct a conti-
nuous model, we will assume that I takes real values in the 
interval[0,1]. Height function u, which is the unknown of 
the problem, has to be reconstructed on a compact domain 
Ω⊂Ρ2, called the ‘‘reconstruction domain’’. Assume that 
there is a unique light source at infinity whose direction is 
indicated by the unit vector 𝝎𝝎 = (𝜔𝜔1, 𝜔𝜔2, 𝜔𝜔3)𝜖𝜖Ρ3. Also 
assume for simplicity that x is given (in some works, x as 
well is considered as unknown, see e.g.[20,21], even if this 
new problem is sometimes ill-posed[22]). Recalling that, 
for a Lambertian surface of uniform albedo equal to 1, 
R(n(x)) = 𝝎𝝎 n(x), Eq.1 can be written, using Eq.2:  

𝐼𝐼(𝐱𝐱)�1 + |∇𝑢𝑢(𝐱𝐱)|2 + (𝜔𝜔1, 𝜔𝜔2). ∇𝑢𝑢(𝐱𝐱) − 𝜔𝜔3 = 0   
for 𝐱𝐱 ∈ Ω                (3) 

which is a first order non-linear partial differential equa-
tion (PDE) of the Hamilton–Jacobi type. Points 𝑥𝑥 ∈ Ω 
such that I(x) is maximal correspond to the particular situa-
tion where x and n(x) point in the same direction: these 
points are usually called ‘‘singular points’’. Let us mention 
that Eq. (3) is not the most general equation of SFS[23]: 
since real materials are not purely Lambertian, some publi-
cations are concerned with non-Lambertian SFS problems 
[24–26]; moreover, the situation is more complex in the 
presence of other lighting models[27,28] or when the inter-
reflections are taken into account[29,30]. We will also con-
sider the equation which appears in most of the papers and 
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corresponds to frontal light source at infinity, i.e.  𝝎𝝎 =
(0,0,1). Then Eq.3 becomes the "eikonal equation": 

|∇𝑢𝑢(𝐱𝐱)| = 𝑓𝑓(𝑥𝑥) for 𝐱𝐱 ∈ Ω           (4) 

Where 𝑓𝑓(𝑥𝑥) = � 1
𝐼𝐼(𝐱𝐱)2 − 1            (5) 

Equations 3 or 4 are sometimes complemented with 
boundary conditions on 𝜕𝜕Ω or with additional information 
to select a unique solution. One can set up a boundary value 
problem which imposes either a value to the solution u (Di-
richlet type boundary condition), or a value on the normal 
derivative (Neumann type boundary condition), or a 
so-called ‘‘state constraint’’ boundary condition where one 
imposes an equation to be satisfied on the boundary. For an 
image containing an ‘‘occluding boundary’’, it is usual to 
use it as boundary 𝜕𝜕Ω of the reconstruction domain Ω . 
For example, in Figure. 1, if the part of the image 
representing the object in greylevels (‘‘silhouette’’) is Ω , 
then 𝜕𝜕Ω coincides with the occluding boundary. A current 
choice is to consider Dirichlet type boundary conditions in 
order to take into account (at least) two different possibili-
ties. The first corresponds to the assumption that the surface 
is standing on a flat background, i.e. we set:  

u(x)=0 for 𝐱𝐱 ∈ 𝜕𝜕Ω               (6) 
The solution of Eq. 3 or of the Dirichlet problems 3-6 

will give the surface corresponding to greylevel I(x) meas-
ured in Ω.  

 
Figure 1.  Object with occluding boundary, which might be used as 
boundary 𝜕𝜕Ω. 

 
Figure 2.  The normal vector of the surface and the direction of the light 
source. 

4. Shape From Shading Using GA 
4.1. Shading Images 

Gray levels in a shading image are determined by the 

orientation of the object surface. Assuming that the surface 
of the object is Lambertian, the gray levels of the shading 
image 𝑆𝑆(𝑥𝑥, 𝑦𝑦) are expressed as the following Eq.7. 

𝑆𝑆(𝑥𝑥, 𝑦𝑦) = 𝑟𝑟𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                 (7) 
where 𝑟𝑟𝑜𝑜  represents surface reflectance constant, and 𝜃𝜃 

is the angle between the normal vector of the surface and 
the direction of the light source as shown in Figure. 2. In 
other words, a shading image of an 3-D object provides 
some information on the surface orientation of the object. 
However, the orientation cannot be uniquely determined. 
Therefore some constraint on the shape of the object is re-
quired for 3-D shape reconstruction from a shading image. 

4.2. Reconstruction Using GA 

In our proposed method, we assume that the constraints 
on the 3-D shape of an object are follows: (a) the boundary 
of the object in the shading image is specified, (b) the object 
does not have hollows and (c) the surface of the object is 
smooth. 

To apply a GA based matrix code , the candidates to be 
optimized must be coded as strings. In this method, a 3-D 
shape of the object is represented by a 2-D range image of L 
x L pixels with M levels, and then the range image is a 
coded string. Here, the pixels outside of the object boundary 
are set to zero according the condition (a). Figure. 3 shows 
the method for coding a 3-D shape. According to the coding 
method, the optimized 3-D shape is searched for using a GA 
as follows:  

 
Figure 3.  The method for coding a 3-D shape. The string representing a 
3-D shape is a range image of L x L pixels with M levels. 

Firstly, make a initial population of N strings. When a 
3-D shape is represented by the string as described above, 
the total number of candidates of 3-D shapes is very large, 
i.e. ≅ 𝑀𝑀𝑁𝑁𝑏𝑏  where 𝑁𝑁𝑏𝑏  is the number of pixels inside the 
boundary of the object. accordingly, it becomes very diffi-
cult to find the optimal 3-D shape because the area to be 
searched is very wide. Hence, 3-D shapes represented by 
strings are restricted according to the condition (b), so that 
the total number of candidates of 3-D shapes can be reduced, 
and the efficiency of an optimal search can be improved. In 
making the initial population, strings are produced by ma-
trix code.  

This method starts with an initial population P0 of size μ. 
This initial population is coded as a matrix of size μ× n 
called initial population matrix PM0. At every generation t, 
PMt is partitioned into v × η sub- matrices 𝑃𝑃𝑃𝑃� 𝑡𝑡

(𝑖𝑖,𝑗𝑗 ) i = 1..., 
v, j = 1..., η, where v is the number of individuals on each 
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partition and η is the number of genes on each partition.  
A crossover and mutation operators are applied on the 

partitioned sub-matrices and 𝑃𝑃𝑃𝑃� 𝑡𝑡
(𝑖𝑖,𝑗𝑗 ) is updated. The range 

of each gene is divided into m sub-ranges in order to check 
the diversity of the gene values. The Gene Matrix GM is 
initialized to be the n × m zero matrix in which each entry 
of the i-th row refers to a sub-range of the i-th gene. While 
the search is processing, the entries of GM are updated if 
new values for a gene are generated within the correspond-
ing sub-range. After having a GM full, i.e., with no zero 
entry, the search is learned that an advanced exploration 
process has been achieved. The Gene Matrix GM comes 
along with a certain number α predefined by the user. The 
zeros entries in GM are not immediately updated to be ones 
unless the number of individuals that have been generated 
inside a sub-range so far exceeds or equals αm.  

An example of GM with α = 0.2 in two dimensions is 
shown found in Figure. 4. In this figure the range of each 
gene is divided into ten sub-ranges. We can see that no in-
dividual has been generated inside the sub-ranges 1, 7 and 
10 for the gene x1. However entry (1, 3) in GM0.2 is equal 
to 0 since there is only one individual lying inside the third 
sub-range and αm = 2. For the same reason, x2 has six ze-
ro-entries corresponding to six sub-ranges in which the 
number of generated individuals is less than αm. In a suc-
ceeding generation, if one or more individuals are generated 
inside the third sub-range for x1 for example, then entry (1, 
3) will be set equal to one. In our experiments we used α as 
a function of log(n) and log(μ), where μ is the population 
size, in order to be suitable for all dimensions and for all 
population size. Moreover, the log function is used to esti-
mate the value of α in order to reduce the complexity of 
increasing n or μ especially in high dimensional problems. 
Actually, the numerical experiments have showed that the 
best setting for number α is equal to 0.75 log2 n log μ. And 
then we calculate a fitness function for each string. Each 
string represents a 3-D shape that can determine a 2-D 
shading image. The fitness value of the string is defined 
according to the similarity the shading image determined by 
the string with the measured shading image. The fitness 
value 𝑓𝑓(𝑛𝑛) is expressed as the following Eq.8: 

𝑓𝑓(𝑛𝑛) = 𝑐𝑐 − ∑ ∑ |𝑆𝑆𝑠𝑠(𝑖𝑖, 𝑗𝑗) − 𝑆𝑆𝑚𝑚(𝑖𝑖, 𝑗𝑗)|𝑗𝑗𝑖𝑖         (8) 
where 
C= a constant for making the fitness positive. 
𝑆𝑆(𝑖𝑖, 𝑗𝑗) = a shading image determined by a string which is 

a candidate of the object shape, 
𝑆𝑆𝑠𝑠(𝑖𝑖, 𝑗𝑗) = smoothing image of S ( i , j ) , 
𝑆𝑆𝑚𝑚(𝑖𝑖, 𝑗𝑗)= the measured shading image, 
A smoothing image of 𝑆𝑆(𝑖𝑖, 𝑗𝑗) is expressed as 

𝑆𝑆𝑠𝑠(𝑖𝑖, 𝑗𝑗) = 1
9
∑ ∑ 𝑆𝑆(𝑖𝑖 + 𝑘𝑘, 𝑗𝑗 + 𝑙𝑙)𝑙𝑙=1

𝑖𝑖=𝑙𝑙=−1
𝑘𝑘=1𝑛𝑛
𝑘𝑘=−1      (9) 

A shading image determined by a string 𝑆𝑆(𝑖𝑖, 𝑗𝑗) is calcu-
lated according to equation (9). In the definition of the 
string fitness, a smoothing image of it shading image de-
termined by a string is compared with the measured shading 
image. We consider this to mean that condition (c) is true. 

Secondary, arithmetical crossover and mutation opera-

tions are used in the proposed algorithm to crossover opera-
tion between individuals from the current population into 
next generation. We can defined in the following procedure. 

 
Figure 4.  An Example of the Gene Matrix in 𝑅𝑅2. 

Procedure Crossover (p1, p2) 
1- Choose randomly a number α from (0,1) 
2- Two offspring 𝑐𝑐1 = (𝑐𝑐1

1 … , 𝑐𝑐𝑛𝑛1)  and 𝑐𝑐1 =
(𝑐𝑐1

2 … , 𝑐𝑐𝑛𝑛2)are generated from parents 𝑝𝑝1 = (𝑝𝑝1
1 … , 𝑝𝑝𝑛𝑛1 ) and 

𝑝𝑝1 = (𝑝𝑝1
2 … , 𝑝𝑝𝑛𝑛2) where 

𝑐𝑐𝑖𝑖1 = 𝛼𝛼𝑝𝑝𝑖𝑖1 + (1 − 𝛼𝛼)𝑝𝑝𝑖𝑖2, 
𝑐𝑐𝑖𝑖2 = 𝛼𝛼𝑝𝑝𝑖𝑖2 + (1 − 𝛼𝛼)𝑝𝑝𝑖𝑖1,   𝑖𝑖 = 1, … . , 𝑛𝑛). 

3- Return. 
The proposed method uses mutation operator by generat-

ing a new random value for the selected gene within its 
domain. Mutagenesis. In order to accelerate the search 
process, a special type of a directed mutation is applied. 
Actually, our method employs the mutagenesis operator 
[31]. Mutagenesis is used to alter some individuals selected 
for the next generation. The formal procedure for mutage-
nesis is given as follows. 

Procedure 2. Mutation(x,GM) 
1. If GM is full, then return; otherwise, go to Step 2. 
2. Choose a zero-position (i, j) in GM randomly. 

3. Update x by setting 𝑥𝑥𝑖𝑖 = 𝑙𝑙𝑖𝑖 + (𝑗𝑗 − 𝑟𝑟)
𝑢𝑢𝑖𝑖−𝑙𝑙𝑖𝑖
𝑚𝑚 ,  

where r is a random number from (0, 1)  
and li, ui are the lower and upper bounds of the variable 

𝑥𝑥𝑖𝑖 , respectively. 
4. Update GM and return. 
The algorithm described as follows.  
1- Initialization Set values of m, μ, v and η . Set the cros-

sover and mutation probabilities pc ∈(0,1) and pm ∈ (0,1), 
respectively. Set the generation counter t := 0. Initialize GM 
as n × m zero matrix, and generate an initial population P0 
of size μ and code it to a matrix 𝑃𝑃𝑃𝑃0. 

2- Parent selection. Evaluate the fitness function of all 
individuals coded in 𝑃𝑃𝑃𝑃𝑡𝑡 . Select an intermediate popula-
tion 𝑃𝑃𝑃𝑃� 𝑡𝑡  from the current one 𝑃𝑃𝑃𝑃𝑡𝑡 .  

3- Partitioning and genetic operations. Partition 𝑃𝑃𝑃𝑃� 𝑡𝑡  
into v × η sub-matrices. Apply the following for all 
sub-matrices 𝑃𝑃𝑃𝑃� (𝑖𝑖,𝑗𝑗 )

𝑡𝑡 , i = 1..., η, j = 1..., v. 
3.1. Crossover. Associate a random number from (0, 1) 

with each row in  𝑃𝑃𝑃𝑃� (𝑖𝑖,𝑗𝑗 )
𝑡𝑡  and add this individual to the 

parent pool if the associated number is less than pc. Apply 
Procedure crossover to all selected pairs of parents and up-
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date  𝑃𝑃𝑃𝑃� (𝑖𝑖,𝑗𝑗 )
𝑡𝑡  

3.2. Mutation. Associate a random number from (0, 1) 
with each gene in each gene i  

 𝑃𝑃𝑃𝑃� (𝑖𝑖,𝑗𝑗 )
𝑡𝑡 . Mutate the gene which their associated number 

less than pm by generating a new random value for the se-
lected gene within its domain. 

4- Stopping condition. If GM is full, then go to Step 7. 
Otherwise, go to Step 5. 

5- Survivor selection. Evaluate the fitness function of all 
corresponding children in 𝑃𝑃𝑃𝑃� 𝑡𝑡 , and choose the μ best indi-
viduals from the parent and children populations to form the 
next generation 𝑃𝑃𝑃𝑃𝑡𝑡+1. 

6- Mutagenesis. Apply procedure 2 to alter the worst in-
dividuals in 𝑃𝑃𝑃𝑃𝑡𝑡+1 , set t:=t+1 and go to Step 2. 

7- Intensification. Apply a local search method starting 
from each solution from the Nelite elite ones obtained in the 
previous search stage. 

5. Experimental 
It is very difficult to choose good test images for SFS al-

gorithms. A good test image must match the assumptions of 
the algorithms, e.g. Lambertian reflectance model, constant 
albedo value, and infinite point source illumination. It is not 
difficult to satisfy these assumptions for synthetic images, 
but no real scene perfectly satisfies these conditions. In real 
images there will be errors to the extent that these assump-
tions are not matched. In this section, we describe the im-
ages chosen to test the SFS algorithms. 

 
Figure 5.  Synthetic images generated using two different light sources: 
(a) Synthetic Vase (0, 0, 1), (b) Mozart (0, 0, 1), (c) Synthetic Vase (1, 0, 1) 
and (d) Mozart (1, 0, 1). 

The synthetic images were generated using true depth 
maps, we simply computed the surface gradient where p= 
𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕  and q = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕  using the forward discrete ap-
proximation of the depth, u and generated shaded images 
using the Lambertian reflectance model. There are at least 
two advantages of using synthetic images. First, we can 
generate shaded images with different light source direc-
tions for the same surface. Second, with the true depth in-
formation, we can compute the error and compare the per-

formance. However, the disadvantage of using synthetic 
images is that performance on synthetic images cannot be 
used reliably to predict performance on real images. In our 
study we used two synthetic surfaces (Synthetic Vase and, 
Mozart), with two different light sources ((0, 0, 1) and (1, 0, 
1)). Also in our study we used three real images (Lenna, 
Pepper and Vase), shown in Figures. 5 and 6. The light 
source directions for these images are the following: for the 
Lenna image light source direction is (1.5, 0.866, 1). And 
Pepper image light source direction is (0.766, 0.642, 1), 
finally Vase image is (-0.939, 1.867, 1.0). 

 
Figure 6.  Real images: (a) Lenna. (b) Pepper. (c) Vase 

 
Figure 7.  Results for Zheng and Chellappa's method on synthetic images: 
(a) Vase, (b) Mozart, (a) and (b) show the results for test images with light 
source (0, 0, 1). (c) and (d) show the results for test images with light 
source (1, 0, 1). 

In order to prove the efficiency and accuracy of our ap-
proach, we used synthetic and real world images as test data 
sets. Among them, one synthetic image was used to verify 
whether the proposed approach is accurate. On the other 
hand, three real images were used to examine how well this 
method works. All test images were of size 256 × 256. 
Table 1 summarizes the parameters of each image 

Table 1.  The parameters of used image 

Image 𝑠𝑠𝑥𝑥  𝑠𝑠𝑦𝑦  𝑠𝑠𝑧𝑧  𝜌𝜌 𝜆𝜆 
Mozart 0.0 0.0 1.0 0.51 0.050 
Pepper 0.5 0.5 1.5 0.40 0.010 
Vase 0.5 0.5 -1.0 0.70 0.005 
Lenna 1.5 0.8 1.0 0.50 0.050 
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Figure 8.  Results for Tsai and Shah's method on synthetic images: (a) 
Vase, (b) Mozart(a), and (b) show the results for test images with light 
source (0, 0, 1). (c) and (d) show the results for test images with light 
source (1, 0, 1). 

 
Figure 9.  Results for Zheng and Chellappa's method on real images: (a) 
Lenna. (b) Pepper. (c) Vase 

 
Figure 10.  Results for Tsai and Shah's method on real images: (a) Lenna. 
(b) Pepper. (c) Vase. 

The parameters 𝑠𝑠𝑥𝑥 , 𝑠𝑠𝑦𝑦 , 𝑠𝑠𝑧𝑧  and  𝜌𝜌  were estimated by 
Zheng and Chellappa method. The parameter 𝜆𝜆 is always 
positive, and was determined experimentally. Figure. (11) 

shows the experimental results of a synthetic Mozart image. 
Figure (11.a) shows the original image. The surface recov-
ered by our approach is shown in Figure (11.b). In order to 
verify the accuracy of the proposed approach, it was neces-
sary to apply our algorithm on natural images. The next 
examples show the results obtained by applying our ap-
proach to the Pepper ,Vase, and Lenna. The recovered sur-
face is shown in Figures (12, 13 and 14). For the recon-
structed pepper image in Figure (13), there is some errors 
due to albedo discontinuities and self-occlusions, which 
violate the assumptions of the algorithm[32]. The effect of 
different GA parameters on the reconstruction accuracy is 
investigated. The GA parameters used in the algorithm are 
summarized in Table 2. 

Table 2.  The GA parameters 

Parameters Definitions Values 
𝜇𝜇 Population size 25 
η No. of gene partitions n/5 
v No. of individual partitions 5 
α Gene matrix percentage 0.75 log2 n log μ 
Pc Crossover probability 0.7 
Pm Mutation probability 0.002 
m No. of GM column  𝑚𝑚 ∈ [15,20] 
Nmax No. of maximum iterations 5n 
Nelite No. of best solution for 

intensification 
1 

 
(a) The original image      (b) The reconstructed image     

Figure 11.  Results for our method on synthetic image “Mozart”. 

 
(a) The original image        (b) The reconstructed image    
Figure 12.  Results for our method on real image “Pepper”. 

In order to assess the proposed approach with the other 
existing approaches of SFS, Table 3 demonstrates a com-
parison between the proposed approach and existing ap-
proaches. Further, Table 3 shows that the proposed ap-
proach has achieved acceptable degree of success with less 
processing time compared to existing approaches. 
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Table 3.  C.P.U. time (in seconds) for synthetic images. 

 
Method 

Images 
Vase Mozart 

S1 S2 S1 S2 
Zheng & Chellappa 18.1 70.8 49.6 409.5 

Tsai & Shah 0.9 1.2 3.8 4.8 
Proposed method 0.1 0.55 1.06 1.56 

(Note: S1 and S2 stand for two different light sources, (0, 0, 1) and (1, 0, 
1)). 

 
(a) The original image       (b) The reconstructed image     

Figure 13.  Results for our method on real image “Vase” 

 
(a) The original image        (b) The reconstructed image    
Figure 14.  Results for our method on real image “Lenna” 

6. Conclusions 
In this paper, a new method for solving the Shape from 

Shading problem using GA based on matrix code has been 
developed. The novelty of the proposed technique comes 
from the GA itself. This has been achieved by applying an 
efficient multi objective function with the brightness and 
smoothness constrains. Several GA design parameters have 
been studied to illustrate their effects on the algorithm con-
vergence. The proposed method is tested in both synthetic 
and real image and is found to perform accurate and effi-
cient results as shown in Table 3. 
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