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Abstract  The present paper contains a mathematical analysis of the mixed convection three dimensional steady lami-

nar flow of a viscous incompressible fluid past an infinite vertical porous plate. The three-dimensional flow is caused by 

the transverse sinusoidal suction at the plate. A constant heat flux is prescribed at the plate. Assuming the plate velocity to 

be uniform, analytical solutions are obtained for the flow field, the temperature field and the skin-friction. Effects of 

Prandtl number and Grashof number on the flow characteristics are explored and illustrated graphically. 
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1. Introduction 

In view of the importance of the problems of laminar 

flow control (LFC), especially in the field of aeronautical 

engineering, various theoretical and experimental studies of 

different arrangements and configurations of suction holes 

and slits have been compiled by Lachmann[1]. The suction 

of the fluid is also an acknowledged technique for control-

ling the undesirable features in the boundary layer theory. 

Further, from the technological point of view, free convec-

tion flow and heat transfer problems are always important, 

for they have many practical applications. The phenomenon 

of free-convection arises when the difference between the 

plate temperature and the free stream temperature apprecia-

bly large which causes density variations leading to 

buoyancy forces acting on the fluid elements. This process 

of heat transfer is encountered in cooling of nuclear reactors, 

providing heat sinks in turbine blades and aeronautics. Free 

convection flow past vertical plate has been studied exten-

sively by many researchers and some of them are Os-

trach[2-3], Stewartson et. al.[4], Sparrow et. al.[5-6], Ma-

buchi[7], Riley et. al.[8], Berezovsky et.al.[9], Na[10], Dey 

et al [11], Kawase et al[12], Martynenko et.al.[13], Weiss 

et.al.[14] and Pantokratoras[15-16] in numerous ways to 

include various physical effects. In their work they have 

restricted themselves to two-dimensional flow only. There 

may arise situations where the flow fields may be essential-

ly three-dimensional, for example when variations in the 

suction velocity distribution is transverse to the flow direc- 

tion. Gersten and Gross[17] have studied the effect of such 
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a transverse sinusoidal suction velocity distribution on flow 

and heat transfer over a plane wall. Singh et.al[18] extended 

the idea of transverse suction velocity further to vertical 

porous plate. In references[17-18] the temperature of the 

plate was kept constant.  

In many problems, particularly those involving the cool-

ing of electrical and nuclear components, the wall heat flux 

is specified. In such problems, over heating burnout and 

meltdown are very important issues. From practical stand 

point, an important wall model is considered with constant 

heat flux. In many applications, the wall heating effect is 

the result of radiation heating (the constant heat flux condi-

tion applies to nuclear radiation heating) from the other side 

or, as in the case of electronic components, the result of 

resistive heating (Bejan[19] ). The problems with prescribed 

heat flux are special cases of the vast analytically accessible 

class of problems. Sparrow et al[6], Merkin et al[20], Lee.et 

al.[21], Malarvizhi et.al.[22], Burak et. al.[23] and Panto-

kratoras[24] are some of the researchers who have investi-

gated the convection flow with prescribed heat flux condi-

tions. Injection and suction effects on three dimensional 

unsteady flow and heat transfer between two parallel porous 

plates have been studied by Chaudhary and Sharma[25]. 

Sharma et. al.[26] have studied the radiation effect on tem-

perature distribution in three-dimensional Couette flow with 

injection or suction. Recently, three-dimensional unsteady 

mixed convection flow with periodic temperature studied 

by Sharma et. al.[27-29].  

Approximate solutions of physical problems are handy 

tools in the hands of a scientist and an engineer. Though the 

advent of computers has opened new vistas for obtaining 

accurate numerical solutions of the problems of ev-

er-increasing complexity, it has in no way diminished the 

utility of a judiciously produced approximate analytical 

solutions which are also fairly accurate.  
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In the present paper, we present an approximate analyti-

cal solution to the problem of the laminar three-dimensional 

(caused by sinusoidally varying suction) steady mixed con-

vection flow past an infinite vertical porous plate with con-

stant heat flux, (CHF), from which the fluid is extracted at a 

uniform rate. 

2. Mathematical Analysis 

We choose a coordinate system with plate lying vertically 

on x
*
-z

*
 plane such that x

*
-axis is oriented in direction of 

the buoyancy force and y
*
-axis is perpendicular to the plane 

of the wall and directed into the fluid. The wall is moving 

with constant velocity U0. A constant suction velocity at the 

plane then leads to the two-dimensional asymptotic suction 

solution and the suction velocity transverse to the flow di-

rections leads to cross-flow and hence the flow will be 

three-dimensional over the entire plane. We consider the 

sinusoidal suction velocity distribution of the form 
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where V0 > 0 is the constant mean suction velocity;  is the 

kinematics viscosity and  (< < 1) is the amplitude of the 

sinusoidal suction velocity. The negative sign in equation (1) 

indicates that the suction is towards the plate. Although, the 

velocity and temperature fields will be independent of x
*
 

because an asymptotic flow has been taken, the flow field 

itself will be three-dimensional due to the cross-flow. De-

noting velocity components u
*
, v

*
, w

*
 in the x

*
, y

*
, 

z
*
-directions, respectively and temperature T

*
. The flow is 

governed by the following equations under the usual Bous-

sinesq approximations: 
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where Cp is the specific heat of the fluid at constant pres-

sure;  is the density; p
*
 is the pressure; T




 is the temper-

ature in the free stream and  is the thermal conductivity. 

For   T < < 1. We can express  
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Here, q* is the heat flux per unit area.  

Introducing the following non-dimensional quantities: 
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The equations (2) to (7) become 
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with corresponding boundary conditions 
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3. Solution 

When the amplitude  < < 1, we assume the solution in 

the neighbourhood of the plate of the form 

u (y, z) = u0 (y) +  u1 (y, z) +…   (14) 

v (y, z) = v0 (y) +  v1 (y, z) +… 

w (y, z) = w0 (y) +  w1 (y, z) +… 

p (y, z) = p0 (y) +  p1 (y, z) +… 

θ(y, z) = θ0 (y) +  θ1 ( y, z) +… 
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When  = 0, substituting equation (14) in equations (8) to 

(13) and comparing the coefficient of like powers of  and 

neglecting those of 
2
, we get following equations consti-

tuted by the terms free from : 
'
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where the primes denotes differentiation with respect to y. 
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The solutions of equations (15) to (19) (Pr ≠ 1) subject to 

the boundary conditions (20) are: 
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with transverse velocity components v0 = - 1, w0 = 0 and the 

pressure P0 = P where 
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This is the solution of a steady two-dimensional problem 

with constant suction and heat flux at the vertical plate. 

Taking into account the solutions of the transverse velocity 

components v0 and w0, when   0, substituting equation 

(14) in equations (8) to (12) and comparing the coefficients 

of like powers of  , neglecting those of 
2
 , we get the 

terms as the coefficient of  give the following equations: 
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with the corresponding boundary conditions reduce to 
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These are the set of linear partial differential equations 

which describe the three-dimensional flow. 

In order to solve these equations, we separate the va-

riables y and z in the following manner: 

u1 = (y, z) = u11 (y) cos  z       (29) 

v1 (y, z) = v11 (y) cos  z         (30) 
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Equations (30) and (31) are chosen so that the continuity 

equation (3.7.11) is satisfied. Substituting equations (29) to 

(33) in equations (24) to (28) and equating the coefficients 

of non-harmonic terms, we get the following equations: 
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















0,0P,0v,0u:y

0
y

,0v,1v,0u:0y

11111111

11'
111111





 (38) 

where the primes denote differentiation with respect to „y‟. 

From these equations the solutions of u1, v1, w1, P1 and 1 

(Pr ≠ 1) under the corresponding boundary conditions are 

obtained as: 
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Substituting equations (21), (39) and (22), (43) in equa-

tion (14) for u and , we get the expressions for the main 

flow velocity and the temperature profiles. The main flow 

velocity and the temperature can now be expressed in terms 

of fluctuating part as: 

u (y, z) = u0 (y) +  u1 (y, z) = u0 (y) +  u11 cos  z  (44) 

 (y, z) = 0 (y) +  1 (y, z) = 0 (y) +  11 cos  z  (45) 

 
Figure 1.  Velocity profiles for ε = 0.2, z = 0. 

 

Figure 2.  Temperature profiles for ε = 0.2, z = 0. 

4. Results and Discussion 

Laminar three dimensional mixed convection flow past 

an infinite vertical porous plate with constant heat flux has 

been carried out in preceding section. The velocity field, 

temperature distribution and skin friction coefficient have 

been obtained and shown in figures for different values of 

parameters. We now discuss the important flow characteris-

tics of the problem. The values of the Prandtl numbers are 

chosen as 0.71 and 7.0 approximately, which represent air 

and water respectively at 20
0
C. The Grashof number Gr 

takes arbitrary positive values in order to investigate their 

effects on the flow fields. The velocity profiles are dis-

played on Figure 1, for various values of Pr (≠ 1) and Gr. It 

is interesting to note that the velocity increase with increas-

ing Gr, which is true from the physical point of view be-

cause of buoyancy increases in the upper direction. In the 

case of air the fluid velocity increases with increase in Gr, 

until it attains its maximum value, after which it decreases. 

The fluid velocity takes its maximum value inside the ther-

mal boundary layer due to the convection currents and as 

the distance from the vertical plate increases it decays to its 

limiting value. When Pr = 7, the value of the velocity is 

very small and approaches to zero as the distance from the 

surface increases. The variations in Gr do not affect them 

significantly. An examination of Figure 2 shows that the 

temperature profiles collapse onto the similar curves as the 

Prandtl number increases. It is found that the temperature is 

maximum on the plate and farther from the wall it decays to 

zero. It is clear from figure that the thermal boundary layer 

becomes very thin as Pr increases. The physical reason is 

that the high Prandtl number fluid has a relatively low 

thermal conductivity which oppose conduction and thereby 

increase the variations. Thus, results in a reduction in the 

thermal boundary layer and an increase in the convection 

heat transfer at wall.  

From the velocity component u, we can now calculate the 

skin-friction in the main flow direction in the 

non-dimensional form as 
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Hence the sinusoidal skin friction with the help of (44) is 
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   (47) 

Figure 3 exhibits the sinusoidal skin-friction in the main 

flow direction for different values of Pr ( ≠ 1) and Gr. In-

creasing the Prandtl number the value of skin-friction de-

creases significantly. Physically this is true because the in-

crease in the Prandtl number is due to increase in the vis-

cosity of the fluid , which makes the fluid thick and hence a 

decrease in the velocity of the fluid. The skin-friction in-

creases with increase in Gr only. The values of the 

skin-friction are less in the case of water than those in the 

case of air.  

Finally we note that since the Grashof number involve 

the suction velocity V0, the results discussed above and de-

picted in Figures 1-3 corresponds also to the variations in 

the suction velocity at the porous plate in the manner 

.GrV 13
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Fig.1. Velocity profiles for   = 0.2,  z = 0
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Fig.2. Temperature profiles for  = 0.2, z = 0
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Figure 3.  Sinusoidal skin-friction for ε = 0.2. 
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