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Abstract  Breast cancer is currently  going to be one of the leading causes of death among women all over the world; 
however, it is for sure that the early detection and accurate diagnosis of this type of cancer can assure a longer survival of the 
patients. Because of the effect ive classificat ion and high diagnostic capability, expert systems and machine learning 
techniques are now gain ing popularity in this field. In this study, Least square support vector machine (LS-SVM) was used 
for breast cancer diagnosis. The effectiveness of the LS-SVM is examined on Wisconsin Breast Cancer Dataset (WBCD) 
using K-fold cross validation method. Compared to nineteen well-known methods for the breast cancer diagnosis in the 
literature, the study results showed the effectiveness of the proposed method. 
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1. Introduction 
A leading cause of death among women between 40and 55 

years of age, breast cancer is now the second major cause of 
death among women. According to the World Health 
Organization, every  year more than 1.2 million women are 
diagnosed with breast cancer across the globe. Luckily, in 
recent years with an increased emphasis on diagnostic 
techniques and more effective treatments, the mortality rate 
from breast cancer has declined. A key factor in this 
approach is the early detection and accurate diagnosis of this 
afflict ion[1-3]. 

Undoubtedly, the evaluation of data taken from patients 
and decisions of experts are the most important factors in 
diagnosis. Therefore, the use of classifier systems in medical 
diagnosis has been gradually increasing. After all, expert 
systems and various artificial intelligence techniques for 
classification also help experts to a considerable extent. 
Classification systems can help minimize possible errors that 
might occur due to inexperienced experts, and also provide 
medical data to be examined in shorter time and more 
detailed[3, 4]. 
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Proposed as effective statistical learning  methods for 
classification[5], Support Vector Machines (SVMs) rely on 
support vectors (SV) to identify  the decision boundaries 
between different classes. Nonlinearly related to the input 
space, SVM is based on a linear machine in a high 
dimensional feature space, which has allowed the 
development of somewhat quick t rain ing techniques, despite 
the large number o f input variables and large training sets. 
SVMs have successfully been used to address many 
problems including handwritten digit recognition[6], object 
recognition[7], speaker identification[8], face detection in 
images[9], and text categorization[10]. 

The Least Square Support Vector Machine (LS-SVM) 
was first proposed by Suykens and et al. by modifying the 
formulat ion of standard SVM[11]. The LS-SVM was 
modified at two points: First, instead of inequality 
constraints, it takes equality constraints and changed the 
quadratic programming to a linear programming. Second, a 
squared loss function is taken from the error variab le[11, 12]. 

In this study, LS-SVM was employed to diagnose the 
breast cancer. For training and testing experiments, WBCD 
taken from the University of California at Irvine (UCI) 
mach ine learn ing repository was used. It was observed that 
the proposed method yielded the highest classification 
accuracies among the nineteen other methods in the literature. 
In this study, the performance was evaluated by the 
well-known k-fold cross validation method. 
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The rest of the paper is organized as follows. Section 2, 
briefly discusses the methods and results of previous studies 
on breast cancer diagnosis. Section 3 reviews basic SVM and 
LS-SVM concepts, respectively. Section 4 elaborates on the 
WBCD. Section 5 presents the experimental results achieved 
by applying the proposed method to diagnose breast cancer. 
Finally, we would make our concluding remarks in  section 6. 

2. Review of Literature 
A great deal of approaches has been proposed to deal with 

automated diagnosis of breast cancer with WBCD, and most 
of them have managed to achieve high generalization 
performances. In[13], the author obtained 94.74% 
classification accuracy, in which10-fold cross-validation 
with C4.5 decision tree method was used. In[14], the 
researcher reached 94.99% accuracy with RIAC technique, 
while[15] have got to 96.8% with linear d iscreet analysis 
method. Using neuro-fuzzy techniques, the accuracy of 
method proposed by[16] was 95.06%. Using supervised 
fuzzy clustering method in[17], an accuracy of 95.57% was 
obtained. In[18], the fuzzy-GA method was introduced and a 
classification accuracy of 97.36% was achieved. In[19], 
three different methods, optimized learn ing vector 
quantization (LVQ), big LVQ, and artificial immune 
recognition system (AIRS) were applied and the obtained 
accuracies were 96.7%, 96.8%, and 97.2% respectively. 

In[20], multilayer perceptron neural network, four 
different methods, combined neural network, probabilistic 
neural network, recurrent neural network and SVM were 
used respectively; and the highest classification accuracy of 
97.36% was achieved by SVM. In[21], two different 
methods, Bayesian classifiers and artificial neural networks 
were applied and the obtained accuracies were 92.80% and 
97.90%, respectively. In[22], the method combined with 
association rules and neural network were applied and 
accuracy of 95.60% was obtained. Moreover, in order to 
prepare the performance of the LS-SVM in automated 
diagnostics, five different variant of Artificial Neural 
Networks (ANNs) were employed in  this study, which are 
frequently used in the literature. There are d ifferent kinds of 
ANNs, which are determined by their training algorithms 
and topologies. Adjusting the weights and bias of the ANN, 
to train an ANN, means to select a model from the set of 
allowed models that minimize the error of the generalization 
criterion. In  this study, three training algorithms were used 
for training a three-layer ANN. The first is a well-known 
Levenberg-Marquardt Back Propagation (LM BP), the 
second is Gradient Descent Back Propagation (GD BP), the 
third is Gradient Descent with Momentum Back Propagation 
(GDM BP), and the fourth is Gradient Descent with 
Adaptive learning ru le Back Propagation (GDA BP). The 
fifth comparison method is Radial Basis Function (RBF), 
which turned out as a famous variant of ANNs. 

3. SVM for Classification 
In this section, we summarize the basic SVM concepts 

with regard to typical two-class classificat ion problems. 
Support vector mach ines (SVM) orig inally developed by 

Boser et al.[23] and Vapnik[24], is based on the 
Vapnik–Chervonenkis (VC) theory and structural risk 
minimizat ion (SRM) principle[24], by trying to find a 
trade-off between minimizing the train ing set error and 
maximizing the marg in to achieve the best generalization 
ability and remain resistant to over fitting. Moreover, one 
major advantage of SVM is its use of convex quadratic 
programming, which provides only global minima; therefore, 
it avoids being trapped in local minima. For more details, 
cf.[24, 25], which give a complete description of the theory 
of SVM. In this section we will d iscuss the basic SVM 
concepts for typical binary-classification problems. 

3.1. Linear Separable Case-Hard Margin  
Let us consider a binary classification task: 

{ , } ,  1,. . . , ,i ix y i l= { 1,  1}iy ∈ − , i dx R∈ , where ix  are data 
points and iy  are corresponding labels. They are separated 

with a hyper plane g iven by 0TW x b+ = , where w is an 
n-dimensional coefficient vector which is normal to the 
hyperplane and b is the offset from the orig in. 

There are lots of hyperplanes that can separate the two 
classes, whereas the decision boundary should be as far away 
from the data of both classes as possible, the support vector 
algorithm seeks an optimal separating hyper plane that 
maximizes the separating margin between the two classes of 
data. As the wider marg in can acquire the better 
generalization ab ility, we can define a canonical hyper 

plane[24] such that 1 : 1TH W x b+
+ = +  for the closet points on 

one side and 2 : 1TH W x b−
+ = −  for the closest on the other. 

Now to maximize the separating margin is equivalent to 
maximizing the d istance between hyper plane H1 and H2. 
Hence we can get the maximal width between them: 
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Therefore, the learn ing task could be reduced to 
minimizat ion of the primal Lagrangian: 
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where iα  are Lagrangian multipliers, hence 0iα > . The 
minimum with respect to b and w of the Lagrangian, Lp, is 
given by, 
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Now we substitute back b  and w in  the primal, which gives 
the dual Lagrangian: 
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Obviously, it  is a quadratic optimizat ion problem (QP) 
with linear constraints. From Karush Kuhn–Tucker (KKT) 
condition, we know that: ( ( ) 1) 0i

T
i iy W X bα + − = ,Thus, 

only support vectors have 0iα ≠ , which carry all the 
relevant informat ion about the classification problem. Hence 

the solution has the form: 1
n

i i i i i ii i SVW y x y xα α= ∈= =∑ ∑ , 
where SV  is the number of support vectors. And gets b from

( ) 1 0T
i iy W X b+ − = , where ix  is support vector. Therefore, 

the linear discriminant function takes the form: 
( ) T T

i i i ii SVg x W x b y x xα∈= + = ∑ . 

3.2. Linear Non-Separable Case-Soft Mmargin SVM  

In practice, it is impossible to classify two classes 
accurately, because the data is always subject to noise or 
outliers, so in order to extend the support vector algorithms 
and solve imperfect separation, positive slack variables 

1,. . . ,i lξ = [24, 25] are introduced to allow misclassification 
of noisy data points, and to take into account the 
misclassification errors a penalty value C  is introduced for 
the points that cross the boundaries. In fact, parameter C can 
be viewed as a way of controlling over-fitting. Therefore, the 
new optimizat ion problem can be reformulated as follows: 
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Translate this problem into a Lagarangian dual problem 
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The solution to this min imizations problem is identical to 
the separable case except fo r the upper bound C on the 
Lagrange mult ipliers iα . 

3.3. Non-Linear Separable Case-Kernel Trick 

In most cases, one can’t linearly  separate the two classes. 
In order to extend the linear learn ing machine to work well 
with nonlinear cases, a general idea is introduced, i.e., the 
original input space can be mapped into some 
higher-dimensional feature space where the train ing set is 
separable. With this mapping, the discriminant function is of 
following form: 

( ) ( ) ( ) ( )T T
i ii SVg x W x b x x bφ α φ φ∈= + = +∑    (7) 

where T
i ix x  in the input space is represented as the form of 

( ) ( )T
ix xϕ ϕ  in the feature space. The functional form of the 

mapping ( )ixϕ  does not need to be known since it is 
implicitly  defined by the choice of kernel: 

( , ) ( ) ( )T
i j i jK x x x xϕ ϕ= . Thus, the optimization problem 

can be rewritten as: 
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After the optimal values of iα  have been found, the 
decision function would be based on the sign of: 

( ) ( , )i i ii SVg x y K x x bα∈= +∑           (9) 
As a rule, any positive semi-definite functions K(x, y) that 

satisfy Mercer’s condition could be kernel functions[26]. 
Kernel function is defined as a function that corresponds to a 
dot product of two feature vectors in some expanded feature 
space. There are many kernel functions that can be employed 
in SVM. The most commonly used kernels in SVM are listed 
in Table 1. In this Table σ  and d  are constants and those 
parameters must be set by a user. For MLP kernel a suitable 
choice for 0β  and 1β  is needed to enable the kernel 
function to meet Mercer’s condition. 

Table 1.  The conventional Kernel function 

Name Kernel Function expression 

Linear Kernel  

Polynomial Kernel  

RBF Kernel  

MLP Kernel  

3.4. Least S quare Support Vector Regression 

The Least Square Support Vector Regression (LS-SVR) 
fully described in[27], is considered as an approximation 
tool in th is study. The formulation o f SVR was modified by 
Suykens and et al. at two points: First, instead of inequality 
constraints, it takes equality constraints and changed the 
quadratic programming to a linear programming. Second, a 
squared loss function is taken from the error variab le[27, 28]. 
These modificat ions greatly simplified the problem and can 
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2 2( , ) exp( || || / )l lk x x x x σ= − −

0 1( , ) tanh( )T

l lk x x x xβ β= +



178 Hamid Fiuji et al.:  Automated Diagnostic System for Breast Cancer   
Using Least Square Support Vector Machine 

 

be specifically described as follows: 

2

1

1 1min ( , )
2 2

. .
( ) , 1,...,

N
T

k
k

T
k k k

J w e w w e

s t
y w x b e k N

γ

ϕ

=
= +

= + + =

∑
   (10) 

where  are error variables that play a similar ro le as the 

slack variab les kξ  in Vapnik SVM formulation and γ  is a 
regularizat ion parameter in determining the trade-off 
between minimizing the train ing errors and min imizing the 
model complexity. 

The Lagrangian corresponding to (10) can be defined as: 
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where k Rα ∈  are the Lagrange multip liers. The KKT 
optimality conditions for a solution can be obtained by 
partially differentiat ing with respect to w , b , ke , and kα  
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After elimination of the variable w  and ke , the 
following linear equation can be obtained: 

        (13) 

where 1[ , , ]Ny y y= 
, 1 [1, ,1]N =



 and 

1[ , , ]Ny α α= 
. The kernel trick is applied here as follows  

(14) 

where (.,.)K  is the kernel function meeting Mercer’s 

condition. b and α can be obtained by the solution to the 
linear system 

          (15) 

        (16) 
Eventually, the resulting LS-SVR model for function 

estimation can be expressed as: 

      (17) 

3.5. Model Selection 

LS-SVMs have two ad justable sets of parameters. One of 
them is called kernel parameter(s) and the other is called 
regularizat ion parameter ( γ ). LS-SVM generalizat ion 
ability depends on the proper choosing of those parameters. 
The best performance of SVM is realized with an optimal 
choice of the kernel parameter(s) and the regularization 
parameter. The optimal choice of those parameters is called 
LS-SVM’s model selection problem[29-31]. 

Kernel parameter(s) are implicitly characterizing the 
geometric structure of data in high dimensional space named 
feature space. In the feature space the data becomes linearly 
separable in such a way that the maximal margin of 
separation between two classes is reached. The selection of 
kernel parameter(s) will change the shape of the separating 
surface in input space. Selecting improperly large or small 
values in kernel parameter results Over-fitting or 
Under-fitting in the LS-SVM model surface, so the model 
would be unable to accurately separate data[32, 33]. 

In non-separable problems, noisy training data will 
introduce slack variables to measure their vio lation of the 
margin. Therefore, a penalty factor γ  is considered for 
controlling the amount of marg in violat ion. Other words, the 
penalty factor γ is defined to determine the trade-off 
between minimizing empirical error and structural risk error 
and also to guarantee the accuracy of classifier outcome in 
the presence of noisy training data. Higher γ values cause 
the marg in to be hard and the cost of violation to become too 
high, so the separating model surface over-fits the training 
data. In contrast, lower γ values allow the marg in to be soft, 
which results in under-fitting separating model surface. In 
both cases, the generalizat ion performance of classifier is 
unsatisfactory, so it makes the LS-SVM model useless   
[32, 34]. 

In this research, we employ a grid-search technique[35] 
using 5-fold  cross-validation to find out the optimal model 
selection of LS-SVM. 

4. The Wisconsin Breast Cancer 
Diagnosis Problem 

In this section, we introduce the medical diagnosis 
problem which is the object of our study. Second to skin 
cancer, breast cancer is the most common cancer among 
women. The presence of a breast mass is an alert  sign, but it 
is not always indicative of a malignant cancer. Fine Need le 
Aspiration (FNA) of breast masses is a cost-effective, 
non-traumatic, and mostly non-invasive diagnostic test that 
obtains informat ion required to evaluate malignancy. 

The Wisconsin breast cancer diagnosis (WBCD) database 
[36] is the result of the efforts made at the University of 
Wisconsin Hospital fo r accurately  diagnosing breast masses 
based solely on an FNA test[37]. This dataset is generally 
used among researchers who use machine learning methods 
for breast cancer classification; therefore it allows us to 
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compare the performance of our method with that of others. 
Nine v isually assessed characteristics of an FNA sample 
considered relevant for diagnosis were identified, and an 
integer value between 1 and 10 was assigned. The measured 
variables are as follows: 

1. Clump thickness ( 1υ );  

2. Uniformity of cell size ( 2υ ); 

3. Uniformity of cell shape ( 3υ ); 

4. Marginal adhesion ( 4υ ); 

5. Sing le epithelial cell size ( 5υ ); 

6. Bare nuclei ( 6υ ); 

7. Bland chromatin ( 7υ );  

8. Normal nucleo li ( 8υ ); 

9. Mitosis ( 9υ ). 

The diagnostics in the WBCD database were established 
by specialists in the field. The database itself consists of 683 
cases, with each entry representing the classification for a 
certain group of measured values: 

1 2 3 9
1 5 1 1 1
2 5 4 4 1

683 4 8 8 1

Case v v v v Diagnost ic
Benign
Benign

Malignant







 

    

  
Note that the diagnostics do not provide any informat ion 

about the degree of benignity or malignancy. Four hundred 
and forty four samples of the dataset belong to benign type, 
and the rest are of malignant type. 

5. Experimental Results and Discussion 
In this section, we introduce the performance evaluation 

method, which is used to evaluate the proposed method. 
Finally, we would present the experimental results and 
discuss our observations of the results. The proposed 
automated diagnostic system for breast cancer using 
LS-SVM is done in MATLAB software R2008b. 

All the experiments reported here are implemented using 
RBF kernels for the fo llowing reasons: 

When the relation between desired output and input 
attributes is nonlinear, the RBF kernel non-linearly maps 
datasets into the feature space so that it can handle the 
datasets. The number of hyper-parameters is the second 
reason which influences the complexity of model selection. 
The RBF kernel has less hyper-parameter than the 
polynomial kernel. Eventually, the RBF kernel is 
numerically less difficu lt[38-41]. 

5.1. Performance Evaluation Methods  

In this study, k-fold cross validation method was used for 
performance evaluation of breast cancer diagnosis using 

LS-SVM. k-fold cross validation is a  way  to improve over 
the holdout method. The data set is div ided into k  subsets, 
and the holdout method is repeated k  times. Every  time, one 
of the k  subsets is used as the test set, and the other 
k-1subsets are gathered to form a t rain ing set. Then the 
average error across all k trials is calculated. The advantage 
of this method is that it is less significant for this method how 
the data gets divided. Every data point gets to be in a test set 
only once, and gets to be in a training set k-1 times. As k 
increases, the variance of the resulting estimate reduces. The 
downside of this method is that the training algorithm must 
rerun k  times from scratch, in other words, it takes k  times 
computation to make an evaluation. To randomly d ivide the 
data into a test and train ing set k  different times is a  variant of 
this method. The advantage of this method is that you can 
independently choose how large you wish each test set to be 
and after how many trials you average should be over[42]. 

A confusion matrix[43] contains information about actual 
and predicted classifications done by a classifier. 
Performance of such a system is commonly  evaluated using 
the data in the matrix. Table 2 shows the confusion matrix for 
a two-class classifier. In Table 2, TP is the number of true 
positives (benign breast tumor); FN, the number of false 
negatives (malignant breast tumor); TN, the number of true 
negatives; and FP, the number of false positives. 

Table 2.  Confusion matrix 

 Predecited 
negative 

Predicted 
positive 

Actual negative TN FP 
Actual positive FN TP 

Table 3.  The best parameter pair ( γ ,σ ) 

Partit ion γ  σ  
80-20% training-test 1.6784 2.4449 

Table 4.  Classification accuracies obtained with LS-SVM and other 
classifiers from literature 

Method Classification accuracy (%) 
BP-GD 87.25 

BP-GDM 88.62 
BP-GDA 91.38 

Bayesian classifiers[21] 92.80 
BP-LM 94.52 
C4.5[13] 94.74 

RIAC[14] 94.99 
ANFIS[16] 95.06 

RBF 95.14 
Supervised-FCM[17] 95.57 

ANN-association rules[22] 95.60 
Optimized-LVQ[19] 96.70 

Nu-SVM[20] 96.79 
Big LVQ[19] 96.80 

LDA[15] 96.80 
AIRS[19] 97.20 

Fuzzy-GA[18] 97.36 
SVM[20] 97.36 
ANN[21] 97.40 
LS-SVM 97.81 
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The optimal model selection of LS-SVM model ( , ) is 
presented in Table 3. 

5.2. Results and Discussion  

We conducted some experiments on the WBCD dataset 
mentioned in section 4, so that we can evaluate the 
effectiveness of LS-SVM. We compared our results with 
those of earlier methods. Table 4 shows the classification 
accuracies of our method and nineteen previous methods. As 
the results show, our method using 10-fo ld cross validation 
has obtained the highest classification accuracy, 97.81% 
reported up to now. Table 5 presents the confusion matrix for 
a LS-SVM classifier. 

Given the research findings, the SVM-based model that 
we have developed yielded very promising results in 
classifying the breast cancer. We believe that the proposed 
system could be very helpful for physicians in their final 
decisions about their patients. Using such a tool, they can 
make reasonably accurate decisions. 

Table 5.  Confusion matrix 

 Benign Malignant 
Benign 88 1 

Malignant 2 46 

6. Conclusions 
Classification systems used in medical decision making, 

provide medical data to be examined in  a shorter time and 
more detail. Based on statistical data for breast cancer in the 
world, this affliction is among the most prevalent types of 
cancer. In this study, a medical decision making system 
based on LS-SVM was applied in diagnosing breast cancer 
and the most accurate learning methods were evaluated. To 
diagnose breast cancer in a fu lly  automatic manner using 
LS-SVM , experiments were conducted on the WBCD 
dataset. The experiment results strongly suggest that 
LS-SVM could be helpful in  diagnosis of breast cancer. 
Compared to nineteen well-known methods in the literature, 
the experiment results demonstrated that the proposed 
method was more effect ive than other 19 methods in the 
breast cancer diagnosis. 
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